Probability Frontier Days 2011 @ Utah

Tightness of Maxima of Generalized Branching Random Walks

Ming Fang

University of Minnesota

March 10, 2011

イロト イポト イヨト イヨト

- The Theorem.
 - Generalized Branching Random Walk.
 - Tightness.
- The Proof.
 - Recursion and Recursion Inequalities.
 - Exponential Tail and Lyapunov Function.

<ロト < 回 > < 回 > < 回 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

2/20

'Flatness' Argument.

Randomness is governed by two families of distributions:

- $\{p_{n,k}\}_{k=1}^{\infty}$: branching laws on \mathbb{N} at time n.
- $G_{n,k}(x_1,...,x_k)$: joint distribution functions on \mathbb{R}^k at time n.

Tightness of (Shifted) Maxima Distributions

Let M_n be the maximal displacement of particles at level n and $F_n(\cdot)$ the distribution of M_n , then

Theorem

The family of shifted distributions $F_n(\cdot - Med(F_n))$ is tight under mild assumptions.

On the branching laws,

- (B1) $\{p_{n,k}\}_{n\geq 0}$ possess a uniformly bounded support, i.e., there exists an integer $k_0 > 1$ such that $p_{n,k} = 0$ for all n and $k \notin \{1, \ldots, k_0\}$.
- (B2) The mean offspring number is uniformly greater than 1 by some fixed constant. I.e., there exists a real number $m_0 > 1$ such that $\inf_n \{\sum_{k=1}^{k_0} k p_{n,k}\} > m_0$.

On the step distributions,

- (G1) There exist a > 0 and $M_0 > 0$ such that $\overline{g}_{n,k}(x + M) \le e^{-aM}\overline{g}_{n,k}(x)$ for all n, k and $M > M_0, x \ge 0$.
- (G2) For some fixed $\epsilon_0 < \frac{1}{4} \log m_0 \wedge 1$, there exists an x_0 such that $\overline{g}_{n,k}(x_0) \ge 1 \epsilon_0$ for all n and k, where $\overline{g}_{n,k}(x) = 1 g_{n,k}(x)$. By shifting, we may and will assume that $x_0 = 0$, that is, $\overline{g}_{n,k}(0) \ge 1 \epsilon_0$.
- (G3) For any $\eta_1 > 0$, there exists a B > 0 such that $G_{n,k}(B, \ldots, B) \ge 1 \eta_1$ and $G_{n,k}([-B, \infty)^k) \ge 1 \eta_1$ for all n and k.

Assume: binary branching and no time dependence. (Dependence between siblings still exists.) We have the following recursion,

$$F_{n+1}(x) = \int_{\mathbb{R}^2} F_n(x-y_1)F_n(x-y_2)d^2G(y_1,y_2).$$

Assume: binary branching and no time dependence. (Dependence between siblings still exists.)

We have the following recursion,

$$F_{n+1}(x) = \int_{\mathbb{R}^2} F_n(x-y_1)F_n(x-y_2)d^2G(y_1,y_2).$$

Consider $\overline{F}_n(x) = 1 - F_n(x)$, the recursion becomes

$$\bar{F}_{n+1}(x) = 1 - \int_{\mathbb{R}^2} (1 - \bar{F}_n(x - y_1))(1 - \bar{F}_n(x - y_2))d^2G(y_1, y_2).$$

Bounds (Inequalities) on Recursion

$$\bar{F}_{n+1}(x) = 1 - \int_{\mathbb{R}^2} (1 - \bar{F}_n(x - y_1))(1 - \bar{F}_n(x - y_2))d^2G(y_1, y_2).$$

Bounds (Inequalities) on Recursion

$$\begin{split} \bar{F}_{n+1}(x) &= 1 - \int_{\mathbb{R}^2} (1 - \bar{F}_n(x - y_1))(1 - \bar{F}_n(x - y_2)) d^2 G(y_1, y_2). \\ \text{Using } (1 - x_1)(1 - x_2) &\geq 1 - x_1 - x_2, \text{ one has} \\ \bar{F}_{n+1}(x) &\leq \int_{\mathbb{R}} 2\bar{F}_n(x - y) dg(y). \end{split}$$

Bounds (Inequalities) on Recursion

$$\begin{split} \bar{F}_{n+1}(x) &= 1 - \int_{\mathbb{R}^2} (1 - \bar{F}_n(x - y_1))(1 - \bar{F}_n(x - y_2)) d^2 G(y_1, y_2). \\ \text{Using } (1 - x_1)(1 - x_2) &\geq 1 - x_1 - x_2, \text{ one has} \\ \bar{F}_{n+1}(x) &\leq \int_{\mathbb{R}} 2\bar{F}_n(x - y) dg(y). \end{split}$$

Using Hölder's inequality, one has

$$\bar{F}_{n+1}(x) \geq \int_{\mathbb{R}} \left(2\bar{F}_n(x-y) - (\bar{F}_n(x-y))^2 \right) dg(y).$$

Lyapunov Function and Exponential Tail

In order to prove the tightness of $F_n(\cdot - Med(F_n))$, it is sufficient to prove an exponential decay uniform in *n*. I.e., for fixed $\eta_0 \in (0, 1)$, there exist an $\hat{\epsilon}_0 = \hat{\epsilon}_0(\eta_0) > 0$, an n_0 and an \hat{M} such that, if $n > n_0$ and $\bar{F}_n(x - \hat{M}) \leq \eta_0$, then

$$\overline{F}_n(x-\hat{M}) \geq (1+\hat{\epsilon}_0)\overline{F}_n(x).$$

Lyapunov Function and Exponential Tail

In order to prove the tightness of $F_n(\cdot - Med(F_n))$, it is sufficient to prove an exponential decay uniform in n. I.e., for fixed $\eta_0 \in (0, 1)$, there exist an $\hat{\epsilon}_0 = \hat{\epsilon}_0(\eta_0) > 0$, an n_0 and an \hat{M} such that, if $n > n_0$ and $\bar{F}_n(x - \hat{M}) \leq \eta_0$, then

$$\overline{F}_n(x-\hat{M}) \geq (1+\hat{\epsilon}_0)\overline{F}_n(x).$$

For this reason, we introduce a Lyapunov function

$$L(u) = \sup_{\{x:u(x)\in(0,\frac{1}{2}]\}} l(u;x),$$

where

$$I(u;x) = \log\left(\frac{1}{u(x)}\right) + \log_b\left(1 + \epsilon_1 - \frac{u(x-M)}{u(x)}\right)_+$$

Here $(x)_+ = x \lor 0$ and $\log 0 = -\infty$.

12 / 20

Suppose that $\sup_n L(\overline{F}_n) < C$ for some constant C > 0 (IOU!), then there exists a δ_1 such that, for all n,

$$\overline{F}_n(x) \leq \delta_1$$
 implies $\overline{F}_n(x-M) \geq (1+\frac{\epsilon_1}{2})\overline{F}_n(x).$

This is not quite the exponential decay we need. But the tightness of G implies the following (pictures in the next slide) which closes the gap.

 $\sup_n L(\overline{F}_n) < C$ (IOU) follows from

Suppose that two non-increasing cadlag function $u,v:[0,1]\rightarrow [0,1]$ satisfy

$$\int_{\mathbb{R}} (2u-u^2)(x-y)dg(y) \leq v(x) \leq \int_{\mathbb{R}} 2u(x-y)dg(y).$$

Then L(v) > C implies L(u) > L(v).

To proof this claim, we need to compare the value of u and v and the flatness of u and v.

Since L(v) > C, by definition, one can find (let $x_2 := x_1 - M$) that

$$1+\epsilon := \frac{v(x_2)}{v(x_1)} < 1+\epsilon_1$$

and

$$v(x_1) < (\epsilon_1 - \epsilon)^{1/\log b} e^{-C} < \frac{1}{2}$$
. Tiny!

◆□> ◆□> ◆目> ◆目> ◆日> ◆□>

16/20

Want: $u(x'_1)$ small and flat (i.e., $\frac{u(x'_1-M)}{u(x'_1)}$ is small).

An application of Chebyshev inequality shows that

$$u(x_1) \leq u(x_2) \leq \frac{1+\epsilon}{m_0(1-\epsilon_0)}v(x_1)$$

is tiny. But we cannot get any information about flatness of u at x_1 . In order to search for a flat piece of u, we start from $v(x_2) = (1 + \epsilon)v(x_1)$, which implies that

$$\int_{\mathbb{R}} (2u-u^2)(x_2-y)dg(y) \leq (1+\epsilon)\int_{\mathbb{R}} 2u(x_1-y)dg(y).$$

イロト 不得 トイヨト イヨト 二日

17 / 20

Flatness of u —- truncation argument

18 / 20

Step1: With the previous notations, we can truncate the integral at an affordable cost $\delta = \kappa(\epsilon_1 - \epsilon)$, i.e.,

$$\int_{-\infty}^r (2u-u^2)(x_2-y)dg(y) \leq (1+\epsilon+\delta)\int_{-\infty}^r 2u(x_1-y)dg(y).$$

Step2: Since $u(x_1)$ is tiny, $u(x_1 - r)$ is very small even if the value of u increases slowly for a long time compared with $u(x_1)$. Therefore, the nonlinear term is negligible with another affordable cost, i.e.,

$$\int_{-\infty}^r u(x_2-y)dg(y) \leq (1+\epsilon+2\delta)\int_{-\infty}^r u(x_1-y)dg(y).$$

Step3: From step 2, we can find a location in $[x_1 - r, \infty)$ where *u* is flat. In fact we need the following a stronger version.

(a)
$$u(x_2 - y_1) \le (1 + \epsilon + 3\delta)u(x_1 - y_1)$$
 for some $y_1 \le r' \land M$, or
(b) $u(x_2 - y_1) \le (1 + \epsilon + 2\delta - \delta e^{ay_1/8})u(x_1 - y_1)$ for some $y_1 \in (M, r]$.

Thank You!

<ロト < 回 > < 画 > < 画 > < 画 > < 画 > < 画 > < 画 > < 画 > < 回 > の Q (~ 20 / 20)