The Chaotic Character of the Stochastic Heat Equation

Mathew Joseph

March 11, 2011

Mathew Joseph Chaotic Character of the SHE

直 アイヨア イヨア

-

• Intermittency

- The Stochastic Heat Equation
- Blowup of the solution

▲ 同 ▶ ▲ 国 ▶ ▲ 国 ▶ ……

3

 $\xi_j, j = 1, 2, \cdots, 10$ i.i.d. random variables

Taking values 0 and 2 with probability 1/2 each

$$\eta = \Pi_{j=1}^{10} \xi_j$$

•
$$\eta = 0$$
 with probability $1 - rac{1}{2^{10}}$

•
$$\eta = 2^{10}$$
 with probability $\frac{1}{2^{10}}$.

• The moments
$$E\eta^p = 2^{10(p-1)}$$

- 本間 と 本語 と 本語 と 一語

Intermittency-Exponential Martingale

$$dX_t = X_t dB_t \quad , \qquad X_0 = 1$$

• The solution is $X_t = \exp\left(B_t - \frac{t}{2}\right) \approx \Pi \exp\left(B_{t_i + \Delta t_t} - B_{t_i} - \frac{\Delta t_i}{2}\right)$.

•
$$X_t \to 0$$
 as $t \to \infty$.
• $E(X_t^p) = \exp\left(\frac{p(p-1)}{2}t\right)$

(< Ξ) < Ξ)</p>

Intermittency-Stochastic heat equation on lattice

$$\frac{\partial u}{\partial t} = \kappa \Delta u + W u, \qquad u(0, \cdot) = 1$$

W is a Gaussian noise that is brownian in time and with "nice" homogeneous spatial correlations.

$$u(t,x) = E_Y\left[\exp\left(\int_0^t W(ds, Y_t - Y_s + x)\right)\right]$$

Y: Continuous time random walk with jump rate κ .

•
$$\gamma_p = \lim_{t \to \infty} \frac{\log E[|u(t,x)|^p]}{t}$$
 (Moment Lyapunov Exponent)

- If κ is small, $\gamma_1 < \frac{\gamma_2}{2} < \frac{\gamma_3}{3} < \cdots$ (Mathematical Intermittency)
- Implies the existence of rare and intense peaks in the space-time profile of u(t,x)

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ・ つ へ ()

- When the Gaussian noise W is independent Brownian motions, then $\lim_{t \to \infty} \frac{\log u(t,x)}{t} \approx \frac{C}{\log \frac{1}{\kappa}}$ [Cranston, Mountford, Shiga]
- For $\frac{\partial u}{\partial t}u(t,z) = \Delta u(t,z) + \xi(z)u(t,z)$, $u(0,\cdot) = \mathbf{1}_0$ and ξ is i.i.d. with tails heavier than double-exponential, the radius of these "intermittent islands" are bounded. **[Gärtner, König, Molchanov]**
- If ξ has i.i.d Pareto distribution P(ξ(z) ≤ x) = 1 x^{-α}, x ≥ 1 for α > d, then almost all the mass is concentrated on two random points. [König et al.]

イロト 不得 トイヨト イヨト 三日

Intermittency-The Universe

FIG. 1. The distribution of galaxies in a thin slice with $8^h \le \alpha \le 17^h$ and $26^\circ.5 \le \delta \le 32^\circ.5$, where α (right ascension) and δ (declination) are spherical coordinates (de Lapparent et al., 1986). The positions of 1060 galaxies with $m_p \le 15.5$ and $v \le 15000$ km s⁻¹ are indicated. The scale shows the velocities of the galaxies, and their distances can be estimated assuming that the velocity and the distance of a galaxy are related according to Hubble's law, $v = H_0^-$ ($H_0 = 50h_{20}$ km s⁻¹/Mpc⁻¹).

イロト イヨト イヨト

ъ

White Noise

White noise \dot{W} on $\mathbb{R}_+ \times \mathbb{R}$ is a Gaussian process indexed by Borel subsets of $\mathbb{R}_+ \times \mathbb{R}$.

- For $A \subset \mathbb{R}_+ imes \mathbb{R}$, $\dot{W}(A) \sim N(0, |A|)$.
- For $A, B \subset \mathbb{R}_+ \times \mathbb{R}, E\left[\dot{W}(A)\dot{W}(B)\right] = |A \cap B|.$
- Can define $\int h \dot{W}(dsdx)$ for $h \in L^2(\mathbb{R}_+ \times \mathbb{R})$.
- Can also integrate "predictable functions" with respect to white noise.

・ 同 ト ・ 三 ト ・ 三 ト ・

$$\begin{array}{ll} (\mathsf{SHE}) & u: \mathbb{R}_+ \times \mathbb{R} \to \mathbb{R} \\ & \frac{\partial u}{\partial t} = \frac{\kappa}{2} \frac{\partial^2}{\partial x^2} u + \sigma(u) \dot{W}(t, x), \qquad u(0, \cdot) = u_0(\cdot) \text{ bounded nonnegative} \end{array}$$

 $\dot{W}(t,x)$ is a 2 parameter white noise and $\sigma:\mathbb{R}
ightarrow\mathbb{R}$ is Lipschitz.

The (SHE) has an a.s. unique solution (that is bounded in L^2) given by

$$u(t,x) = \int_{\mathbb{R}} p_t(y-x)u_0(y) + \int_0^t \int_{\mathbb{R}} p_{t-s}(y-x)\sigma(u(s,y)) \dot{W}(dy,ds)$$

where $p_t(x) = \frac{1}{\sqrt{2\kappa\pi t}} \exp\left(-\frac{x^2}{2\kappa t}\right)$

- The SHE does not have a solution in higher spatial dimensions
- Not known if a solution exists if σ is not Lipschitz.

(1日) (1日) (日) (日) (日)

Heat equation

$$\frac{\partial u}{\partial t} = \frac{1}{2}\Delta u, \qquad u(0,\cdot) = 1$$

Mathew Joseph Chaotic Character of the SHE

- 40 H

=

Stochastic heat equation

$$\frac{\partial u}{\partial t} = \frac{1}{2}\Delta u + u\dot{W}, \qquad u(0,\cdot) = 1$$

Intermittency for SHE

Theorem (Foondun, Khoshnevisan)

If $|\sigma(u)| \ge C|u|$ and $\inf_x u_0(x) > 0$, then the solution to the SHE is intermittent. If $\sigma(u)$ is bounded, intermittency does not occur.

- Parabolic Anderson Model : $\frac{\partial u}{\partial t} = \frac{1}{2}\Delta u + u\dot{W}$
- log *u* is a proposed solution to the KPZ equation
- Turbulence, chemical kinetics, branching processes in random environment

Theorem (Bertini, Giacomin)

For the PAM and $u_0(x) = e^{B_x}$ (where B_x is a two sided brownian motion) and $\phi \in C_0^\infty(\mathbb{R})$

$$\lim_{t o\infty}rac{\left(\log u(t,\cdot),\phi
ight)}{t}=-rac{1}{24}\left(1,\phi
ight)$$
 in L^2

• If $\phi = \delta_0$ then $\frac{\log u(t,0)}{t} \rightarrow -\frac{1}{24}$ in probability !

Believed to be true for other initial conditions

Blowup of the solution to SHE

We are interested in the behavior of $u_t^*(R) = \sup_{|x| \le R} u(t, x)$.

- In the case of the heat equation, $u_t^*(R)$ is bounded by $\sup_x u_0(x)$.
- For the SHE, does $u_t^*(R) \to \infty$?

Theorem (Foondun, Khoshnevisan)

If $|\sigma(u)| \ge C|u|$ and $u_0 \not\equiv 0$ is compact and Holder continuous of order $\ge 1/2$, then

$$0 < \limsup_{t \to \infty} \frac{1}{t} E \left[\sup_{x} |u(t,x)|^2 \right] < \infty$$

• The highest peaks occur within [-Ct, Ct] [Conus, Khoshnevisan]

• Assume $\inf_{x} u_0(x) > 0$. Is this necessary?

Suppose $u^{(1)}$ and $u^{(2)}$ are solutions to $\frac{\partial u}{\partial t} = \frac{1}{2}\Delta u + \sigma(u)\dot{W}$ with $u^{(1)}(0,\cdot) \le u^{(2)}(0,\cdot)$. Then $u^{(1)}(t,\cdot) \le u^{(2)}(t,\cdot)$

• For blowup, need $\sigma(x) \neq 0$ for x > 0. Is this sufficient?

Blowup of the solution to SHE

$$\frac{\partial u}{\partial t} = \frac{\kappa}{2} \Delta u + \sigma(u) \dot{W}$$

Theorem (Conus, Joseph, Khoshnevisan)

• If $\inf_x \sigma(x) \ge \epsilon_0$, then

$$\liminf_{R\to\infty}\frac{u_t^*(R)}{\left(\log R\right)^{\frac{1}{6}}}>0 \ a.s.$$

• If $\epsilon_1 \leq \sigma(x) \leq \epsilon_2$ for all x, then

$$u_t^*(R) \asymp rac{(\log R)^{1/2}}{\kappa^{1/4}}$$
 a.s.

• For the Parabolic Anderson Model with $\sigma(x) = cx$,

$$\log u_t^*(R) \asymp \frac{(\log R)^{2/3}}{\kappa^{1/3}} \quad a.s.$$

Mathew Joseph

Chaotic Character of the SHE

Colored noise case

$$\frac{\partial u}{\partial t} = \frac{1}{2}\Delta u + \sigma(u)\dot{F}$$

F is spatially homogeneous Gaussian noise which is Brownian in time and with spatial correlation function $f = h * \tilde{h}, h \in L^2(\mathbb{R})$

Theorem (Conus, Joseph, Khoshnevisan)

• If $\inf_x \sigma(x) \ge \epsilon_0$, then

$$\liminf_{R\to\infty}\frac{u_t^*(R)}{\left(\log R\right)^{\frac{1}{4}}}>0 \ a.s.$$

• If $\epsilon_1 \leq \sigma(x) \leq \epsilon_2$ for all x, then

$$u_t^*(R) \asymp \left(\log R\right)^{1/2}$$
 a.s.

• For the Parabolic Anderson Model with $\sigma(x) = cx$,

$$\log u_t^*(R) \asymp (\log R)^{1/2} \quad a.s.$$

Creating independence

$$u(t,x) = p_t * u_0(x) + \int_{(0,t)\times\mathbb{R}} p_{t-s}(y-x)\sigma(u(s,y)) W(dyds)$$

Split into blocks of size $\beta\sqrt{t}$

$$U^{(\beta)}(t,x) = p_t * u_0(x) + \int_{(0,t) \times \mathcal{I}_t^{(\beta)}(x)} p_{t-s}(y-x)\sigma\left(U^{(\beta)}(s,y)\right) W(dyds)$$
$$E\left(\left|u(t,x) - U^{(\beta)}(t,x)\right|^k\right) \le e^{Ck^3}\beta^{-k/4}$$

Mathew Joseph

Chaotic Character of the SHE

Upper bounds on moments

$$||u||_{k,\beta} = \sup_{t\geq 0} e^{-\beta t} ||u(t,0)||_k$$

Burkholder's inequality

$$\|u(t,x)\|_k \leq C + C_k \sqrt{\int_0^t \int_{\mathbb{R}} p_{t-s}(y-x)^2 \left(\sigma(0)^2 + Lip_\sigma \|u(s,y)\|_k^2\right) dy ds}$$

Multiply both sides by $e^{-\beta t}$ and take sup over t

$$\|u\|_{k,eta} \leq C + rac{\sqrt{k}}{\left(4\kappaeta
ight)^{1/4}}\left(|\sigma(0)| + Lip_{\sigma}\|u\|_{k,eta}
ight)$$

Choose eta in terms of k so that $rac{\sqrt{k}}{(4\kappa\beta)^{1/4}} < 1$

•
$$E\left[u(t,x)^k\right] \leq e^{Ck^3}$$

▲ 御 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ─ 臣

Thank you!

▲日 ▶ ▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶ →

Ξ 9 Q (P