SRO $\mathbb{Z}^{d}: C L T \& d=2$ rec, $d \geqslant 3$ trans.
Balanced RWRE: $\omega=\left(\omega_{x}\right)_{x \in \mathbb{Z}^{d}}$ emironmat ; $\omega_{x}=\left(\omega_{x}(e)\right)_{\text {le }=1}$
p^{*} measure on ω

$$
\sum_{e} w_{x}(e)=1
$$

RWRE $\left\{x_{n}\right\rangle_{n \geqslant 0} \quad P_{w}\left\{x_{n+1}=x+e \mid x_{n}=x\right\}=\omega_{x}(e)$
Balanced environment: : $P^{*}\left\{\omega_{x}(e)=\omega_{x}(-e)\right\}=1 \quad \forall x, \forall e ; \quad P^{*}$ ind

Th. (G-Zeitoni) P^{*} iid, $P^{*}\left(\omega_{0}(e)>0\right)=1 \forall e \Rightarrow$ same
Cor. $d=2$ rec. (kesten: $c L T, d=2 \Rightarrow$ rec.)
Also can prove $d \geqslant 3$ transient
Pf of cLTTh. X_{n} is a martingale under P_{w}.
Need to find an ergodic measure $\sim P^{*}$ for process Viewed from The particle $\theta^{x_{n}} \omega$
Idea: periodize \rightarrow Markov chain on a finite state space \leadsto invariant measure Q_{N}
" $Q_{N} \Rightarrow Q^{\prime}$ invariant Now need $Q \sim P^{*}$. Eeg. enif integrability of $\frac{d Q_{N}}{d P^{*}}$

$$
\widetilde{\phi}_{N} h=\bar{\phi}_{N} \frac{1}{\tau} \sum_{i=1}^{\tau} p_{w}^{(n)} h
$$

气 eixt time to exit Box size N

$$
\left|\sum_{x \in B_{N}} \tilde{\phi}_{N}^{\alpha}\right|^{\frac{1}{\alpha}} \sim \widetilde{\phi}_{N} \frac{1}{N^{2}} \underbrace{E}_{\Lambda} \sum_{n=1}^{\tau} h\left(x_{n}\right)
$$

Alex-Baklman-Pucci \Rightarrow carol of $u \Rightarrow \leq\left\|\tilde{D}_{N} \varepsilon(u)\right\||\Pi \omega(e)|^{\frac{1}{d}}$ Percolation \rightarrow control of ε small (which implies ${\underset{N}{N}}_{\text {large }}^{\substack{\text { bad }}}$)

