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Outline of the talk

The Theorem.
▶ Generalized Branching Random Walk.
▶ Tightness.

The Proof.
▶ Recursion and Recursion Inequalities.
▶ Exponential Tail and Lyapunov Function.
▶ ’Flatness’ Argument.
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Branching Random Walk
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Branching Random Walks

Randomness is governed by two families of distributions:

{pn,k}∞k=1: branching laws on N at time n.

Gn,k(x1, . . . , xk): joint distribution functions on Rk at time n.
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Tightness of (Shifted) Maxima Distributions

Let Mn be the maximal displacement of particles at level n and Fn(⋅) the
distribution of Mn, then

Theorem

The family of shifted distributions Fn(⋅ −Med(Fn)) is tight under mild
assumptions.

On the branching laws,

(B1) {pn,k}n≥0 possess a uniformly bounded support, i.e., there exists an
integer k0 > 1 such that pn,k = 0 for all n and k /∈ {1, . . . , k0}.

(B2) The mean offspring number is uniformly greater than 1 by some fixed
constant. I.e., there exists a real number m0 > 1 such that
infn{

∑k0
k=1 kpn,k} > m0.
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Assumptions on the walk.

On the step distributions,

(G1) There exist a > 0 and M0 > 0 such that ḡn,k(x + M) ≤ e−aM ḡn,k(x)
for all n, k and M > M0, x ≥ 0.

(G2) For some fixed �0 <
1
4 logm0 ∧ 1, there exists an x0 such that

ḡn,k(x0) ≥ 1− �0 for all n and k , where ḡn,k(x) = 1− gn,k(x). By
shifting, we may and will assume that x0 = 0, that is,
ḡn,k(0) ≥ 1− �0.

(G3) For any �1 > 0, there exists a B > 0 such that
Gn,k(B, . . . ,B) ≥ 1− �1 and Gn,k([−B,∞)k) ≥ 1− �1 for all n and k.
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Recursion on F̄n+1 and F̄n.

Assume: binary branching and no time dependence. (Dependence
between siblings still exists.)
We have the following recursion,

Fn+1(x) =

∫
R2

Fn(x − y1)Fn(x − y2)d2G (y1, y2).

Consider F̄n(x) = 1− Fn(x), the recursion becomes

F̄n+1(x) = 1−
∫
R2

(1− F̄n(x − y1))(1− F̄n(x − y2))d2G (y1, y2).
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Bounds (Inequalities) on Recursion

F̄n+1(x) = 1−
∫
R2

(1− F̄n(x − y1))(1− F̄n(x − y2))d2G (y1, y2).

Using (1− x1)(1− x2) ≥ 1− x1 − x2, one has

F̄n+1(x) ≤
∫
R

2F̄n(x − y)dg(y).

Using Hölder’s inequality, one has

F̄n+1(x) ≥
∫
R

(
2F̄n(x − y)− (F̄n(x − y))2

)
dg(y).
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Lyapunov Function and Exponential Tail

In order to prove the tightness of Fn(⋅ −Med(Fn)), it is sufficient to prove
an exponential decay uniform in n. I.e., for fixed �0 ∈ (0, 1), there exist an
�̂0 = �̂0(�0) > 0, an n0 and an M̂ such that, if n > n0 and
F̄n(x − M̂) ≤ �0, then

F̄n(x − M̂) ≥ (1 + �̂0)F̄n(x).

For this reason, we introduce a Lyapunov function

L(u) = sup
{x :u(x)∈(0, 1

2
]}
l(u; x),

where

l(u; x) = log

(
1

u(x)

)
+ logb

(
1 + �1 −

u(x −M)

u(x)

)
+

.

Here (x)+ = x ∨ 0 and log 0 = −∞.
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Why Choose This Lyapunov Function

Suppose that supn L(F̄n) < C for some constant C > 0 (IOU!), then there
exists a �1 such that, for all n,

F̄n(x) ≤ �1 implies F̄n(x −M) ≥ (1 +
�1
2

)F̄n(x).

This is not quite the exponential decay we need. But the tightness of G
implies the following (pictures in the next slide) which closes the gap.
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Bar{F}_{n+1}

xx−M’

Flat but the value of the function is large

Bar{F}_n

x−M’+N x−N

Flat & Value of the function decrease by a factor r

Bar{F}_{n’}

x’x’−M

Flat & Value is small:  Contradiction!
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Simplify the Notation

supn L(F̄n) < C (IOU) follows from

Suppose that two non-increasing cadlag function u, v : [0, 1]→ [0, 1]
satisfy ∫

R

(2u − u2)(x − y)dg(y) ≤ v(x) ≤
∫
R

2u(x − y)dg(y).

Then L(v) > C implies L(u) > L(v).

To proof this claim, we need to compare the value of u and v and the
flatness of u and v .
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Information on v

Since L(v) > C , by definition, one can find (let x2 := x1 −M) that

1 + � :=
v(x2)

v(x1)
< 1 + �1

and

v(x1) < (�1 − �)1/ log be−C <
1

2
. Tiny!

Want: u(x ′1) small and flat (i.e.,
u(x ′1−M)
u(x ′1)

is small).
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The analysis of u

An application of Chebyshev inequality shows that

u(x1) ≤ u(x2) ≤ 1 + �

m0(1− �0)
v(x1)

is tiny. But we cannot get any information about flatness of u at x1. In
order to search for a flat piece of u, we start from v(x2) = (1 + �)v(x1),
which implies that∫

R

(2u − u2)(x2 − y)dg(y) ≤ (1 + �)

∫
R

2u(x1 − y)dg(y).
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Flatness of u —- truncation argument

u(x)

x_1
x_1−y_0

Flat

y_0=q=r:  large

u(x)

x_1x_1−y_0 x_2−q x_1−q=x_1−r x_2=x_1−M

x_1−r−M/2

x_2−r−M/2
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Step1: With the previous notations, we can truncate the integral at an
affordable cost � = �(�1 − �), i.e.,∫ r

−∞
(2u − u2)(x2 − y)dg(y) ≤ (1 + �+ �)

∫ r

−∞
2u(x1 − y)dg(y).

Step2: Since u(x1) is tiny, u(x1 − r) is very small even if the value of u
increases slowly for a long time compared with u(x1). Therefore, the
nonlinear term is negligible with another affordable cost, i.e.,∫ r

−∞
u(x2 − y)dg(y) ≤ (1 + �+ 2�)

∫ r

−∞
u(x1 − y)dg(y).

Step3: From step 2, we can find a location in [x1 − r ,∞) where u is flat.
In fact we need the following a stronger version.

(a) u(x2 − y1) ≤ (1 + �+ 3�)u(x1 − y1) for some y1 ≤ r ′ ∧M, or

(b) u(x2 − y1) ≤ (1 + �+ 2� − �eay1/8)u(x1 − y1) for some y1 ∈ (M, r ].
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The End

Thank You!
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