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Goal

I Many Markov processes can be written as solutions of
SDE. Hence an approach to large deviation principle
(LDP) of Markov processes is through study of LDP of
SDEs.
That is assuming that {Yn} satisfies a LDP, we want to
study the LDP of {Xn}, where

Xn(t) = Xn(0) + Fn(Xn−) · Yn(t).



Definition
Let (E , E) be a regular Hausdorff topological space. A
sequence of probability measures {µn} on E satisfies a LDP
with a rate function I if

1. lim infn→∞ n−1 logµn(U) ≥ −I(U), for every open set U ∈ E
2. lim supn→∞ n−1 logµn(F ) ≤ −I(F ), for every closed set

F ∈ E
where I(A) = infx∈A I(x).



Examples

I Freidlin-Wentzell type small diffusion problem (I) .

Xn(t) = x0+n−1/2
∫

U×[0,t)
σ(Xn(s),u)W (ds×du)+

∫ t

0
b(Xn(s)) ds.

I Freidlin-Wentzell type small diffusion problem (II) .

Xn(t) = x0 + n−1/2
∫

U×[0,t)
σ1(Xn(s),u)W (ds × du)

+ n−1
∫

U×[0,t)
σ2(Xn(s),u)ξ(nds × du)

∫ t

0
b(Xn(s)) ds.



Examples

I (LDP for Markov chain:) Let {X n
k } be a Markov Chain

with state space E satisfying

X n
k+1 = X n

k +
1
n

b(X n
k , ξk+1),

where the ξk are iid with distribution π. Want a LDP for
{X n(t) ≡ X n

[nt]}. Define Γn(A, t) = 1
n
∑[nt]

k=1 1A(ξk ). and
notice that,

X n(t) = X n
0 +

∫
E×[0,t)

b(X n(s),u)Γn(du × ds)

Observe that Mn is a counting measure with mean
measure π ⊗ µn, where µn[0, t ] = [nt ]



Examples

I (Random evolution:) Suppose {ξk} is a Markov chain
with state space E and

X n
k+1 = X n

k +
1
n

b(X n
k , ξk+1).

Define Γn(A, t) = 1
n
∑[nt]

k=1 1A(ξk ).
Then Xn satisfies

Xn(t) = Xn(0) +

∫
E×[0,t)

b(Xn(s),u)Γn(du × ds).



First step: LDP for stochastic integrals

Suppose {Yn} is a sequence of {Fn
t }-adapted

semimartingales, {Xn} a sequence of adapted cadlag
processes, and {(Xn,Yn)} satisfies a LDP.

I Goal: To find conditions on the sequence {Yn} such that a
LDP holds for {(Xn− · Yn)}.

I In the finite-dimensional case, J. Garcia (2008) described a
uniform exponential tightness (UET) condition, under
which a LDP holds for the tuple {(Xn,Yn,Xn− · Yn)} if
{(Xn,Yn)} satisfies a LDP. If J and I are the rate functions
of {(Xn,Yn,Xn− · Yn)} and {(Xn,Yn)}, then

J(x , y , z) =

{
I(x , y), if y is of finite variation, and z = x · y
∞, otherwise

I What happens if Yn is infinite dimensional?
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Infinite dimensional semimartingale:
H#-semimartingale (Kurtz and Protter 1996)

Let H be a separable Banach space.

Definition
An R-valued stochastic process Y indexed by H× [0,∞) is an
H#-semimartingale with respect to the filtration {Ft} if

I For each h ∈ H, Y (h, ·) is a real valued cadlag
{Ft}-semimartingale, with Y (h,0) = 0.

I For each t > 0 and h1, . . . ,hm ∈ H, and a1, . . . ,am ∈ R, we
have

Y (
m∑

i=1

aihi , t) =
m∑

i=1

aiY (hi , t) a.s.



Integration of simple processes w.r.t
H#-semimartingale

Let Z be an H-valued cadlag process of the form

Z (t) =
m∑

k=1

ξk (t)hk , (1)

where the ξk (t)’s are {Ft}-adapted real valued cadlag
processes and h1, . . . ,hk ∈ H.
Then we define the stochastic integral Z− · Y in the natural way
as

Z− · Y (t) =
m∑

k=1

∫ t

0
ξk (s−)dY (hk , s).

Note that the integral above is just a real valued process.



Extension of the stochastic integral for H-valued
cadlag processes

Let S be the collection of all processes of the form (1). Define

Ht = {sup
s≤t
|Z− · Y (s)| : Z ∈ S, sup

s≤t
‖Z (s)‖ ≤ 1}. (2)

Definition
An H#-semimartingale Y is standard if for each t > 0, Ht is
stochastically bounded, i.e for every t > 0 and ε > 0 there
exists k(t , ε) such that

P[sup
s≤t
|Z− · Y (s)| ≥ k(t , ε)] ≤ ε,

for all Z ∈ S, satisfying sups≤t ‖Z (s)‖ ≤ 1.
Examples: Gaussian space-time white noise, Poisson random
measure, Banach space-valued semimartingales.



Uniform exponential tightness (Garcia 2008)

Let Sn denote the space of all piecewise constant,
{Fn

t }-adapted processes Z , such that |Z (t)| ≤ 1.

Definition
A sequence of {Fn

t }-adapted semimartingales {Yn} is
uniformly exponentially tight (UET), if for every t > 0 and
a > 0, there exists a k(t ,a) such that for all n > 0,

lim sup
n→∞

n−1 sup
Z∈Sn

log P[sup
s≤t
|Z− · Yn(s)| > k(t ,a)] ≤ −a.

If E [sups≤t en|Z−·Yn(s)|] ≤ enC(t), for all Z ∈ Sn,n > 0, then {Yn}
is UET.
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UET for sequence of H#-semimartingales

Let Sn denote the collection of all H-valued processes Z , such
that ‖Z (t)‖ ≤ 1 and is of the form

Z (t) =
m∑

k=1

ξk (t)hk ,

where the ξk are cadlag and {Fn
t }-adapted R valued processes

and h1, . . . ,hn ∈ H.

Definition
A sequence of {Fn

t } adapted H#-semimartingales {Yn} is
uniformly exponentially tight, if for every a > 0 and t > 0,
there exists a k(t ,a) such that

lim sup
n

1
n

sup
Z∈Sn

log P[sup
s≤t
|Z− · Yn(s)| > k(t ,a)] ≤ −a. (3)



Examples of UET sequences

All the integrands mentioned in the examples satisfy UET
condition for appropriating indexing Banach spaces.

I If W is a space-time Gaussian white noise on
(E × [0,∞),dµ× dt), then {n−1/2W} is UET with the
indexing space H = L2(E , µ). That is, define
W (h, t) =

∫
E×[0,t) h(x)W (dx ,ds).

I Let ξ be a Poisson random measure on U × [0,∞) with
mean measure dν × dt and define ξn(A, t) = n−1ξ(A,nt).
{ξn} forms a UET sequence with the indexing space
H = LΦ(ν) with Φ(x) = ex − 1. Here LΦ(ν) is the Orlicz
space with respect to Φ.
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Definition of LDP for a sequence of
H#-semimartingale

Definition
Let {Yn} be a sequence of {Fn

t }-adapted H#-semimartingales
and {Xn} be a sequence of cadlag, {Fn

t }-adapted H-valued
processes. Let A denote the index set consisting of all ordered
finite subsets of H. {(Xn,Yn)} is said to satisfy a large
deviation principle with the rate function family {Iα : α ∈ A} if
for α = (φ1, . . . , φk ), {(Xn,Yn(φ1, ·), . . . ,Yn(φk , ·))} satisfies
LDP in DH×Rk [0,∞) with rate function Iα.



LDP theorem

Theorem
Let {Yn} be a sequence of H#-semimartingales and {Xn} be a
sequence of cadlag, adapted H-valued processes. Assume
{Yn} is UET. If {(Xn,Yn)} satisfies LDP in the sense of
Definition 6, with the rate function family {Iα : α ∈ A} , then
{(Xn,Yn,Xn− · Yn)} also satisfies a LDP.



Identification of the rate function

For any separable Banach space H, there exists a sequence
{(φk ,pk ) : φk ∈ H,pk ∈ C(H,R)} satisfying some nice
properties such that

h =
∑

k

pk (h)φk .

Let I(x , y1, y2, . . .) be the rate function of
{(Xn,Yn(φ1, ·),Yn(φ2, ·), . . .)} in DH×R∞ [0,∞).
Put y∗(t) =

∑
k yk (t)pk .



If I(x , y1, y2, . . .) <∞, then y∗ exists, y∗ ∈ DH∗ [0,∞) and
Tt (y∗) <∞, where the total variation Tt (y∗) is defined as

Tt (y∗) = sup
σ

∑
i

‖y∗(ti)− y∗(ti−1)‖H∗ ,

the sup being taken over all partitions σ ≡ {ti}i of [0, t).
Consequently, for x ∈ DH[0,∞),
x · y∗(t) = lim

∑
i〈x(ti), y(ti+1)− y(ti)〉H,H∗ exists.

Let D = {y∗ ∈ DH∗ [0,∞) : Tt (y∗) <∞ for all t > 0}

Theorem
The rate function for {(Xn,Yn(φ1, ·),Yn(φ2, ·), . . . ,Xn− · Yn)} is
given by

J(x , y1, y2, . . . , z) =

{
I(x , y1, y2, . . .), if y∗ ∈ D and z = x · y∗

∞, otherwise
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Stochastic differential equation

Let F ,Fn : Rd → H be measurable functions and Xn satisfy

Xn(t) = Un(t) + Fn(Xn−) · Yn(t).

Assume that
I {Yn} is UET and {(Un,Yn)} satisfies LDP
I For all x whenever xn → x , Fn(xn)→ F (x).

I {(Un,Xn,Yn)} is exponentially tight
I Suppose that for every (u, y1, y2, . . .) ∈ DRd×R∞ [0,∞) for

which Iα(u, y1, y2, . . .) <∞, the solution to

x = u + F (x) · y∗

is unique.



Then the sequence {(Un,Xn,Yn(φ1, ·),Yn(φ2, ·), . . .)} satisfies a
LDP with the rate function given by

J(u, x , y1, y2, . . .) =

{
I(u, y1, y2, . . .), x = u + F (x) · y∗, y∗ ∈ D.
∞, otherwise.
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