Probability Frontier Days 2011 @ Utah

Tightness of Maxima of Generalized Branching Random Walks

Ming Fang

University of Minnesota

March 10, 2011

Outline of the talk

- The Theorem.
- Generalized Branching Random Walk.
- Tightness.
- The Proof.
- Recursion and Recursion Inequalities.
- Exponential Tail and Lyapunov Function.
- 'Flatness' Argument.

Branching Random Walk

Branching Random Walk

Branching Random Walk

Branching Random Walk

Branching Random Walks

Randomness is governed by two families of distributions:

- $\left\{p_{n, k}\right\}_{k=1}^{\infty}$: branching laws on \mathbb{N} at time n.
- $G_{n, k}\left(x_{1}, \ldots, x_{k}\right)$: joint distribution functions on \mathbb{R}^{k} at time n.

Tightness of (Shifted) Maxima Distributions

Let M_{n} be the maximal displacement of particles at level n and $F_{n}(\cdot)$ the distribution of M_{n}, then

Theorem

The family of shifted distributions $F_{n}\left(\cdot-\operatorname{Med}\left(F_{n}\right)\right)$ is tight under mild assumptions.

On the branching laws,
(B1) $\left\{p_{n, k}\right\}_{n \geq 0}$ possess a uniformly bounded support, i.e., there exists an integer $k_{0}>1$ such that $p_{n, k}=0$ for all n and $k \notin\left\{1, \ldots, k_{0}\right\}$.
(B2) The mean offspring number is uniformly greater than 1 by some fixed constant. I.e., there exists a real number $m_{0}>1$ such that $\inf _{n}\left\{\sum_{k=1}^{k_{0}} k p_{n, k}\right\}>m_{0}$.

Assumptions on the walk.

On the step distributions,
(G1) There exist $a>0$ and $M_{0}>0$ such that $\bar{g}_{n, k}(x+M) \leq e^{-a M} \bar{g}_{n, k}(x)$ for all n, k and $M>M_{0}, x \geq 0$.
(G2) For some fixed $\epsilon_{0}<\frac{1}{4} \log m_{0} \wedge 1$, there exists an x_{0} such that $\bar{g}_{n, k}\left(x_{0}\right) \geq 1-\epsilon_{0}$ for all n and k, where $\bar{g}_{n, k}(x)=1-g_{n, k}(x)$. By shifting, we may and will assume that $x_{0}=0$, that is, $\bar{g}_{n, k}(0) \geq 1-\epsilon_{0}$.
(G3) For any $\eta_{1}>0$, there exists a $B>0$ such that $G_{n, k}(B, \ldots, B) \geq 1-\eta_{1}$ and $G_{n, k}\left([-B, \infty)^{k}\right) \geq 1-\eta_{1}$ for all n and k.

Recursion on \bar{F}_{n+1} and \bar{F}_{n}.

Assume: binary branching and no time dependence. (Dependence between siblings still exists.)
We have the following recursion,

$$
F_{n+1}(x)=\int_{\mathbb{R}^{2}} F_{n}\left(x-y_{1}\right) F_{n}\left(x-y_{2}\right) d^{2} G\left(y_{1}, y_{2}\right)
$$

Recursion on \bar{F}_{n+1} and \bar{F}_{n}.

Assume: binary branching and no time dependence. (Dependence between siblings still exists.)
We have the following recursion,

$$
F_{n+1}(x)=\int_{\mathbb{R}^{2}} F_{n}\left(x-y_{1}\right) F_{n}\left(x-y_{2}\right) d^{2} G\left(y_{1}, y_{2}\right)
$$

Consider $\bar{F}_{n}(x)=1-F_{n}(x)$, the recursion becomes

$$
\bar{F}_{n+1}(x)=1-\int_{\mathbb{R}^{2}}\left(1-\bar{F}_{n}\left(x-y_{1}\right)\right)\left(1-\bar{F}_{n}\left(x-y_{2}\right)\right) d^{2} G\left(y_{1}, y_{2}\right)
$$

Bounds (Inequalities) on Recursion

$$
\bar{F}_{n+1}(x)=1-\int_{\mathbb{R}^{2}}\left(1-\bar{F}_{n}\left(x-y_{1}\right)\right)\left(1-\bar{F}_{n}\left(x-y_{2}\right)\right) d^{2} G\left(y_{1}, y_{2}\right)
$$

Bounds (Inequalities) on Recursion

$$
\bar{F}_{n+1}(x)=1-\int_{\mathbb{R}^{2}}\left(1-\bar{F}_{n}\left(x-y_{1}\right)\right)\left(1-\bar{F}_{n}\left(x-y_{2}\right)\right) d^{2} G\left(y_{1}, y_{2}\right) .
$$

Using $\left(1-x_{1}\right)\left(1-x_{2}\right) \geq 1-x_{1}-x_{2}$, one has

$$
\bar{F}_{n+1}(x) \leq \int_{\mathrm{R}} 2 \bar{F}_{n}(x-y) d g(y) .
$$

Bounds (Inequalities) on Recursion

$$
\bar{F}_{n+1}(x)=1-\int_{\mathbb{R}^{2}}\left(1-\bar{F}_{n}\left(x-y_{1}\right)\right)\left(1-\bar{F}_{n}\left(x-y_{2}\right)\right) d^{2} G\left(y_{1}, y_{2}\right) .
$$

Using $\left(1-x_{1}\right)\left(1-x_{2}\right) \geq 1-x_{1}-x_{2}$, one has

$$
\bar{F}_{n+1}(x) \leq \int_{\mathbb{R}} 2 \bar{F}_{n}(x-y) d g(y) .
$$

Using Hölder's inequality, one has

$$
\bar{F}_{n+1}(x) \geq \int_{\mathbb{R}}\left(2 \bar{F}_{n}(x-y)-\left(\bar{F}_{n}(x-y)\right)^{2}\right) d g(y)
$$

Lyapunov Function and Exponential Tail

In order to prove the tightness of $F_{n}\left(\cdot-\operatorname{Med}\left(F_{n}\right)\right)$, it is sufficient to prove an exponential decay uniform in n. I.e., for fixed $\eta_{0} \in(0,1)$, there exist an $\hat{\epsilon}_{0}=\hat{\epsilon}_{0}\left(\eta_{0}\right)>0$, an n_{0} and an \hat{M} such that, if $n>n_{0}$ and $\bar{F}_{n}(x-\hat{M}) \leq \eta_{0}$, then

$$
\bar{F}_{n}(x-\hat{M}) \geq\left(1+\hat{\epsilon}_{0}\right) \bar{F}_{n}(x)
$$

Lyapunov Function and Exponential Tail

In order to prove the tightness of $F_{n}\left(\cdot-\operatorname{Med}\left(F_{n}\right)\right)$, it is sufficient to prove an exponential decay uniform in n. I.e., for fixed $\eta_{0} \in(0,1)$, there exist an $\hat{\epsilon}_{0}=\hat{\epsilon}_{0}\left(\eta_{0}\right)>0$, an n_{0} and an \hat{M} such that, if $n>n_{0}$ and $\bar{F}_{n}(x-\hat{M}) \leq \eta_{0}$, then

$$
\bar{F}_{n}(x-\hat{M}) \geq\left(1+\hat{\epsilon}_{0}\right) \bar{F}_{n}(x)
$$

For this reason, we introduce a Lyapunov function

$$
L(u)=\sup _{\left\{x: u(x) \in\left(0, \frac{1}{2}\right]\right\}} I(u ; x),
$$

where

$$
I(u ; x)=\log \left(\frac{1}{u(x)}\right)+\log _{b}\left(1+\epsilon_{1}-\frac{u(x-M)}{u(x)}\right)_{+} .
$$

Here $(x)_{+}=x \vee 0$ and $\log 0=-\infty$.

Why Choose This Lyapunov Function

Suppose that $\sup _{n} L\left(\bar{F}_{n}\right)<C$ for some constant $C>0$ (IOU!), then there exists a δ_{1} such that, for all n,

$$
\bar{F}_{n}(x) \leq \delta_{1} \text { implies } \bar{F}_{n}(x-M) \geq\left(1+\frac{\epsilon_{1}}{2}\right) \bar{F}_{n}(x)
$$

This is not quite the exponential decay we need. But the tightness of G implies the following (pictures in the next slide) which closes the gap.

Flat \& Value of the function decrease by a factor $r \quad \operatorname{Bar}\{F\}_{-} n$

$$
\mathrm{x}-\mathrm{M}^{\prime}+\mathrm{N}
$$

$$
\mathrm{x}-\mathrm{N}
$$

Flat \& Value is small: Contradiction!

$$
\operatorname{Bar}\{F\} _\left\{n^{\prime}\right\}
$$

$$
\mathrm{x}^{\prime}-\mathrm{M}
$$

$$
x^{\prime}
$$

Simplify the Notation

$\sup _{n} L\left(\bar{F}_{n}\right)<C$ (IOU) follows from
Suppose that two non-increasing cadlag function $u, v:[0,1] \rightarrow[0,1]$ satisfy

$$
\int_{\mathbb{R}}\left(2 u-u^{2}\right)(x-y) d g(y) \leq v(x) \leq \int_{\mathbb{R}} 2 u(x-y) d g(y)
$$

Then $L(v)>C$ implies $L(u)>L(v)$.
To proof this claim, we need to compare the value of u and v and the flatness of u and v.

Information on v

Since $L(v)>C$, by definition, one can find (let $x_{2}:=x_{1}-M$) that

$$
1+\epsilon:=\frac{v\left(x_{2}\right)}{v\left(x_{1}\right)}<1+\epsilon_{1}
$$

and

$$
v\left(x_{1}\right)<\left(\epsilon_{1}-\epsilon\right)^{1 / \log b} e^{-C}<\frac{1}{2} . \text { Tiny! }
$$

Want: $u\left(x_{1}^{\prime}\right)$ small and flat (i.e., $\frac{u\left(x_{1}^{\prime}-M\right)}{u\left(x_{1}^{\prime}\right)}$ is small).

The analysis of u

An application of Chebyshev inequality shows that

$$
u\left(x_{1}\right) \leq u\left(x_{2}\right) \leq \frac{1+\epsilon}{m_{0}\left(1-\epsilon_{0}\right)} v\left(x_{1}\right)
$$

is tiny. But we cannot get any information about flatness of u at x_{1}. In order to search for a flat piece of u, we start from $v\left(x_{2}\right)=(1+\epsilon) v\left(x_{1}\right)$, which implies that

$$
\int_{\mathbb{R}}\left(2 u-u^{2}\right)\left(x_{2}-y\right) d g(y) \leq(1+\epsilon) \int_{\mathbb{R}} 2 u\left(x_{1}-y\right) d g(y) .
$$

Flatness of u - truncation argument

$$
\mathrm{u}(\mathrm{x})
$$

Flat

x_1-y_0

$\mathrm{y}_{-} 0=\mathrm{q}=\mathrm{r}$: large

Step1: With the previous notations, we can truncate the integral at an affordable cost $\delta=\kappa\left(\epsilon_{1}-\epsilon\right)$, i.e.,

$$
\int_{-\infty}^{r}\left(2 u-u^{2}\right)\left(x_{2}-y\right) d g(y) \leq(1+\epsilon+\delta) \int_{-\infty}^{r} 2 u\left(x_{1}-y\right) d g(y)
$$

Step2: Since $u\left(x_{1}\right)$ is tiny, $u\left(x_{1}-r\right)$ is very small even if the value of u increases slowly for a long time compared with $u\left(x_{1}\right)$. Therefore, the nonlinear term is negligible with another affordable cost, i.e.,

$$
\int_{-\infty}^{r} u\left(x_{2}-y\right) d g(y) \leq(1+\epsilon+2 \delta) \int_{-\infty}^{r} u\left(x_{1}-y\right) d g(y) .
$$

Step3: From step 2, we can find a location in $\left[x_{1}-r, \infty\right)$ where u is flat. In fact we need the following a stronger version.
(a) $u\left(x_{2}-y_{1}\right) \leq(1+\epsilon+3 \delta) u\left(x_{1}-y_{1}\right)$ for some $y_{1} \leq r^{\prime} \wedge M$, or
(b) $u\left(x_{2}-y_{1}\right) \leq\left(1+\epsilon+2 \delta-\delta e^{a y_{1} / 8}\right) u\left(x_{1}-y_{1}\right)$ for some $y_{1} \in(M, r]$.

The End

Thank You!

