Large Deviations for partition functions.
(-..and for other polymer related quantities)

Nicos Georgiou

Department of Mathematics,
UW - Madison

Joint work with Timo Seppalainen

Nicos Georgiou, UW -Madison Large Deviations for partition functions.



Layout

© Inroduction and Results.

o Quadrant directed polymers
o The Results

e Boundary log-gamma model
o Burke Property

Nicos Georgiou, UW -Madison Large Deviations for partition functions.



Layout

@ Inroduction and Results.
o Quadrant directed polymers
o The Results
e Boundary log-gamma model
o Burke Property

@ The proofs.

Decomposition and Burke

Estimation

Thank you note !

Inversion

Proofs for unconstrained endpoint model

Nicos Georgiou, UW -Madison Large Deviations for partition functions.



Directed polymer in space-time random environment

o Nearest neighbor, up-right path (x(u)),

u € N2,
T @ “Space-time” environment
n {w(u) : v e N?}.

@ [(m, n) = Up-right paths (xm, ) from
(1,1) to (m, n).

@ Quenched probability measure on the
paths

LN
4

m

1
Qmalrma()} = 5—exp {8 3 w(w)}
o LleXm,n(')
Inverse temperature 3 > 0 (set to be 1 for the majority of the talk) .
The normalizing constant Z, , is the partition function, given by

Zm,n = Z exp {B Z w(u)}
x€M(m,n) uex(+)

P is the probability distribution on the environment w, {w(u)} i.i.d.
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Questions and previous results

Question: Large deviations or Concentration Inequalities for the partition
function.

@ Concentration Inequalities:
© Carmona - Hu: Order n concentration inequality (Gaussian
environment)
© Comets - Shiga - Yoshida: Order n*/3 concentration inequality.
© Liu - Watbled: Order n concentration inequality.
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Question: Large deviations or Concentration Inequalities for the partition
function.

@ Concentration Inequalities:

© Carmona - Hu: Order n concentration inequality (Gaussian
environment)

© Comets - Shiga - Yoshida: Order n*/3 concentration inequality.

© Liu - Watbled: Order n concentration inequality.

@ Large deviations.

© Carmona - Hu: Upper and lower tails normalizations (Gaussian
environment)
© Ben-Ari: Lower tail large deviation regimes.

Explicit rate functions for partition functions ?

Nicos Georgiou, UW -Madison Large Deviations for partition functions.



Existence of Rate functions

Assumptions:

e d-dimensional rectangle (only steps parallel to the positive axes are
allowed).

@ General i.i.d. weights, so that a £ > 0 that depends on the
distributions of the weights w exists, such that

E (M) < oo,
e f<E.

Theorem

Fort>0,ue Ri and r € R there exists a nonnegative function that
satisfies
B T =1 B
Ji(r) = n||_>moo n~" log P{log 2 2 nr}.

J is convex in the variable (u, r). The rate function is continuous in
(u, r) where it is finite.
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Log-Gamma Model

@ Dimension 1 +1

o li.d. weights, with distributions

w(i,j) ~log Yij, where Yljl ~ Gamma( )

Gamma density: F(M)*lxuflefx

@ The partition function satisfies a law of large numbers:

lim n"tlog Z| ns) 10ty = fu(s, t).

n— oo

Y

o Joi(r)=— lim n"'logP{log Z|pns),|nt| = Nr}.

n— oo
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Results - The log-gamma rate function (fixed endpoint)

Definitions:
For0 <& < (pn+&)/2 <6< p, define

@ he(6) =logl(pw—0)—logl(p—6+¢).
o de(0) =logl(6 —&) —logl(h).

Theorem
Letre R, 0<s<t. Then

Js,t(r) = Ssup sup {(ra _5) : (ga V) - t(dE O hg_l)(v)}a
€€[0,u) he((u+€)/2)<v

= su r sh + tde(0)} ¢,
sup {re= it {she(6) + k()]

The function Js +(r) is strictly positive for r > ry = f,(s, t).
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Results - The log-gamma rate function (free endpoint)

Let s > 0. The free-endpoint directed polymer model has partition

function
Z = Y ew{ Y )

x:| ns]-paths x uex(-)

Letre R, s >0. Then

Ji%(r) = = lim n~"log P{log Z{7%) > nr}

- s/2,s/2(r)~

0 3
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Results - Exit point and Path Chain Quenched LDP

Theorem (Exit point LDP)

Let 0 < t < 1 and consider (t,1 —t) € R2. Forn € N et
[n(t,1—t)] = (|nt],n— |nt]) and denote by x, the last point of the
polymer chain xp ,. Then

fu(1/2,1/2) = fu(t,1 - t) = — lim ntlog Q¥{x, = [n(t,1 — t)]}.

This readily leads to the following path large deviations.

Theorem (Polymer chain LDP)

Let y(t) : [0,1] — R2 be a non decreasing Lipschitz-1 curve with
~(0) = 0 and let £ > 0 and N(v) an e-neighborhood of . Let
[v(1)|lr =1 . Then,

e—0n—o0

1
f.(1/2,1/2) —/0 f.(7/(t)) dt = — lim lim n~'log Q¥ {x0,n € NN=(7)}.

v
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Computational tool: Log-gamma polymer with boundary

Define multiplicative weights Y;; = e~('¥) independent.
Environment (distribution P)

. Horizontal Weights U
Yi;)l = U,-)_O:l ~ Gamma(0)

. Vertical Weights V

(N o) Vo~ G

e Gamma(p) density: D Bulk Weights Y
M(p) txr—tex. Y, ;' ~ Gamma(u)

This model allows specific calculations.

Nicos Georgiou, UW -Madison Large Deviations for partition functions.



Computational tool: Log-gamma polymer with boundary

Define multiplicative weights Y;; = e~('¥) independent.

Environment (distribution P)

. Horizontal Weights U
Yi;)l = U,-)_O:l ~ Gamma(0)

. Vertical Weights V

(N o) Vo~ G

e Gamma(p) density: D Bulk Weights Y
M(p) txr—tex. Y, ;' ~ Gamma(u)

This model allows specific calculations. Reason: Burke property.
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Burke Property for the boundary model.

Given initial weights (i,j € N)

Yi -1

o Uy ~ Gamma(0)

° VO_,jl ~ Gamma(u — 6)
Ui o ° ijl ~ Gamma(p)
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Burke Property for the boundary model.

Given initial weights (i,j € N)
Vo j Yij -1
o Uy ~ Gamma(0)
° VO_,jl ~ Gamma(u — 6)
0ol 1 Uio ° ijl ~ Gamma(p)
0

Compute Z,, , for all (m, n) € Z2 and then define

Z
e Xm n—

U _ Zm,n
m,n — 7 s
m,n—1

) ( Zm7n + Zm,n )71
Zm—l,n

Vm7n = 7 7
m+1,n m,n+1
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Burke Property for the boundary model.

Given initial weights (i,j € N)
Vo j Yij -1
o Uy ~ Gamma(0)
° VO_,jl ~ Gamma(u — 6)
0ol 1 Uio ° YI’J1 ~ Gamma(p)
0

Compute Z,, , for all (m, n) € Z2 and then define

Z, Z Z 7 —il
U — Swhids V. —_ m,n X _ ( m,n m,n )
m,n Zm—l,n m,n Zm,n—l m,n Zm+1,n + Zm7n+1
f={x—e,x}

For an undirected edge f: Tf = U
Vi f={x—e,x}
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Burke Property

= = = down-right path (z) with
edges

fk = {Zkfl, Zk}, keZ

@ interior points Z of path (z)
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Burke Property

— = = down-right path (zx) with
edges

fk = {zk,l,zk}, keZ

@ interior points Z of path (z)

Variables {T¢,, X, : k € Z, z € T} are independent with marginals

U=t ~ Gamma(f), V=1 ~ Gamma(u — 0), and X=! ~ Gamma(u).
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Idea of Proof - Decomposition

We start by decomposing Z| s/, |n¢) according to the exit point of the

polymer path from the boundary:

Lnt]
Ik anai
1
0 (*}
01 | ns|

Nicos Georgiou, UW -Madison

The shaded part represents
the partition function condi-
tioned on (0, /) being the exit
point of the polymer path
from the boundary.
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Idea of Proof - Decomposition

ns]+|nt]

Zins),[nt) = Z H Yy
- f { (H Vay )28 (Lnsl Lot b+
% { (ﬁ U; 0> (k1) (Lns], Lntj)}

= i=1
Consequence of the Burke Property:

] |ns]

Zns),|nt] = H Vo,i H Ui, nt]
j=1 i=1
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Idea of Proof - Burke Trick

Divide both sides by HJ-LELJ Vo,

ﬁU,-,LntJ =§{<Jﬁl VoJ> 1,)( |ns], Lntj)}
+§{<ﬁ vojlﬁu,()) Zgy(Lns], Lntj)}.

Lns]
S mZ2(lns), Lnt)).
k=—|nt]
k0
Here we defined

Lnt]
H 0_]7 for — |nt] < k < -1,
Jj=—k

Mk = -1, k=20

1o H Uio, for 0 < k < LnsL
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Idea of Proof - Estimation

Lns]
Ry(r) = — lim nllogﬂ”{ log [T Ui,y > ’”}

n—o0 .
i=1

Los]
~—n1 IogIE”{ log Z nkaD(LHSJ» |nt]) > nr}
k=—|nt]
k£0

~ —n"llog IP’{mkaxlog mZ>(|ns|, |nt]) > nr}
~—n! mkaxlog P{log nx + log ZZ (| ns], |nt]) > nr}
~ inf ig{{{/«:a(x) + J2.(r—x)}

—t<a<s x
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Idea of Proof - Inversion

Ri(§) = sup {r3(&)+ (L))}

—t<a<s

F(0,6) = sup {au(0) — (—(42.)"(£)}

—t<a<s

Fiu™(v),€) ™E° sup {av — (—(J2,)"(9)}

0<a<lt

Fi(u™'(v),&) = sup {av— G(a)}

0<a<t

Fi(u™'(v),€) = GZ(v)

Then,
Jeo(r) = sup {r§ —(J7,)"(€)}
35 (YD)
— sup {ré+ Ge(a))
£€lo,p)
= sup sup{ré+av—Gi(v)}. O
£elo,u) veR
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Proof for unconstrained endpoint model

18 (2,02, 1ns) ~ 15 1) < l08 Z[5g) <

<log(ns + 1) + log ( m,(aka7L,,5J_k).

Lns]
After some estimates, this translates
to the rate functions:

0 tot
og”‘;fgs-la,s—a(r) < Js (r) < Js/27s/2(r)- LHSJ _ Kk

k |ns]
Use convexity of the point-to-point rate functions to get that

Jsjass2(r) < inf Jyo_a(r).

T 0<a<s
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