Particle models with interaction through the center of mass

János Engländer
University of Colorado at Boulder
Frontier Probability Days
Salt Lake City, March 10-12, 2011

In this talk,

C.O.M.: Center of mass

Model

Branching Brownian motion with interaction:

Model

Branching Brownian motion with interaction:

- Motion: Brownian motion on \mathbb{R}^{d}.

Model

Branching Brownian motion with interaction:

- Motion: Brownian motion on \mathbb{R}^{d}.
- Branching: dyadic (2 offspring), unit time.

Model

Branching Brownian motion with interaction:

- Motion: Brownian motion on \mathbb{R}^{d}.
- Branching: dyadic (2 offspring), unit time.
- Start with single particle at the origin.

Model

Branching Brownian motion with interaction:

- Motion: Brownian motion on \mathbb{R}^{d}.
- Branching: dyadic (2 offspring), unit time.
- Start with single particle at the origin.
- Let $\gamma \neq 0$. If Z denotes the process and Z_{t}^{i} is the $i^{\text {th }}$ particle, then Z_{t}^{i} 'feels' the drift

$$
\frac{\gamma}{n_{t}} \sum_{1 \leq j \leq n_{t}} z_{t}^{j}-
$$

Model

Branching Brownian motion with interaction:

- Motion: Brownian motion on \mathbb{R}^{d}.
- Branching: dyadic (2 offspring), unit time.
- Start with single particle at the origin.
- Let $\gamma \neq 0$. If Z denotes the process and Z_{t}^{i} is the $i^{\text {th }}$ particle, then Z_{t}^{i} 'feels' the drift

$$
\frac{\gamma}{n_{t}} \sum_{1 \leq j \leq n_{t}} z_{t}^{j}-
$$

That is the particle's infinitesimal generator is

$$
\frac{1}{2} \Delta+\frac{\gamma}{n_{t}} \sum_{1 \leq j \leq n_{t}}\left(Z_{t}^{j}-x\right) \cdot \nabla
$$

$\left(n_{t}:=2^{\lfloor t\rfloor}\right.$, where $\lfloor t\rfloor$ is the integer part of $\left.t.\right)$

Model

Branching Brownian motion with interaction:

- Motion: Brownian motion on \mathbb{R}^{d}.
- Branching: dyadic (2 offspring), unit time.
- Start with single particle at the origin.
- Let $\gamma \neq 0$. If Z denotes the process and Z_{t}^{i} is the $i^{\text {th }}$ particle, then Z_{t}^{i} 'feels' the drift

$$
\frac{\gamma}{n_{t}} \sum_{1 \leq j \leq n_{t}} z_{t}^{j}-
$$

That is the particle's infinitesimal generator is

$$
\frac{1}{2} \Delta+\frac{\gamma}{n_{t}} \sum_{1 \leq j \leq n_{t}}\left(Z_{t}^{j}-x\right) \cdot \nabla
$$

($n_{t}:=2^{\lfloor t\rfloor}$, where $\lfloor t\rfloor$ is the integer part of t.)
If $\gamma>0$: attraction; if $\gamma<0$: repulsion.

Some people working on similar models

- Simon Harris (Bath)

Some people working on similar models

- Simon Harris (Bath)
- Julien Berestycki (Paris)

Some people working on similar models

- Simon Harris (Bath)
- Julien Berestycki (Paris)
- Omer Adelman (Paris)

Some people working on similar models

- Simon Harris (Bath)
- Julien Berestycki (Paris)
- Omer Adelman (Paris)
- Jin Feng (Kansas) — new project: take $g: \mathbb{R}_{+} \rightarrow \mathbb{R}$ and

$$
\frac{1}{n_{t}} \sum_{1 \leq j \leq n_{t}} g\left(\left|Z_{t}^{j}-\cdot\right|\right) \frac{Z_{t}^{j}-\cdot}{\left|Z_{t}^{j}-\cdot\right|},
$$

instead of just $g(y)=\gamma y$.

Some people working on similar models

- Simon Harris (Bath)
- Julien Berestycki (Paris)
- Omer Adelman (Paris)
- Jin Feng (Kansas) — new project: take $g: \mathbb{R}_{+} \rightarrow \mathbb{R}$ and

$$
\frac{1}{n_{t}} \sum_{1 \leq j \leq n_{t}} g\left(\left|Z_{t}^{j}-\cdot\right|\right) \frac{Z_{t}^{j}-\cdot}{\left|Z_{t}^{j}-\cdot\right|},
$$

instead of just $g(y)=\gamma y$.

- H. Gill (U. British Columbia): super-Brownian motion with self-interaction

Some people working on similar models

- Simon Harris (Bath)
- Julien Berestycki (Paris)
- Omer Adelman (Paris)
- Jin Feng (Kansas) — new project: take $g: \mathbb{R}_{+} \rightarrow \mathbb{R}$ and

$$
\frac{1}{n_{t}} \sum_{1 \leq j \leq n_{t}} g\left(\left|Z_{t}^{j}-\cdot\right|\right) \frac{Z_{t}^{j}-\cdot}{\left|Z_{t}^{j}-\cdot\right|},
$$

instead of just $g(y)=\gamma y$.

- H. Gill (U. British Columbia): super-Brownian motion with self-interaction
- M. Balázs, B. Tóth and M. Rácz (Budapest Technical U.): A particle system interacting through the C.O.M.

C.O.M. stabilizes

Let $\bar{Z}_{t}:=\frac{1}{n_{t}} \sum_{i=1}^{n_{t}} Z_{t}^{i}$, that is, \bar{Z} is the C.O.M. for Z.

C.O.M. stabilizes

Let $\bar{Z}_{t}:=\frac{1}{n_{t}} \sum_{i=1}^{n_{t}} Z_{t}^{i}$, that is, \bar{Z} is the C.O.M. for Z. Notice that

$$
\begin{equation*}
\frac{1}{n_{t}} \sum_{1 \leq j \leq n_{t}}\left(Z_{t}^{j}-Z_{t}^{i}\right)=\bar{Z}_{t}-Z_{t}^{i} \tag{1}
\end{equation*}
$$

and so the net attraction pulls the particle towards the C.O.M. (net repulsion pushes it away from the C.O.M.).

C.O.M. stabilizes

Let $\bar{Z}_{t}:=\frac{1}{n_{t}} \sum_{i=1}^{n_{t}} Z_{t}^{i}$, that is, \bar{Z} is the C.O.M. for Z. Notice that

$$
\begin{equation*}
\frac{1}{n_{t}} \sum_{1 \leq j \leq n_{t}}\left(Z_{t}^{j}-Z_{t}^{i}\right)=\bar{Z}_{t}-Z_{t}^{i} \tag{1}
\end{equation*}
$$

and so the net attraction pulls the particle towards the C.O.M. (net repulsion pushes it away from the C.O.M.).

Lemma (C.O.M. stabilizes)

$$
\lim _{t \rightarrow \infty} \bar{Z}_{t}=N, \text { a.s. } \quad \text { where } N \sim \mathcal{N}\left(0, \mathbf{2}_{d}\right)
$$

C.O.M. stabilizes

Let $\bar{Z}_{t}:=\frac{1}{n_{t}} \sum_{i=1}^{n_{t}} Z_{t}^{i}$, that is, \bar{Z} is the C.O.M. for Z. Notice that

$$
\begin{equation*}
\frac{1}{n_{t}} \sum_{1 \leq j \leq n_{t}}\left(Z_{t}^{j}-Z_{t}^{i}\right)=\bar{Z}_{t}-Z_{t}^{i} \tag{1}
\end{equation*}
$$

and so the net attraction pulls the particle towards the C.O.M. (net repulsion pushes it away from the C.O.M.).

Lemma (C.O.M. stabilizes)

$$
\lim _{t \rightarrow \infty} \bar{Z}_{t}=N, \text { a.s. } \quad \text { where } N \sim \mathcal{N}\left(0,2 \mathbf{l}_{d}\right) .
$$

Proof: Elementary proof, using independence and Brownian scaling. \square

C.O.M. stabilizes

Let $\bar{Z}_{t}:=\frac{1}{n_{t}} \sum_{i=1}^{n_{t}} Z_{t}^{i}$, that is, \bar{Z} is the C.O.M. for Z. Notice that

$$
\begin{equation*}
\frac{1}{n_{t}} \sum_{1 \leq j \leq n_{t}}\left(Z_{t}^{j}-Z_{t}^{i}\right)=\bar{Z}_{t}-Z_{t}^{i} \tag{1}
\end{equation*}
$$

and so the net attraction pulls the particle towards the C.O.M. (net repulsion pushes it away from the C.O.M.).

Lemma (C.O.M. stabilizes)

$$
\lim _{t \rightarrow \infty} \bar{Z}_{t}=N, \text { a.s. } \quad \text { where } N \sim \mathcal{N}\left(0,2 \mathbf{l}_{d}\right) .
$$

Proof: Elementary proof, using independence and Brownian scaling.

Remark: In fact, \bar{Z} is a Markov process w.r. to canonical filtration for Z.

Viewing the system from C.O.M.

Assume that $t \in[m, m+1)$. When viewed from \bar{Z}, the relocation of a particle is governed by

$$
\mathrm{d}\left(Z_{t}^{1}-\bar{Z}_{t}\right)=\mathrm{d} Z_{t}^{1}-\mathrm{d} \bar{Z}_{t}=\mathrm{d} B_{t}^{m, 1}-2^{-m} \sum_{i=1}^{2^{m}} \mathrm{~d} B_{t}^{m, i}-\gamma\left(Z_{t}^{1}-\bar{Z}_{t}\right) \mathrm{d} t
$$

Viewing the system from C.O.M.

Assume that $t \in[m, m+1)$. When viewed from \bar{Z}, the relocation of a particle is governed by

$$
\mathrm{d}\left(Z_{t}^{1}-\bar{Z}_{t}\right)=\mathrm{d} Z_{t}^{1}-\mathrm{d} \bar{Z}_{t}=\mathrm{d} B_{t}^{m, 1}-2^{-m} \sum_{i=1}^{2^{m}} \mathrm{~d} B_{t}^{m, i}-\gamma\left(Z_{t}^{1}-\bar{Z}_{t}\right) \mathrm{d} t
$$

So if $Y^{1}:=Z^{1}-\bar{Z}$, then

$$
\mathrm{d} Y_{t}^{1}=\mathrm{d} B_{t}^{m, 1}-2^{-m} \sum_{i=1}^{2^{m}} \mathrm{~d} B_{t}^{m, i}-\gamma Y_{t}^{1} \mathrm{~d} t
$$

Viewing the system from C.O.M.

Assume that $t \in[m, m+1)$. When viewed from \bar{Z}, the relocation of a particle is governed by

$$
\mathrm{d}\left(Z_{t}^{1}-\bar{Z}_{t}\right)=\mathrm{d} Z_{t}^{1}-\mathrm{d} \bar{Z}_{t}=\mathrm{d} B_{t}^{m, 1}-2^{-m} \sum_{i=1}^{2^{m}} \mathrm{~d} B_{t}^{m, i}-\gamma\left(Z_{t}^{1}-\bar{Z}_{t}\right) \mathrm{d} t .
$$

So if $Y^{1}:=Z^{1}-\bar{Z}$, then

$$
\mathrm{d} Y_{t}^{1}=\mathrm{d} B_{t}^{m, 1}-2^{-m} \sum_{i=1}^{2^{m}} \mathrm{~d} B_{t}^{m, i}-\gamma Y_{t}^{1} \mathrm{~d} t
$$

Clearly, letting $\tau:=t-\lfloor t\rfloor$, one has

$$
B_{\tau}^{m, 1}-2^{-m} \bigoplus_{i=1}^{2^{m}} B_{\tau}^{m, i}=-\bigoplus_{i=2}^{2^{m}} 2^{-m} B_{\tau}^{m, i} \oplus\left(1-2^{-m}\right) B_{\tau}^{m, 1}
$$

Viewing the system from C.O.M.

Assume that $t \in[m, m+1)$. When viewed from \bar{Z}, the relocation of a particle is governed by

$$
\mathrm{d}\left(Z_{t}^{1}-\bar{Z}_{t}\right)=\mathrm{d} Z_{t}^{1}-\mathrm{d} \bar{Z}_{t}=\mathrm{d} B_{t}^{m, 1}-2^{-m} \sum_{i=1}^{2^{m}} \mathrm{~d} B_{t}^{m, i}-\gamma\left(Z_{t}^{1}-\bar{Z}_{t}\right) \mathrm{d} t .
$$

So if $Y^{1}:=Z^{1}-\bar{Z}$, then

$$
\mathrm{d} Y_{t}^{1}=\mathrm{d} B_{t}^{m, 1}-2^{-m} \sum_{i=1}^{2^{m}} \mathrm{~d} B_{t}^{m, i}-\gamma Y_{t}^{1} \mathrm{~d} t
$$

Clearly, letting $\tau:=t-\lfloor t\rfloor$, one has

$$
B_{\tau}^{m, 1}-2^{-m} \bigoplus_{i=1}^{2^{m}} B_{\tau}^{m, i}=-\bigoplus_{i=2}^{2^{m}} 2^{-m} B_{\tau}^{m, i} \oplus\left(1-2^{-m}\right) B_{\tau}^{m, 1}
$$

The RHS is a Brownian motion with mean zero and variance $\left(1-2^{-m}\right) \tau \mathbf{I}_{d}:=\sigma_{m}^{2} \tau \mathbf{I}_{d}$.

That is,

$$
\mathrm{d} Y_{t}^{1}=\sigma_{m} \mathrm{~d} W^{1}(t)-\gamma Y_{t}^{1} \mathrm{~d} t
$$

where W^{1} is a standard Brownian motion.

That is,

$$
\mathrm{d} Y_{t}^{1}=\sigma_{m} \mathrm{~d} W^{1}(t)-\gamma Y_{t}^{1} \mathrm{~d} t
$$

where W^{1} is a standard Brownian motion. Hence, on $[m, m+1)$, the relocation viewed from the C.O.M. is governed by the O-U generator:

$$
\frac{1}{2} \sigma_{m} \Delta-\gamma x \cdot \nabla \approx \frac{1}{2} \Delta-\gamma x \cdot \nabla
$$

That is,

$$
\mathrm{d} Y_{t}^{1}=\sigma_{m} \mathrm{~d} W^{1}(t)-\gamma Y_{t}^{1} \mathrm{~d} t
$$

where W^{1} is a standard Brownian motion. Hence, on $[m, m+1$), the relocation viewed from the C.O.M. is governed by the O-U generator:

$$
\frac{1}{2} \sigma_{m} \Delta-\gamma x \cdot \nabla \approx \frac{1}{2} \Delta-\gamma x \cdot \nabla
$$

:(Independence of particles: lost

That is,

$$
\mathrm{d} Y_{t}^{1}=\sigma_{m} \mathrm{~d} W^{1}(t)-\gamma Y_{t}^{1} \mathrm{~d} t
$$

where W^{1} is a standard Brownian motion. Hence, on $[m, m+1$), the relocation viewed from the C.O.M. is governed by the O-U generator:

$$
\frac{1}{2} \sigma_{m} \Delta-\gamma x \cdot \nabla \approx \frac{1}{2} \Delta-\gamma x \cdot \nabla
$$

:(Independence of particles: lost
:) But easy to show asymptotically vanishing correlation between driving BM's and that their "degree of freedom" is $2^{m}-1$.

That is,

$$
\mathrm{d} Y_{t}^{1}=\sigma_{m} \mathrm{~d} W^{1}(t)-\gamma Y_{t}^{1} \mathrm{~d} t
$$

where W^{1} is a standard Brownian motion. Hence, on $[m, m+1$), the relocation viewed from the C.O.M. is governed by the O-U generator:

$$
\frac{1}{2} \sigma_{m} \Delta-\gamma x \cdot \nabla \approx \frac{1}{2} \Delta-\gamma x \cdot \nabla
$$

:(Independence of particles: lost
:) But easy to show asymptotically vanishing correlation between driving BM's and that their "degree of freedom" is $2^{m}-1$.

Q: How can we put together that \bar{Z}_{t} tends to a random final position a.s. with the description of the system 'as viewed from \bar{Z}_{t} ?'

Q: How can we put together that \bar{Z}_{t} tends to a random final position a.s. with the description of the system 'as viewed from \bar{Z}_{t} ?' We certainly need:

Lemma
$Y=\left(Y_{t} ; t \geq 0\right)$ is independent of the tail σ-algebra of \bar{Z}.

Asymptotic behavior for attraction, $\gamma>0$

Theorem (E. 2010)
Let $P^{x}(\cdot):=P(\cdot \mid N=x)$. As $n \rightarrow \infty$,

$$
2^{-n} Z_{n}(\mathrm{~d} y) \stackrel{\text { weak }}{\Longrightarrow}\left(\frac{\gamma}{\pi}\right)^{d / 2} \exp \left(-\gamma|y-x|^{2}\right) \mathrm{d} y, P^{x}-\text { a.s. }
$$

for almost all $x \in \mathbb{R}^{d}$.

Asymptotic behavior for attraction, $\gamma>0$

Theorem (E. 2010)
Let $P^{x}(\cdot):=P(\cdot \mid N=x)$. As $n \rightarrow \infty$,

$$
2^{-n} Z_{n}(\mathrm{~d} y) \stackrel{\text { weak }}{\Longrightarrow}\left(\frac{\gamma}{\pi}\right)^{d / 2} \exp \left(-\gamma|y-x|^{2}\right) \mathrm{d} y, P^{x}-\text { a.s. }
$$

for almost all $x \in \mathbb{R}^{d}$. Consequently,

$$
2^{-n} E Z_{n}(\mathrm{~d} y) \stackrel{\text { weak }}{\Longrightarrow} f^{\gamma}(y) \mathrm{d} y,
$$

where

$$
f^{\gamma}(\cdot)=\left(\pi\left(4+\gamma^{-1}\right)\right)^{-d / 2} \exp \left[\frac{-|\cdot|^{2}}{4+\gamma^{-1}}\right] .
$$

Asymptotic behavior for attraction, $\gamma>0$

Theorem (E. 2010)
Let $P^{x}(\cdot):=P(\cdot \mid N=x)$. As $n \rightarrow \infty$,

$$
2^{-n} Z_{n}(\mathrm{~d} y) \stackrel{\text { weak }}{\Longrightarrow}\left(\frac{\gamma}{\pi}\right)^{d / 2} \exp \left(-\gamma|y-x|^{2}\right) \mathrm{d} y, P^{x}-\text { a.s. }
$$

for almost all $x \in \mathbb{R}^{d}$. Consequently,

$$
2^{-n} E Z_{n}(\mathrm{~d} y) \stackrel{\text { weak }}{\Longrightarrow} f^{\gamma}(y) \mathrm{d} y,
$$

where

$$
f^{\gamma}(\cdot)=\left(\pi\left(4+\gamma^{-1}\right)\right)^{-d / 2} \exp \left[\frac{-|\cdot|^{2}}{4+\gamma^{-1}}\right] .
$$

Remark

Variance corresponding to $f^{\gamma}(\cdot): \Sigma=\left(2+\frac{1}{2 \gamma}\right) \mathbf{I}_{d}$.
Stronger attraction \rightarrow smaller variance.

Asymptotic behavior for repulsion, $\gamma<0$

Conjecture

- If $|\gamma| \geq \frac{\log 2}{d}$, then Z suffers local extinction:

$$
Z_{n}(\mathrm{~d} y) \stackrel{\text { vague }}{\Longrightarrow} \mathbf{0}, \quad P-\text { a.s. }
$$

- If $|\gamma|<\frac{\log 2}{d}$, then

$$
2^{-n} e^{d|\gamma| n} Z_{n}(\mathrm{~d} y) \stackrel{\text { vague }}{\Longrightarrow} \mathrm{d} y, \quad P-\text { a.s. }
$$

COM for SBM

Theorem (E. 2010)
Let $\alpha, \beta>0$ and let

$$
\bar{X}:=\frac{\langle\mathrm{id}, X\rangle}{\|X\|}
$$

denote the C.O.M. for the $\left(\frac{1}{2} \Delta, \beta, \alpha ; \mathbb{R}^{d}\right)$-superdiffusion X.

COM for SBM

Theorem (E. 2010)
Let $\alpha, \beta>0$ and let

$$
\bar{X}:=\frac{\langle\mathrm{id}, X\rangle}{\|X\|}
$$

denote the C.O.M. for the $\left(\frac{1}{2} \Delta, \beta, \alpha ; \mathbb{R}^{d}\right)$-superdiffusion X. Then, on the survival set, $t \rightarrow \bar{X}_{t}$ is continuous and converges $P_{\delta_{x}}$-almost surely as $t \rightarrow \infty$.

COM for SBM

Theorem (E. 2010)
Let $\alpha, \beta>0$ and let

$$
\bar{X}:=\frac{\langle\mathrm{id}, X\rangle}{\|X\|}
$$

denote the C.O.M. for the $\left(\frac{1}{2} \Delta, \beta, \alpha ; \mathbb{R}^{d}\right)$-superdiffusion X. Then, on the survival set, $t \rightarrow \bar{X}_{t}$ is continuous and converges $P_{\delta_{x}}$-almost surely as $t \rightarrow \infty$.

CHALLENGE: Generalize the interactive model and the result to SBM!

COM for SBM

Theorem (E. 2010)
Let $\alpha, \beta>0$ and let

$$
\bar{X}:=\frac{\langle\mathrm{id}, X\rangle}{\|X\|}
$$

denote the C.O.M. for the $\left(\frac{1}{2} \Delta, \beta, \alpha ; \mathbb{R}^{d}\right)$-superdiffusion X. Then, on the survival set, $t \rightarrow \bar{X}_{t}$ is continuous and converges $P_{\delta_{x}}$-almost surely as $t \rightarrow \infty$.

CHALLENGE: Generalize the interactive model and the result to SBM!

RESULTS: Very recent, interesting paper by Hardeep Gill.

Gill's work

Gill constructed a superprocess with attraction to its C.O.M.

Gill's work

Gill constructed a superprocess with attraction to its C.O.M.
Using Perkins's historical stochastic calculus, constructs a supercritical interacting measure-valued process with representative particles that are attracted to or repulsed from its C.O.M.

Gill's work

Gill constructed a superprocess with attraction to its C.O.M.
Using Perkins's historical stochastic calculus, constructs a supercritical interacting measure-valued process with representative particles that are attracted to or repulsed from its C.O.M.

Coupling between the ordinary super O-U process Z and the interacting process Z^{\prime}, constructed on the same probability space:

$$
Z_{t}^{\prime}=Z_{t}+\gamma \int_{0}^{t} \bar{Z}_{s} \mathrm{~d} s
$$

where \bar{Z}_{t} : C.O.M. of Z_{t}.

Gill's work

Gill constructed a superprocess with attraction to its C.O.M.
Using Perkins's historical stochastic calculus, constructs a supercritical interacting measure-valued process with representative particles that are attracted to or repulsed from its C.O.M.

Coupling between the ordinary super O-U process Z and the interacting process Z^{\prime}, constructed on the same probability space:

$$
Z_{t}^{\prime}=Z_{t}+\gamma \int_{0}^{t} \bar{Z}_{s} \mathrm{~d} s
$$

where \bar{Z}_{t} : C.O.M. of Z_{t}. In particular,

$$
\bar{Z}_{t}^{\prime}=\bar{Z}_{t}+\gamma \int_{0}^{t} \bar{Z}_{s} \mathrm{~d} s
$$

where \bar{Z}^{\prime} denotes the C.O.M. of Z^{\prime}.

Gill's work

Gill constructed a superprocess with attraction to its C.O.M.
Using Perkins's historical stochastic calculus, constructs a supercritical interacting measure-valued process with representative particles that are attracted to or repulsed from its C.O.M.
Coupling between the ordinary super O-U process Z and the interacting process Z^{\prime}, constructed on the same probability space:

$$
Z_{t}^{\prime}=Z_{t}+\gamma \int_{0}^{t} \bar{Z}_{s} \mathrm{~d} s
$$

where \bar{Z}_{t} : C.O.M. of Z_{t}. In particular,

$$
\bar{Z}_{t}^{\prime}=\bar{Z}_{t}+\gamma \int_{0}^{t} \bar{Z}_{s} \mathrm{~d} s
$$

where \bar{Z}^{\prime} denotes the C.O.M. of Z^{\prime}. Here $\gamma=$ parameter of the underlying $\mathrm{O}-\mathrm{U}$ process in $Z=$ the parameter of attraction/repulsion for Z^{\prime}.

Gill's work

Gill constructed a superprocess with attraction to its C.O.M.
Using Perkins's historical stochastic calculus, constructs a supercritical interacting measure-valued process with representative particles that are attracted to or repulsed from its C.O.M.
Coupling between the ordinary super O-U process Z and the interacting process Z^{\prime}, constructed on the same probability space:

$$
Z_{t}^{\prime}=Z_{t}+\gamma \int_{0}^{t} \bar{Z}_{s} \mathrm{~d} s
$$

where \bar{Z}_{t} : C.O.M. of Z_{t}. In particular,

$$
\bar{Z}_{t}^{\prime}=\bar{Z}_{t}+\gamma \int_{0}^{t} \bar{Z}_{s} \mathrm{~d} s
$$

where \bar{Z}^{\prime} denotes the C.O.M. of Z^{\prime}. Here $\gamma=$ parameter of the underlying $\mathrm{O}-\mathrm{U}$ process in $Z=$ the parameter of attraction/repulsion for Z^{\prime}. For $\gamma<0$ (repulsive case): ‘outward’ O-U.
(a) In the attractive case, Gill proves the equivalent of our theorem: on survival, the mass normalized process converges a.s. to the stationary distribution of the O-U process centered at the limiting value of its C.O.M.
(a) In the attractive case, Gill proves the equivalent of our theorem: on survival, the mass normalized process converges a.s. to the stationary distribution of the O-U process centered at the limiting value of its C.O.M.
(b) In the repulsive case, the equivalent of our conjecture is only partially demonstrated:
(a) In the attractive case, Gill proves the equivalent of our theorem: on survival, the mass normalized process converges a.s. to the stationary distribution of the O-U process centered at the limiting value of its C.O.M.
(b) In the repulsive case, the equivalent of our conjecture is only partially demonstrated:
(a) In the attractive case, Gill proves the equivalent of our theorem: on survival, the mass normalized process converges a.s. to the stationary distribution of the O-U process centered at the limiting value of its C.O.M.
(b) In the repulsive case, the equivalent of our conjecture is only partially demonstrated:

- convergence in probability is shown, provided the repulsion is not too strong compared to the mass creation, by appealing to a result of E. and Winter;
(a) In the attractive case, Gill proves the equivalent of our theorem: on survival, the mass normalized process converges a.s. to the stationary distribution of the O-U process centered at the limiting value of its C.O.M.
(b) In the repulsive case, the equivalent of our conjecture is only partially demonstrated:
- convergence in probability is shown, provided the repulsion is not too strong compared to the mass creation, by appealing to a result of E. and Winter;
- otherwise, local extinction is shown, however, only under the additional assumption that $|\gamma|$ is also upper bounded by a certain second constant.

Reason for the counterintuitive upper bound: otherwise it is not clear if \bar{Z}_{t}^{\prime} converges.

Reason for the counterintuitive upper bound: otherwise it is not clear if \bar{Z}_{t}^{\prime} converges.
Because of coupling: reduces to a problem about ordinary (non-interacting) super O-U processes, but it is apparently still a non-trivial question.

Reason for the counterintuitive upper bound: otherwise it is not clear if \bar{Z}_{t}^{\prime} converges.
Because of coupling: reduces to a problem about ordinary (non-interacting) super O-U processes, but it is apparently still a non-trivial question.

On extinction, a version of Tribe's result is proven: as $t \uparrow \xi_{\text {ext }}$, the normalized process in both the attractive and repulsive cases converges to the Dirac measure at a random point a.s.

The Balázs-Rácz-Tóth model (2011)

One dimensional particle system with interaction via C.O.M. ("competing stocks model", or "goats").

There is a kind of attraction towards the C.O.M. in the following sense:

The Balázs-Rácz-Tóth model (2011)

One dimensional particle system with interaction via C.O.M. ("competing stocks model", or "goats").

There is a kind of attraction towards the C.O.M. in the following sense:

- each particle jumps to the right according to some common distribution F, but

The Balázs-Rácz-Tóth model (2011)

One dimensional particle system with interaction via C.O.M. ("competing stocks model", or "goats").

There is a kind of attraction towards the C.O.M. in the following sense:

- each particle jumps to the right according to some common distribution F, but
- the rate at which the jump occurs is a monotone decreasing function of the signed distance between the particle and the mass center.

The Balázs-Rácz-Tóth model (2011)

One dimensional particle system with interaction via C.O.M.
("competing stocks model", or "goats").
There is a kind of attraction towards the C.O.M. in the following sense:

- each particle jumps to the right according to some common distribution F, but
- the rate at which the jump occurs is a monotone decreasing function of the signed distance between the particle and the mass center.

Particles being far ahead slow down, while the laggards catch up.

Goats

(Animation: courtesy of M. Balázs.)

Goats

(Animation: courtesy of M. Balázs.)

Goats

(Animation: courtesy of M. Balázs.)

Goats

(Animation: courtesy of M. Balázs.)

Goats

(Animation: courtesy of M. Balázs.)

Goats

(Animation: courtesy of M. Balázs.)

Goats

(Animation: courtesy of M. Balázs.)

Goats

(Animation: courtesy of M. Balázs.)

Goats

(Animation: courtesy of M. Balázs.)

Goats

(Animation: courtesy of M. Balázs.)

Goats

(Animation: courtesy of M. Balázs.)

Goats

(Animation: courtesy of M. Balázs.)

Goats

(Animation: courtesy of M. Balázs.)

Goats

(Animation: courtesy of M. Balázs.)

Goats

(Animation: courtesy of M. Balázs.)

Goats

(Animation: courtesy of M. Balázs.)

Goats

(Animation: courtesy of M. Balázs.)

Goats

(Animation: courtesy of M. Balázs.)

Goats

(Animation: courtesy of M. Balázs.)

Goats

(Animation: courtesy of M. Balázs.)

Goats

(Animation: courtesy of M. Balázs.)

Goats

(Animation: courtesy of M. Balázs.)

Goats

(Animation: courtesy of M. Balázs.)

Goats

(Animation: courtesy of M. Balázs.)

Goats

(Animation: courtesy of M. Balázs.)

Goats

(Animation: courtesy of M. Balázs.)

Goats

(Animation: courtesy of M. Balázs.)

Goats

(Animation: courtesy of M. Balázs.)

Goats

(Animation: courtesy of M. Balázs.)

Goats

(Animation: courtesy of M. Balázs.)

Goats

(Animation: courtesy of M. Balázs.)

The B-R-T model

One dimensional particle system with interaction via C.O.M. ("competing stocks model", or "goats").
There is a kind of attraction towards the C.O.M. in the following sense:

- each particle jumps to the right according to some common distribution F, but
- the rate at which the jump occurs is a monotone decreasing function of the signed distance between the particle and the mass center.

Particles being far ahead slow down, while the laggards catch up.

The B-R-T model

One dimensional particle system with interaction via C.O.M. ("competing stocks model", or "goats").
There is a kind of attraction towards the C.O.M. in the following sense:

- each particle jumps to the right according to some common distribution F, but
- the rate at which the jump occurs is a monotone decreasing function of the signed distance between the particle and the mass center.

Particles being far ahead slow down, while the laggards catch up.
RESULT: There is a limiting probability measure-valued process around the C.O.M., as number of particles tends to infinity and individual particle mass is taken $1 / n$.

The B-R-T model

One dimensional particle system with interaction via C.O.M. ("competing stocks model", or "goats").

There is a kind of attraction towards the C.O.M. in the following sense:

- each particle jumps to the right according to some common distribution F, but
- the rate at which the jump occurs is a monotone decreasing function of the signed distance between the particle and the mass center.

Particles being far ahead slow down, while the laggards catch up.
RESULT: There is a limiting probability measure-valued process around the C.O.M., as number of particles tends to infinity and individual particle mass is taken $1 / n$.
Limiting measure valued process is deterministic.

The B-R-T model

One dimensional particle system with interaction via C.O.M. ("competing stocks model", or "goats").

There is a kind of attraction towards the C.O.M. in the following sense:

- each particle jumps to the right according to some common distribution F, but
- the rate at which the jump occurs is a monotone decreasing function of the signed distance between the particle and the mass center.

Particles being far ahead slow down, while the laggards catch up.
RESULT: There is a limiting probability measure-valued process around the C.O.M., as number of particles tends to infinity and individual particle mass is taken $1 / n$.
Limiting measure valued process is deterministic.
CHALLENGE: Introduce branching and get interacting superprocess in the limit.

Thank you!

Why $\log 2 / d$?

Why $\log 2 / d ?$

For a branching diffusion on \mathbb{R}^{d} with motion generator L, smooth nonzero spatially dependent exponential branching rate $\beta(\cdot) \geq 0$ and dyadic branching: either local extinction or local exponential growth according to whether $\lambda_{c} \leq 0$ or $\lambda_{c}>0$.
($\lambda_{c}=\lambda_{c}(L+\beta)$: generalized principal eigenvalue of $L+\beta$ on \mathbb{R}^{d}.)

Why $\log 2 / d ?$

For a branching diffusion on \mathbb{R}^{d} with motion generator L, smooth nonzero spatially dependent exponential branching rate $\beta(\cdot) \geq 0$ and dyadic branching: either local extinction or local exponential growth according to whether $\lambda_{c} \leq 0$ or $\lambda_{c}>0$.
($\lambda_{c}=\lambda_{c}(L+\beta)$: generalized principal eigenvalue of $L+\beta$ on \mathbb{R}^{d}.)
When $\beta \equiv B>0$, the criterion for local exponential growth becomes $B>\left|\lambda_{c}(L)\right|$.

Why $\log 2 / d ?$

For a branching diffusion on \mathbb{R}^{d} with motion generator L, smooth nonzero spatially dependent exponential branching rate $\beta(\cdot) \geq 0$ and dyadic branching: either local extinction or local exponential growth according to whether $\lambda_{c} \leq 0$ or $\lambda_{c}>0$.
($\lambda_{c}=\lambda_{c}(L+\beta)$: generalized principal eigenvalue of $L+\beta$ on \mathbb{R}^{d}.)
When $\beta \equiv B>0$, the criterion for local exponential growth becomes $B>\left|\lambda_{c}(L)\right|$.

Note: $\lambda_{c}(L)$ is the "exponential escape rate from compacts" for the diffusion corresponding to L. A large enough mass creation can compensate that particles drift away from a given bounded set. (If $L \sim$ recurrent diffusion then $\lambda_{c}(L)=0$.)

Why $\log 2 / d ?$

For a branching diffusion on \mathbb{R}^{d} with motion generator L, smooth nonzero spatially dependent exponential branching rate $\beta(\cdot) \geq 0$ and dyadic branching: either local extinction or local exponential growth according to whether $\lambda_{c} \leq 0$ or $\lambda_{c}>0$.
($\lambda_{c}=\lambda_{c}(L+\beta)$: generalized principal eigenvalue of $L+\beta$ on \mathbb{R}^{d}.)
When $\beta \equiv B>0$, the criterion for local exponential growth becomes $B>\left|\lambda_{c}(L)\right|$.

Note: $\lambda_{c}(L)$ is the "exponential escape rate from compacts" for the diffusion corresponding to L. A large enough mass creation can compensate that particles drift away from a given bounded set. (If $L \sim$ recurrent diffusion then $\lambda_{c}(L)=0$.)

In our case: $\lambda_{c}=d \gamma$ for the outward O-U, and for unit time branching, the role of B is played by $\log 2$. The condition for local exponential growth: $\log 2>d|\gamma|$.

