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Intermittency

The Stochastic Heat Equation

Blowup of the solution
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Intermittency-Example

ξj , j = 1, 2, · · · , 10 i.i.d. random variables

Taking values 0 and 2 with probability 1/2 each

η = Π10
j=1ξj

η = 0 with probability 1− 1
210

η = 210 with probability 1
210 .

The moments Eηp = 210(p−1)
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Intermittency-Exponential Martingale

dXt = XtdBt , X0 = 1

The solution is Xt = exp
(
Bt − t

2

)
≈ Π exp

(
Bti +∆tt − Bti − ∆ti

2

)
.

Xt → 0 as t →∞.

E (X p
t ) = exp

(
p(p−1)

2 t
)
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Intermittency-Stochastic heat equation on lattice

∂u

∂t
= κ∆u + Wu, u(0, ·) = 1

W is a Gaussian noise that is brownian in time and with ”nice”
homogeneous spatial correlations.

u(t, x) = EY

[
exp

(∫ t

0

W (ds,Yt − Ys + x)

)]
Y : Continuous time random walk with jump rate κ.

γp = limt→∞
log E [|u(t,x)|p ]

t (Moment Lyapunov Exponent)

If κ is small, γ1 <
γ2

2 < γ3

3 < · · · (Mathematical Intermittency)

Implies the existence of rare and intense peaks in the space-time
profile of u(t, x)
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Some interesting results

When the Gaussian noise W is independent Brownian motions, then

lim
t→∞

log u(t,x)
t ≈ C

log 1
κ

[Cranston, Mountford, Shiga]

For ∂u
∂t u(t, z) = ∆u(t, z) + ξ(z)u(t, z), u(0, ·) = 10 and ξ is i.i.d.

with tails heavier than double-exponential, the radius of these
”intermittent islands” are bounded. [Gärtner, König, Molchanov]

If ξ has i.i.d Pareto distribution P(ξ(z) ≤ x) = 1− x−α, x ≥ 1 for
α > d , then almost all the mass is concentrated on two random
points. [König et al.]
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Intermittency-The Universe
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White Noise

White noise Ẇ on R+ ×R is a Gaussian process indexed by Borel subsets
of R+ × R.

W(A)~Nor(0,|A|)

For A ⊂ R+ × R, Ẇ (A) ∼ N(0, |A|).

For A, B ⊂ R+ × R, E
[
Ẇ (A)Ẇ (B)

]
=
∣∣A ∩ B

∣∣.
Can define

∫
h Ẇ (dsdx) for h ∈ L2 (R+ × R).

Can also integrate ”predictable functions” with respect to white
noise.
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The Stochastic Heat Equation

(SHE) u : R+ × R→ R
∂u

∂t
=
κ

2

∂2

∂x2
u + σ(u)Ẇ (t, x), u(0, ·) = u0(·) bounded nonnegative

Ẇ (t, x) is a 2 parameter white noise and σ : R→ R is Lipschitz.

The (SHE) has an a.s. unique solution (that is bounded in L2) given by

u(t, x) =

∫
R

pt(y − x)u0(y) +

∫ t

0

∫
R

pt−s(y − x)σ (u(s, y)) Ẇ (dy , ds)

where pt(x) = 1√
2κπt

exp
(
− x2

2κt

)
The SHE does not have a solution in higher spatial dimensions

Not known if a solution exists if σ is not Lipschitz.
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Heat equation

∂u

∂t
=

1

2
∆u, u(0, ·) = 1
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Stochastic heat equation

∂u

∂t
=

1

2
∆u + uẆ , u(0, ·) = 1
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Intermittency for SHE

Theorem (Foondun, Khoshnevisan)

If |σ(u)| ≥ C |u| and infx u0(x) > 0, then the solution to the SHE is
intermittent.
If σ(u) is bounded, intermittency does not occur.

Parabolic Anderson Model : ∂u
∂t = 1

2 ∆u + uẆ
log u is a proposed solution to the KPZ equation
Turbulence, chemical kinetics, branching processes in random
environment

Theorem (Bertini, Giacomin)

For the PAM and u0(x) = eBx (where Bx is a two sided brownian
motion) and φ ∈ C∞0 (R)

lim
t→∞

(log u(t, ·), φ)

t
= − 1

24
(1, φ) in L2

If φ = δ0 then log u(t,0)
t → − 1

24 in probability !
Believed to be true for other initial conditions
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Blowup of the solution to SHE

We are interested in the behavior of u∗t (R) = sup|x|≤R u(t, x).

In the case of the heat equation, u∗t (R) is bounded by supx u0(x).

For the SHE, does u∗t (R)→∞?

Theorem (Foondun, Khoshnevisan)

If |σ(u)| ≥ C |u| and u0 6≡ 0 is compact and Holder continuous of order
≥ 1/2, then

0 < lim sup
t→∞

1

t
E

[
sup

x
|u(t, x)|2

]
<∞

The highest peaks occur within [−Ct,Ct] [Conus, Khoshnevisan]
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Blowup of the solution to SHE

Assume infx u0(x) > 0. Is this necessary?

Theorem (Mueller’s comparison theorem)

Suppose u(1) and u(2) are solutions to ∂u
∂t = 1

2 ∆u + σ(u)Ẇ with

u(1)(0, ·) ≤ u(2)(0, ·). Then

u(1)(t, ·) ≤ u(2)(t, ·)

For blowup, need σ(x) 6= 0 for x > 0. Is this sufficient?
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Blowup of the solution to SHE

∂u

∂t
=
κ

2
∆u + σ(u)Ẇ

Theorem (Conus, Joseph, Khoshnevisan)

If infx σ(x) ≥ ε0, then

lim inf
R→∞

u∗t (R)

(log R)
1
6

> 0 a.s.

If ε1 ≤ σ(x) ≤ ε2 for all x, then

u∗t (R) � (log R)1/2

κ1/4
a.s.

For the Parabolic Anderson Model with σ(x) = cx,

log u∗t (R) � (log R)2/3

κ1/3
a.s.
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Colored noise case

∂u

∂t
=

1

2
∆u + σ(u)Ḟ

F is spatially homogeneous Gaussian noise which is Brownian in time and
with spatial correlation function f = h ∗ h̃, h ∈ L2(R)

Theorem (Conus, Joseph, Khoshnevisan)

If infx σ(x) ≥ ε0, then

lim inf
R→∞

u∗t (R)

(log R)
1
4

> 0 a.s.

If ε1 ≤ σ(x) ≤ ε2 for all x, then

u∗t (R) � (log R)1/2 a.s.

For the Parabolic Anderson Model with σ(x) = cx,

log u∗t (R) � (log R)1/2 a.s.
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Creating independence

u(t, x) = pt ∗ u0(x) +

∫
(0,t)×R

pt−s(y − x)σ (u(s, y)) W (dyds)

Split into blocks of size β
√

t

U(β)(t, x) = pt ∗ u0(x) +

∫
(0,t)×I(β)

t (x)

pt−s(y − x)σ
(
U(β)(s, y)

)
W (dyds)

E

(∣∣∣u(t, x)− U(β)(t, x)
∣∣∣k) ≤ eCk3

β−k/4
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Upper bounds on moments

||u||k,β = sup
t≥0

e−βt‖u(t, 0)‖k

Burkholder’s inequality

‖u(t, x)‖k ≤ C + Ck

√∫ t

0

∫
R

pt−s(y − x)2
(
σ(0)2 + Lipσ‖u(s, y)‖2

k

)
dyds

Multiply both sides by e−βt and take sup over t

‖u‖k,β ≤ C +

√
k

(4κβ)1/4
(|σ(0)|+ Lipσ‖u‖k,β)

Choose β in terms of k so that
√

k
(4κβ)1/4 < 1

E
[
u(t, x)k

]
≤ eCk3
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Thank you!
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