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Outline of the talk

@ The Theorem.
> Generalized Branching Random Walk.

» Tightness.
@ The Proof.

> Recursion and Recursion Inequalities.

» Exponential Tail and Lyapunov Function.

» 'Flatness’ Argument.
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Branching Random Walks

Randomness is governed by two families of distributions:

o {p,k}22: branching laws on IN at time n.

o G, k(x1,...,xk): joint distribution functions on R* at time n.
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Tightness of (Shifted) Maxima Distributions

Let M, be the maximal displacement of particles at level n and F,(-) the
distribution of M, then

Theorem
The family of shifted distributions F,(- — Med(F,)) is tight under mild
assumptions.

On the branching laws,

(B1) {pnk}n>0 possess a uniformly bounded support, i.e., there exists an
integer ko > 1 such that p,, =0 for all nand k ¢ {1,..., ko}.

(B2) The mean offspring number is uniformly greater than 1 by some fixed
constant. l.e., there exists a real number mg > 1 such that

inf,,{Zf’:l kpn,k} > mo.
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Assumptions on the walk.

On the step distributions,

(G1) There exist a > 0 and My > 0 such that g, x(x + M) < e=Mg, ()
for all n,k and M > My, x > 0.

(G2) For some fixed €g < % log mg A 1, there exists an xo such that
Znk(x0) > 1 — € for all n and k, where g, x(x) =1 — gn«(x). By
shifting, we may and will assume that xg = 0, that is,

Znk(0) > 1 — €.

(G3) For any m1 > 0, there exists a B > 0 such that

Gok(B,...,B) >1—n1 and G, k([~B,00)*) > 1 —1; for all nand k.
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Recursion on F,.1 and F,.

Assume: binary branching and no time dependence. (Dependence
between siblings still exists.)

We have the following recursion,

Fassl) = | Fulx = )Foloc = 120G, ).
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Recursion on F,.1 and F,.

Assume: binary branching and no time dependence. (Dependence
between siblings still exists.)

We have the following recursion,

Fassl) = | Fulx = )Foloc = 120G, ).

Consider F,(x) =1 — Fn(x), the recursion becomes

Fasab) =1 [ (1= Folx = y2))(1 = Foloe = 1) 0?6 01, 2).
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Fasab) = 1= [ (1= Folx = ))(1 = Fox = 1)) 6. 32).

o < = = T 9ac
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Bounds (Inequalities) on Recursion

Fra(x) =1 - / (1= Folx — y0))(1 = Falx — 2))d2Gly1. y2).
R2
Using (1 — x1)(1 — x2) > 1 — x3 — x, one has

Fn+1(x)§/R2?n(x—y)dg(y)-
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Bounds (Inequalities) on Recursion

Fra(x) =1 - / (1= Folx — y0))(1 = Falx — 2))d2Gly1. y2).
R2
Using (1 — x1)(1 — x2) > 1 — x3 — x, one has

Fn+1(x)§/R2?n(x—y)dg(y)-

Using Holder's inequality, one has

Fry1(x) > /]R (2Fa(x — y) = (Fa(x — y))?) dg(y)-
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Lyapunov Function and Exponential Tail

In order to prove the tightness of F,(- — Med(Fy,)), it is sufficient to prove
an exponential decay uniform in n. l.e., for fixed 7o € (0, 1), there exist an
€0 = €o(n0) > 0, an ng and an M such that, if n > ng and

Fo(x — M) < ng, then

Fo(x — M) > (1 + &) Fn(x).

12/20



Lyapunov Function and Exponential Tail

In order to prove the tightness of F,(- — Med(F,)), it is sufficient to prove
an exponential decay uniform in n. l.e., for fixed 7o € (0, 1), there exist an

€0 = €0(no) > 0, an ng and an M such that, if n > ng and
Fn(x — M) < g, then

Fo(x — M) > (1 + &) Fn(x).

For this reason, we introduce a Lyapunov function

L(u) = sup I(u; x),
{x:u(x)€(0,31}

where

(i x) = o (0 ) oy (14 - (X(‘X)“”))+

Here (x)+ = xV 0 and log0 = —
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Why Choose This Lyapunov Function

Suppose that sup, L(F,) < C for some constant C > 0 (I0U!), then there
exists a 07 such that, for all n,

Fo(x) < 61 implies Fp(x — M) > (1 + EEl)lt_n(x).

This is not quite the exponential decay we need. But the tightness of G
implies the following (pictures in the next slide) which closes the gap.
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Simplify the Notation

sup, L(F,) < C (10U) follows from

Suppose that two non-increasing cadlag function u, v : [0,1] — [0, 1]
satisfy

/ (2u — u?)(x — y)de(y) < v(x) < / 2u(x — y)dg(y).
R

R

Then L(v) > C implies L(u) > L(v).

To proof this claim, we need to compare the value of u and v and the
flatness of u and v.
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Information on v

Since L(v) > C, by definition, one can find (let x; := x; — M) that

l+e:= v(e) <l+4+¢

v(x1)

and 1
v(x1) < (e1 — €)1/ 108be=C < 5> Tiny!

Want: u(x;) small and flat (i.e., u(jlé;,’)w) is small).
1
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The analysis of u

An application of Chebyshev inequality shows that

u(x1) < u(x) < L+e )v(xl)

mo(1 — €

is tiny. But we cannot get any information about flatness of u at xj. In

order to search for a flat piece of u, we start from v(x2) = (1 + €)v(x1),
which implies that

/ (2u— )2 — y)dg(y) < (1 + ) / 2u(x1 — y)dg(y).
R

R
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x_1-y_0

y_0=q=r: large

X_2-1-M/2

x_1-y_0
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u(x)

u(x)
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Stepl: With the previous notations, we can truncate the integral at an
affordable cost § = k(€1 —€), i.e.,

| u—e-ndg) < @+e+0) [ 2ut - 1))

—00

Step2: Since u(xq) is tiny, u(x; — r) is very small even if the value of u
increases slowly for a long time compared with u(xj). Therefore, the
nonlinear term is negligible with another affordable cost, i.e.,

r

| wba-n)det) < @+er20) [ ux - )de(y)

—0o0 —00

Step3: From step 2, we can find a location in [x; — r, 00) where u is flat.
In fact we need the following a stronger version.

(a) u(xo—y1) < (14 €+30)u(xy — y1) for some y; < r' A M, or
(b) u(xa —y1) < (14 € +20 — 5e¥/8)u(xy — y1) for some y; € (M, r].
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Thank You!
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