The Chaotic Character of the Stochastic Heat Equation

Mathew Joseph

March 11, 2011

- Intermittency
- The Stochastic Heat Equation
- Blowup of the solution

Intermittency-Example

$\xi_{j}, j=1,2, \cdots, 10$ i.i.d. random variables
Taking values 0 and 2 with probability $1 / 2$ each

$$
\eta=\Pi_{j=1}^{10} \xi_{j}
$$

- $\eta=0$ with probability $1-\frac{1}{2^{10}}$
- $\eta=2^{10}$ with probability $\frac{1}{2^{10}}$.
- The moments $E \eta^{p}=2^{10(p-1)}$

Intermittency-Exponential Martingale

$$
d X_{t}=X_{t} d B_{t}, \quad X_{0}=1
$$

- The solution is $X_{t}=\exp \left(B_{t}-\frac{t}{2}\right) \approx \Pi \exp \left(B_{t_{i}+\Delta t_{t}}-B_{t_{i}}-\frac{\Delta t_{i}}{2}\right)$.
- $X_{t} \rightarrow 0$ as $t \rightarrow \infty$.
- $E\left(X_{t}^{p}\right)=\exp \left(\frac{p(p-1)}{2} t\right)$

Intermittency-Stochastic heat equation on lattice

$$
\frac{\partial u}{\partial t}=\kappa \Delta u+W u, \quad u(0, \cdot)=1
$$

W is a Gaussian noise that is brownian in time and with "nice" homogeneous spatial correlations.

$$
u(t, x)=E_{Y}\left[\exp \left(\int_{0}^{t} W\left(d s, Y_{t}-Y_{s}+x\right)\right)\right]
$$

Y : Continuous time random walk with jump rate κ.

- $\gamma_{p}=\lim _{t \rightarrow \infty} \frac{\log E\left[|u(t, x)|^{p}\right]}{t}$ (Moment Lyapunov Exponent)
- If κ is small, $\gamma_{1}<\frac{\gamma_{2}}{2}<\frac{\gamma_{3}}{3}<\cdots \quad$ (Mathematical Intermittency)
- Implies the existence of rare and intense peaks in the space-time profile of $u(t, x)$

Some interesting results

- When the Gaussian noise W is independent Brownian motions, then $\lim _{t \rightarrow \infty} \frac{\log u(t, x)}{t} \approx \frac{C}{\log \frac{1}{\kappa}}$ [Cranston, Mountford, Shiga]
- For $\frac{\partial u}{\partial t} u(t, z)=\Delta u(t, z)+\xi(z) u(t, z), u(0, \cdot)=\mathbf{1}_{0}$ and ξ is i.i.d. with tails heavier than double-exponential, the radius of these "intermittent islands" are bounded. [Gärtner, König, Molchanov]
- If ξ has i.i.d Pareto distribution $P(\xi(z) \leq x)=1-x^{-\alpha}, x \geq 1$ for $\alpha>d$, then almost all the mass is concentrated on two random points. [König et al.]

Intermittency-The Universe

FIG. 1. The distribution of galaxies in a thin slice with $8^{h} \leq \alpha \leq 17^{h}$ and $26^{\circ} .5 \leq \delta \leq 32^{\circ} .5$, where α (right ascension) and δ (declination) are spherical coordinates (de Lapparent et al., 1986). The positions of 1060 galaxies with $m_{B} \leq 15.5$ and $v \leq 15000 \mathrm{~km} \mathrm{~s}^{-1}$ are indicated. The scale shows the velocities of the galaxies, and their distances can be estimated assuming that the velocity and the distance of a galaxy are related according to Hubble's law, $v=H_{0} r\left(H_{0}=50 h_{50} \mathrm{~km} \mathrm{~s}^{-1} \mathrm{Mpc}^{-1}\right)$.

White Noise

White noise \dot{W} on $\mathbb{R}_{+} \times \mathbb{R}$ is a Gaussian process indexed by Borel subsets of $\mathbb{R}_{+} \times \mathbb{R}$.

- For $A \subset \mathbb{R}_{+} \times \mathbb{R}, \dot{W}(A) \sim N(0,|A|)$.
- For $A, B \subset \mathbb{R}_{+} \times \mathbb{R}, E[\dot{W}(A) \dot{W}(B)]=|A \cap B|$.
- Can define $\int h \dot{W}(d s d x)$ for $h \in L^{2}\left(\mathbb{R}_{+} \times \mathbb{R}\right)$.
- Can also integrate "predictable functions" with respect to white noise.
(SHE) $u: \mathbb{R}_{+} \times \mathbb{R} \rightarrow \mathbb{R}$

$$
\frac{\partial u}{\partial t}=\frac{\kappa}{2} \frac{\partial^{2}}{\partial x^{2}} u+\sigma(u) \dot{W}(t, x), \quad u(0, \cdot)=u_{0}(\cdot) \text { bounded nonnegative }
$$

$\dot{W}(t, x)$ is a 2 parameter white noise and $\sigma: \mathbb{R} \rightarrow \mathbb{R}$ is Lipschitz.
The (SHE) has an a.s. unique solution (that is bounded in L^{2}) given by

$$
u(t, x)=\int_{\mathbb{R}} p_{t}(y-x) u_{0}(y)+\int_{0}^{t} \int_{\mathbb{R}} p_{t-s}(y-x) \sigma(u(s, y)) \dot{W}(d y, d s)
$$

where $p_{t}(x)=\frac{1}{\sqrt{2 \kappa \pi t}} \exp \left(-\frac{x^{2}}{2 \kappa t}\right)$

- The SHE does not have a solution in higher spatial dimensions
- Not known if a solution exists if σ is not Lipschitz.

Heat equation

$$
\frac{\partial u}{\partial t}=\frac{1}{2} \Delta u, \quad u(0, \cdot)=1
$$

Stochastic heat equation

$$
\frac{\partial u}{\partial t}=\frac{1}{2} \Delta u+u \dot{W}, \quad u(0, \cdot)=1
$$

Intermittency for SHE

Theorem (Foondun, Khoshnevisan)

If $|\sigma(u)| \geq C|u|$ and $\inf _{x} u_{0}(x)>0$, then the solution to the SHE is intermittent.
If $\sigma(u)$ is bounded, intermittency does not occur.

- Parabolic Anderson Model : $\frac{\partial u}{\partial t}=\frac{1}{2} \Delta u+u \dot{W}$
- $\log u$ is a proposed solution to the KPZ equation
- Turbulence, chemical kinetics, branching processes in random environment

Theorem (Bertini, Giacomin)

For the PAM and $u_{0}(x)=e^{B_{x}}$ (where B_{x} is a two sided brownian motion) and $\phi \in C_{0}^{\infty}(\mathbb{R})$

$$
\lim _{t \rightarrow \infty} \frac{(\log u(t, \cdot), \phi)}{t}=-\frac{1}{24}(1, \phi) \text { in } L^{2}
$$

- If $\phi=\delta_{0}$ then $\frac{\log u(t, 0)}{t} \rightarrow-\frac{1}{24}$ in probability !
- Believed to be true for other initial conditions

Blowup of the solution to SHE

We are interested in the behavior of $u_{t}^{*}(R)=\sup _{|x| \leq R} u(t, x)$.

- In the case of the heat equation, $u_{t}^{*}(R)$ is bounded by $\sup _{x} u_{0}(x)$.
- For the SHE, does $u_{t}^{*}(R) \rightarrow \infty$?

Theorem (Foondun, Khoshnevisan)

If $|\sigma(u)| \geq C|u|$ and $u_{0} \not \equiv 0$ is compact and Holder continuous of order $\geq 1 / 2$, then

$$
0<\limsup _{t \rightarrow \infty} \frac{1}{t} E\left[\sup _{x}|u(t, x)|^{2}\right]<\infty
$$

- The highest peaks occur within [$-C t, C t$] [Conus, Khoshnevisan]

Blowup of the solution to SHE

- Assume $\inf _{x} u_{0}(x)>0$. Is this necessary?

Theorem (Mueller's comparison theorem)

Suppose $u^{(1)}$ and $u^{(2)}$ are solutions to $\frac{\partial u}{\partial t}=\frac{1}{2} \Delta u+\sigma(u) \dot{W}$ with $u^{(1)}(0, \cdot) \leq u^{(2)}(0, \cdot)$. Then

$$
u^{(1)}(t, \cdot) \leq u^{(2)}(t, \cdot)
$$

- For blowup, need $\sigma(x) \neq 0$ for $x>0$. Is this sufficient?

Blowup of the solution to SHE

$$
\frac{\partial u}{\partial t}=\frac{\kappa}{2} \Delta u+\sigma(u) \dot{W}
$$

Theorem (Conus, Joseph, Khoshnevisan)

- If $\inf _{x} \sigma(x) \geq \epsilon_{0}$, then

$$
\liminf _{R \rightarrow \infty} \frac{u_{t}^{*}(R)}{(\log R)^{\frac{1}{6}}}>0 \text { a.s. }
$$

- If $\epsilon_{1} \leq \sigma(x) \leq \epsilon_{2}$ for all x, then

$$
u_{t}^{*}(R) \asymp \frac{(\log R)^{1 / 2}}{\kappa^{1 / 4}} \text { a.s. }
$$

- For the Parabolic Anderson Model with $\sigma(x)=c x$,

$$
\log u_{t}^{*}(R) \asymp \frac{(\log R)^{2 / 3}}{\kappa^{1 / 3}} \text { a.s. }
$$

Colored noise case

$$
\frac{\partial u}{\partial t}=\frac{1}{2} \Delta u+\sigma(u) \dot{F}
$$

F is spatially homogeneous Gaussian noise which is Brownian in time and with spatial correlation function $f=h * \tilde{h}, h \in L^{2}(\mathbb{R})$

Theorem (Conus, Joseph, Khoshnevisan)

- If $\inf _{x} \sigma(x) \geq \epsilon_{0}$, then

$$
\liminf _{R \rightarrow \infty} \frac{u_{t}^{*}(R)}{(\log R)^{\frac{1}{4}}}>0 \text { a.s. }
$$

- If $\epsilon_{1} \leq \sigma(x) \leq \epsilon_{2}$ for all x, then

$$
u_{t}^{*}(R) \asymp(\log R)^{1 / 2} \quad \text { a.s. }
$$

- For the Parabolic Anderson Model with $\sigma(x)=c x$,

$$
\log u_{t}^{*}(R) \asymp(\log R)^{1 / 2} \quad \text { a.s. }
$$

Creating independence

$$
u(t, x)=p_{t} * u_{0}(x)+\int_{(0, t) \times \mathbb{R}} p_{t-s}(y-x) \sigma(u(s, y)) W(d y d s)
$$

Split into blocks of size $\beta \sqrt{t}$

$$
\begin{gathered}
U^{(\beta)}(t, x)=p_{t} * u_{0}(x)+\int_{(0, t) \times \mathcal{I}_{t}^{(\beta)}(x)} p_{t-s}(y-x) \sigma\left(U^{(\beta)}(s, y)\right) W(d y d s) \\
E\left(\left|u(t, x)-U^{(\beta)}(t, x)\right|^{k}\right) \leq e^{C k^{3}} \beta^{-k / 4}
\end{gathered}
$$

Upper bounds on moments

$$
\|u\|_{k, \beta}=\sup _{t \geq 0} e^{-\beta t}\|u(t, 0)\|_{k}
$$

Burkholder's inequality

$$
\|u(t, x)\|_{k} \leq C+C_{k} \sqrt{\int_{0}^{t} \int_{\mathbb{R}} p_{t-s}(y-x)^{2}\left(\sigma(0)^{2}+\operatorname{Lip}_{\sigma}\|u(s, y)\|_{k}^{2}\right) d y d s}
$$

Multiply both sides by $e^{-\beta t}$ and take sup over t

$$
\|u\|_{k, \beta} \leq C+\frac{\sqrt{k}}{(4 \kappa \beta)^{1 / 4}}\left(|\sigma(0)|+L i p_{\sigma}\|u\|_{k, \beta}\right)
$$

Choose β in terms of k so that $\frac{\sqrt{k}}{(4 \kappa \beta)^{1 / 4}}<1$

- $E\left[u(t, x)^{k}\right] \leq e^{C k^{3}}$

Thank you!

