Large Deviations for partition functions. (...and for other polymer related quantities)

Nicos Georgiou

Department of Mathematics, UW - Madison

Joint work with Timo Seppäläinen

Layout

Inroduction and Results.

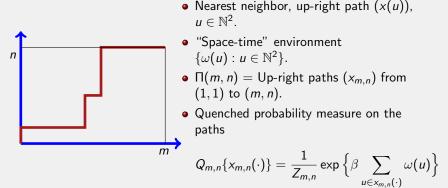
- Quadrant directed polymers
- The Results
- Boundary *log*-gamma model
- Burke Property

Layout

Inroduction and Results.

- Quadrant directed polymers
- The Results
- Boundary log-gamma model
- Burke Property
- O The proofs.
 - Decomposition and Burke
 - Estimation
 - Thank you note !
 - Inversion
 - Proofs for unconstrained endpoint model

Directed polymer in space-time random environment



Inverse temperature $\beta > 0$ (set to be 1 for the majority of the talk). The normalizing constant $Z_{m,n}$ is the *partition function*, given by

$$Z_{m,n} = \sum_{x \in \Pi(m,n)} \exp \left\{ \beta \sum_{u \in x(\cdot)} \omega(u) \right\}$$

 $\mathbb P$ is the probability distribution on the environment $\omega,$ $\{\omega(u)\}$ i.i.d.

Question: Large deviations or Concentration Inequalities for the partition function.

- Concentration Inequalities:
 - Carmona Hu: Order n concentration inequality (Gaussian environment)
 - **2** Comets Shiga Yoshida: Order $n^{1/3}$ concentration inequality.
 - Liu Watbled: Order n concentration inequality.

Question: Large deviations or Concentration Inequalities for the partition function.

- Concentration Inequalities:
 - Carmona Hu: Order n concentration inequality (Gaussian environment)
 - **2** Comets Shiga Yoshida: Order $n^{1/3}$ concentration inequality.
 - Liu Watbled: Order n concentration inequality.
- Large deviations.
 - Carmona Hu: Upper and lower tails normalizations (Gaussian environment)
 - Ben-Ari: Lower tail large deviation regimes.

Question: Large deviations or Concentration Inequalities for the partition function.

- Concentration Inequalities:
 - Carmona Hu: Order n concentration inequality (Gaussian environment)
 - **2** Comets Shiga Yoshida: Order $n^{1/3}$ concentration inequality.
 - Liu Watbled: Order n concentration inequality.
- Large deviations.
 - Carmona Hu: Upper and lower tails normalizations (Gaussian environment)
 - Ben-Ari: Lower tail large deviation regimes.

Explicit rate functions for partition functions ?

Assumptions:

- *d*-dimensional rectangle (only steps parallel to the positive axes are allowed).
- General i.i.d. weights, so that a $\xi>0$ that depends on the distributions of the weights ω exists, such that

 $\mathbb{E}\big(e^{\xi|\omega(u)|}\big) < \infty.$

 $\bullet \ \beta < \xi.$

Theorem

For $t>0, \ u\in \mathbb{R}^d_+$ and $r\in \mathbb{R}$ there exists a nonnegative function that satisfies

$$J_{u}^{\beta}(r) = -\lim_{n \to \infty} n^{-1} \log \mathbb{P}\{\log Z_{\lfloor nu \rfloor}^{\beta} \ge nr\}.$$

J is convex in the variable (u, r). The rate function is continuous in (u, r) where it is finite.

Log-Gamma Model

Dimension 1+1

• I.i.d. weights, with distributions

$$\omega(i,j) \sim \log Y_{i,j}, \quad \text{where } Y_{i,j}^{-1} \sim \textit{Gamma}(\mu)$$

Gamma density: $\Gamma(\mu)^{-1}x^{\mu-1}e^{-x}$

• The partition function satisfies a law of large numbers:

$$\lim_{n\to\infty} n^{-1} \log Z_{\lfloor ns \rfloor, \lfloor nt \rfloor} = f_{\mu}(s, t).$$

•
$$J_{s,t}(r) = -\lim_{n \to \infty} n^{-1} \log \mathbb{P}\{\log Z_{\lfloor ns \rfloor, \lfloor nt \rfloor} \ge nr\}.$$

Definitions:

For $0 < \xi < (\mu + \xi)/2 \le \theta < \mu$, define

•
$$h_{\xi}(\theta) = \log \Gamma(\mu - \theta) - \log \Gamma(\mu - \theta + \xi).$$

•
$$d_{\xi}(\theta) = \log \Gamma(\theta - \xi) - \log \Gamma(\theta).$$

Theorem

Let $r \in \mathbb{R}$, $0 \le s \le t$. Then

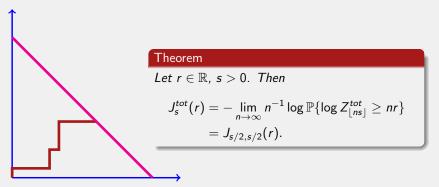
$$J_{s,t}(r) = \sup_{\xi \in [0,\mu)} \sup_{h_{\xi}((\mu+\xi)/2) \le v} \{ (r, -s) \cdot (\xi, v) - t(d_{\xi} \circ h_{\xi}^{-1})(v) \}, \\ = \sup_{\xi \in [0,\mu)} \{ r\xi - \inf_{\theta \in [(\mu+\xi)/2,\mu)} \{ sh_{\xi}(\theta) + td_{\xi}(\theta) \} \},$$

The function $J_{s,t}(r)$ is strictly positive for $r > r_0 = f_{\mu}(s, t)$.

Results - The log-gamma rate function (free endpoint)

Let s > 0. The free-endpoint directed polymer model has partition function

$$Z_{\lfloor ns \rfloor}^{tot} = \sum_{x: \lfloor ns \rfloor \text{-paths } x} \exp \Big\{ \sum_{u \in x(\cdot)} \omega(u) \Big\}$$



Theorem (Exit point LDP)

Let 0 < t < 1 and consider $(t, 1 - t) \in \mathbb{R}^2_+$. For $n \in \mathbb{N}$ let $[n(t, 1 - t)] = (\lfloor nt \rfloor, n - \lfloor nt \rfloor)$ and denote by x_n the last point of the polymer chain $x_{0,n}$. Then

$$f_{\mu}(1/2, 1/2) - f_{\mu}(t, 1-t) = -\lim_{n \to \infty} n^{-1} \log Q_n^{\omega} \{x_n = [n(t, 1-t)]\}.$$

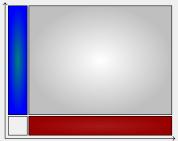
This readily leads to the following path large deviations.

Theorem (Polymer chain LDP)

Let $\gamma(t) : [0,1] \mapsto \mathbb{R}^2_+$ be a non decreasing Lipschitz-1 curve with $\gamma(0) = 0$ and let $\varepsilon > 0$ and $\mathcal{N}_{\varepsilon}(\gamma)$ an ε -neighborhood of γ . Let $\|\gamma(1)\|_1 = 1$. Then,

$$f_{\mu}(1/2,1/2) - \int_0^1 f_{\mu}(\gamma'(t)) dt = -\lim_{\varepsilon \to 0} \lim_{n \to \infty} n^{-1} \log Q_n^{\omega} \{ \mathsf{x}_{0,n} \in n \mathcal{N}_{\varepsilon}(\gamma) \}.$$

Define multiplicative weights $Y_{i,j} = e^{\omega(i,j)}$ independent.



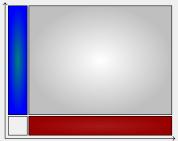
• Gamma(μ) density: $\Gamma(\mu)^{-1}x^{\mu-1}e^{-x}$. Environment (distribution \mathbb{P})

Horizontal Weights U $Y_{i,0}^{-1} = U_{i,0}^{-1} \sim Gamma(\theta)$

Bulk Weights Y $Y_{i,j}^{-1} \sim Gamma(\mu)$

This model allows specific calculations.

Define multiplicative weights $Y_{i,j} = e^{\omega(i,j)}$ independent.



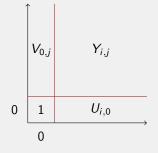
• Gamma(μ) density: $\Gamma(\mu)^{-1}x^{\mu-1}e^{-x}$. Environment (distribution \mathbb{P})

Horizontal Weights U $Y_{i,0}^{-1} = U_{i,0}^{-1} \sim Gamma(\theta)$

Bulk Weights Y $Y_{i,j}^{-1} \sim Gamma(\mu)$

This model allows specific calculations. Reason: Burke property.

Burke Property for the boundary model.



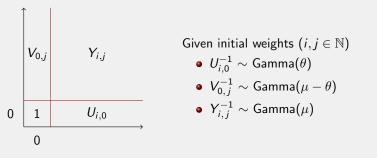
Given initial weights $(i, j \in \mathbb{N})$

•
$$U_{i,0}^{-1} \sim \operatorname{Gamma}(\theta)$$

•
$$V_{0,j}^{-1} \sim \operatorname{Gamma}(\mu - \theta)$$

•
$$Y_{i,j}^{-1} \sim \mathsf{Gamma}(\mu)$$

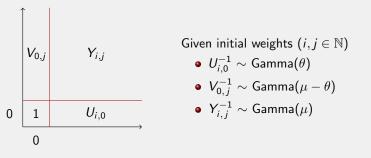
Burke Property for the boundary model.



Compute $Z_{m,n}$ for all $(m,n)\in\mathbb{Z}_+^2$ and then define

$$U_{m,n} = \frac{Z_{m,n}}{Z_{m-1,n}} \qquad V_{m,n} = \frac{Z_{m,n}}{Z_{m,n-1}} \qquad X_{m,n} = \left(\frac{Z_{m,n}}{Z_{m+1,n}} + \frac{Z_{m,n}}{Z_{m,n+1}}\right)^{-1}$$

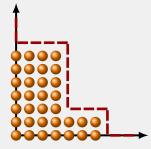
Burke Property for the boundary model.



Compute $Z_{m,n}$ for all $(m,n)\in\mathbb{Z}_+^2$ and then define

$$U_{m,n} = \frac{Z_{m,n}}{Z_{m-1,n}} \qquad V_{m,n} = \frac{Z_{m,n}}{Z_{m,n-1}} \qquad X_{m,n} = \left(\frac{Z_{m,n}}{Z_{m+1,n}} + \frac{Z_{m,n}}{Z_{m,n+1}}\right)^{-1}$$

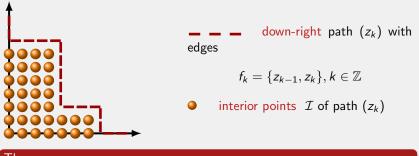
For an undirected edge f: $T_f = \begin{cases} U_x & f = \{x - e_1, x\} \\ V_x & f = \{x - e_2, x\} \end{cases}$



— — — — down-right path (z_k) with edges

$$f_k = \{z_{k-1}, z_k\}, k \in \mathbb{Z}$$

• interior points \mathcal{I} of path (z_k)

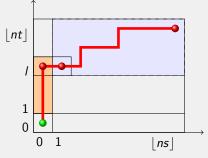


Theorem

Variables $\{T_{f_k}, X_z : k \in \mathbb{Z}, z \in \mathcal{I}\}$ are independent with marginals

 $U^{-1} \sim \text{Gamma}(\theta), V^{-1} \sim \text{Gamma}(\mu - \theta), \text{ and } X^{-1} \sim \text{Gamma}(\mu).$

We start by decomposing $Z_{\lfloor ns \rfloor, \lfloor nt \rfloor}$ according to the exit point of the polymer path from the boundary:



The shaded part represents the partition function conditioned on (0, I) being the exit point of the polymer path from the boundary.

$$\left(\prod_{j=1}^{l} V_{0,j}\right) Z_{(1,l)}^{\Box}(\lfloor ns \rfloor, \lfloor nt \rfloor)$$

Idea of Proof - Decomposition

$$Z_{\lfloor ns \rfloor, \lfloor nt \rfloor} = \sum_{x.} \prod_{j=1}^{\lfloor ns \rfloor + \lfloor nt \rfloor} Y_{x_j}$$

= $\sum_{l=1}^{\lfloor nt \rfloor} \left\{ \left(\prod_{j=1}^{l} V_{0,j} \right) Z_{(1,l)}^{\Box}(\lfloor ns \rfloor, \lfloor nt \rfloor) \right\} + \sum_{k=1}^{\lfloor ns \rfloor} \left\{ \left(\prod_{i=1}^{k} U_{i,0} \right) Z_{(k,1)}^{\Box}(\lfloor ns \rfloor, \lfloor nt \rfloor) \right\}.$

Consequence of the Burke Property:

$$Z_{\lfloor ns \rfloor, \lfloor nt \rfloor} = \prod_{j=1}^{\lfloor nt \rfloor} V_{0,j} \prod_{i=1}^{\lfloor ns \rfloor} U_{i, \lfloor nt \rfloor}$$

Idea of Proof - Burke Trick

Divide both sides by $\prod_{j=1}^{\lfloor nt \rfloor} V_{0,j}$:

$$\prod_{i=1}^{\lfloor ns \rfloor} U_{i,\lfloor nt \rfloor} = \sum_{l=1}^{\lfloor nt \rfloor} \left\{ \left(\prod_{j=l+1}^{\lfloor nt \rfloor} V_{0,j}^{-1} \right) Z_{(1,l)}^{\Box}(\lfloor ns \rfloor, \lfloor nt \rfloor) \right\} + \sum_{k=1}^{\lfloor ns \rfloor} \left\{ \left(\prod_{j=1}^{\lfloor nt \rfloor} V_{0,j}^{-1} \prod_{i=1}^{k} U_{i,0} \right) Z_{(k,1)}^{\Box}(\lfloor ns \rfloor, \lfloor nt \rfloor) \right\}.$$

$$=\sum_{\substack{k=-\lfloor nt\rfloor\\k\neq 0}}^{\lfloor ns\rfloor}\eta_k Z_{\mathbf{k}}^{\Box}(\lfloor ns\rfloor,\lfloor nt\rfloor).$$

Here we defined

$$\eta_{k} = \begin{cases} \prod_{j=-k}^{\lfloor nt \rfloor} V_{0,j}^{-1}, & \text{for } -\lfloor nt \rfloor \leq k \leq -1, \\ \eta_{-1}, & k = 0 \\ \eta_{0} \prod_{i=1}^{k} U_{i,0}, & \text{for } 0 < k \leq \lfloor ns \rfloor, \end{cases}$$

Nicos Georgiou, UW - Madison

Large Deviations for partition functions.

Idea of Proof - Estimation

$$R_{s}(r) = -\lim_{n \to \infty} n^{-1} \log \mathbb{P} \left\{ \log \prod_{i=1}^{\lfloor ns \rfloor} U_{i, \lfloor nt \rfloor} \ge nr \right\}$$
$$\sim -n^{-1} \log \mathbb{P} \left\{ \log \sum_{\substack{k=-\lfloor nt \rfloor \\ k \neq 0}}^{\lfloor ns \rfloor} \eta_{k} Z_{k}^{\Box}(\lfloor ns \rfloor, \lfloor nt \rfloor) \ge nr \right\}$$
$$\sim -n^{-1} \log \mathbb{P} \{ \max_{k} \log \eta_{k} Z_{k}^{\Box}(\lfloor ns \rfloor, \lfloor nt \rfloor) \ge nr \}$$
$$\sim -n^{-1} \max_{k} \log \mathbb{P} \{ \log \eta_{k} + \log Z_{k}^{\Box}(\lfloor ns \rfloor, \lfloor nt \rfloor) \ge nr \}$$
$$\sim \inf_{-t \le a \le s} \inf_{x \in \mathbb{R}} \{ \kappa_{a}(x) + J_{s,t}^{a}(r - x) \}$$

Nicos Georgiou, UW - Madison Large Deviations for partition functions.

Nicos Georgiou, UW - Madison Large Deviations for partition functions.

Idea of Proof - Inversion

$$R_{s}^{*}(\xi) = \sup_{-t \le a \le s} \left\{ \kappa_{a}^{*}(\xi) + (J_{s,t}^{a})^{*}(\xi) \right\}$$

$$F^{s}(\theta,\xi) = \sup_{-t \le a \le s} \left\{ au(\theta) - (-(J_{s,t}^{a})^{*}(\xi)) \right\}$$

$$F^{t}(u^{-1}(v),\xi) \stackrel{\text{magic}}{=} \sup_{0 \le a \le t} \left\{ av - (-(J_{t,t}^{a})^{*}(\xi)) \right\}$$

$$F^{t}(u^{-1}(v),\xi) = \sup_{0 \le a \le t} \left\{ av - G_{\xi}(a) \right\}$$

$$F^{t}(u^{-1}(v),\xi) = G_{\xi}^{*}(v)$$

Then,

$$\begin{aligned} J^{a}_{t,t}(r) &= \sup_{\xi \in [0,\mu)} \{r\xi - (J^{a}_{t,t})^{*}(\xi)\} \\ &= \sup_{\xi \in [0,\mu)} \{r\xi + G_{\xi}(a)\} \\ &= \sup_{\xi \in [0,\mu)} \sup_{v \in \mathbb{R}} \{r\xi + av - G^{*}_{\xi}(v)\}. \quad \Box \end{aligned}$$

Proof for unconstrained endpoint model

$$\log \left(Z_{\lfloor n\frac{s}{2} \rfloor, \lfloor ns \rfloor - \lfloor n\frac{s}{2} \rfloor} \right) \leq \log Z_{\lfloor ns \rfloor}^{tot} \leq \\ \leq \log(ns+1) + \log \left(\max_{k} Z_{k, \lfloor ns \rfloor - k} \right).$$

After some estimates, this translates
to the rate functions:
$$\inf_{0 \leq a \leq s} J_{a,s-a}(r) \leq J_{s}^{tot}(r) \leq J_{s/2,s/2}(r).$$
$$\lfloor ns \rfloor - k \xrightarrow{k \lfloor ns \rfloor}$$

Use convexity of the point-to-point rate functions to get that

$$J_{s/2,s/2}(r) \leq \inf_{0 \leq a \leq s} J_{a,s-a}(r).$$