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Figure 1. Paintings of a mini Schnauzer in Daĺıstyle. The first two were generated
using https://openart.ai/, the next two were generated using https://gemini.

google.com/, and the last two used https://chatgpt.com/. The third and last
images were generated with the extra prompt to have a labrador reflection.
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1. Introduction

In these notes, I give a quick basic overview of how diffusion-based generative AI works.

The goal will be to generate a picture based on a prompt. Think specifically of a prompt that
says “generate a picture that looks like a Daĺıpainting.”

A picture can be encoded as a matrix. The width k and height ℓ of the picture give, respectively,
the number of horizontal and vertical lines. The picture then has kℓ pixels. If the picture is gray-
scale, then each pixel is just some real number that indicates the “amount of black” in that pixel.
If it is a colored picture, then each pixel consists of three real numbers, indicating the amounts
of red, green, and blue in the pixel. Each color can be given by a real number or by an integer,
e.g. between 0 and 255, or more, if we want more colors. Thus, a picture can in fact be encoded
as a real-valued vector in {0, · · · , 255}3kℓ or, more generally, in R3kℓ. Note that 3kℓ is typically
a very large number. E.g. a 256 × 256 RGB image will have k = 256 lines (vertical pixels) and
ℓ = 256 pixels across (horizontal pixels), totaling 65,536 pixels and, with colors, the vector would
have 196,608 dimensions. Similarly, a 512 × 512 RGB image would have 786,432 dimensions, a
1024× 1024 RGB image has 3,145,728 dimensions, and a picture with 4K resolution has k = 2160,
ℓ = 3840, and hence 3kℓ is about 25 million1.

Suppose we have all of Daĺı ’s paintings stored and encoded into vectors as above. To generate a
random Daĺı, we could simply pick one of these paintings (equally likely). But this would only give
us a random Daĺıpainting. What we want is to generate a painting that is not necessarily in the
collection that we have, but that art experts would tell us the painting may well have been painted
by Daĺıhimself.

To achieve this, we imagine that Daĺıwas a random generator of paintings. Suppose that he was
a machine with a button and that every time we press the button, the machine generates a random
vector in R3kℓ. (In mathematical terms, we have an R3kℓ-valued random variable.) What we are
after, then, is guessing what the probability density function (pdf) of this machine (or random
variable). Once we have that, we can ourselves generate random vectors from that pdf and we
would be generating random paintings that are indistinguisheable from Daĺı ’s.

The problem is that estimating a pdf of a random vector from a space with such a high dimension
is a very difficult problem and requires an impossible number of samples. So, instead, we will try
to devise an algorithm that considers the existing Daĺıpaintings as samples and directly generates
a new random variable from the pdf, wihtout really estimating the pdf itself.

In a sense, picking a sample at random (which is called Boostrapping) is one way to achieve
this. However, as mentioned above, this will not give us new samples. We would like to have
an algorithm that gives us new samples that look quite different from our existing samples, but
that still come from the same pdf as our samples. That is: we want to generate genuinely new
Daĺıpaintings!

To summarize, here is the problem we want to solve:

The Problem: we are given a set of samples produced by a machine that generates random
images, and our task is to use these samples to construct another machine whose output cannot
be reliably distinguished from that of the original, even by statistical tests. In other words, any
observer–even one with access to many outputs–should not be able to tell which machine produced
which image with better-than-chance accuracy.

Here is the general idea of the proposed solution.

125 million dimensions is quite large even for the methods we will discuss in this note. There are ways to deal
with this, though. One method consists of first generating a lower resolution image and then upscaling the resolution
of the generated image using smoothing procedures.
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We begin by constructing a device that takes an image as input and outputs a new random image.
The rules governing how this output is generated are entirely up to us. In mathematical terms,
this device defines a Markov process on the space of images and deciding on what its transition
probabilities are is completely up to us.

Now, consider the following game: when Daĺı ’s machine generates a random image, we feed it
into our device and observe the output. Because we designed the device ourselves, we know its
transition probabilities – the rules by which it maps one image to another. This means that if we
knew the pdf of Daĺı ’s original images, we could compute the pdf of the output of this game using
the law of total probability.

But here’s the interesting part: Bayes’ rule allows us to reverse this process. That is, we can
design a new device – a “backward” device – that takes as input an image produced by the game
above and outputs a new image whose distribution exactly matches that of Daĺı ’s original machine.

At first glance, this might seem circular or even pointless. To compute the pdf of the game’s
final output, we need to know Daĺı ’s pdf. And to apply Bayes’ rule to build the reverse device, we
again need Daĺı ’s pdf! So how does this help?

We resolve the first issue by repeatedly running our device. Specifically, once Daĺı ’s painting
has been processed by our device, we feed the resulting image back into the device, and repeat this
many times. The theory of Markov processes tells us that if we choose the transition probabilities
of our device carefully, then the distribution of the output will converge to a stationary distribution
– the invariant measure of the Markov chain – which depends only on the transition rules of our
device, not on the initial input. So, even without knowing Daĺı ’s pdf, we can sample from this
limiting distribution and use it as a proxy when running the reverse game!

To address the second issue – that Bayes’ rule still requires Daĺı ’s pdf – we take advantage of the
fact that we have multiple samples. Suppose we have M samples from Daĺı ’s machine. For each
one, we play the game by running it through our device repeatedly N times, yielding M sequences
of N images each. We then reverse each of these sequences and use them to estimate the transition
probabilities of the reverse process – effectively learning the dynamics of our backward device from
data.

Putting all this together, we arrive at an algorithm that allows us to generate new samples
resembling those of Daĺı ’s machine:

The algorithm: First, sample an initial image from the invariant measure of our forward
device. Next, pass this image through the reverse process N times, using the transition probabilities
estimated from data. The final output of this reversed sequence is a new random image that closely
approximates a true Daĺısample – in the sense that its distribution is statistically close to the
original.

Now that we gave a big-picture description of the approach, let us close this introduction by going
back and comparing this seemingly roundabout method to the idea of using the given samples to
try and directly estimate the underlying pdf.

As mentioned above, the main issue is the high dimensionality of the state space: A 256 × 256
RGB image lives in a 196,608-dimensional space and – even worse – a 4K colored image lives in
a 25 million-dimensional space! Accurately estimating the density over such a space, without any
understanding of the structural properties of the density function, is extremely challenging. One
complication is that the support of the pdf (the subset of the state space where the pdf is non-zero)
is a tiny, complex, highly non-linear manifold in that space – images do not evenly fill the space.
Another serious complication is that normalization is hard: An important step in estimating a pdf
is to normalized it to something that integrates to one. That means computing an integral over
the humongous state space – computationally intractable.
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Instead of modeling the full pdf, we learn how to step toward regions of higher probability. This
is an easier task because, for example, it requires estimating gradients that are more local and
structured and does not require a global normalization.

2. A baby version of generative AI

To explain the idea of the algorithm in more mathematical terms, we will begin with an example
on a much smaller state space.

Suppose that instead of having the large state space R3kℓ, we have only three possible outcomes:
A, B, and C. Some machine is generating these outcomes at random, with probabilities P(A) = α,
P(B) = β, and P(C) = γ. Here, α, β, γ are nonnegative numbers that add up to one and that are
unkown to us.

In this case, the task of figuring out the pdf boils down to figuring out the numbers α, β, and
γ, given a number of samples. This is a fairly simple task: look in the sample at the frequencies of
A’s, B’s, and C’s, and compute the ratios. E.g., if we are given 1, 000 samples and we see that there
are 335 A’s, 523 B’s, and 142 C’s, then we estimate that α = 0.335, β = 0.523, and γ = 0.142.
Now that we know these probabilities, we can generate our own samples from {A,B,C}.

However, as explained in the introduction, we will not be following the above procedure when
the state space is much larger than {A,B,C}. The larger the size of the sample space is, the more
data we need to estimate the probabilities of the various outcomes in the state space. And when
the state space is Rd, things get exponentially worse as the dimension d increases. So when d is
as large as 200, 000 (in the case of a 256 × 256 RGB image) or 25 million (as in the example of
a 4K color picture), running the above procedure becomes impossible (at least given the current
computational power).

Therefore, we will not attempt to estimate α, β, and γ. Instead, we will try to develop an
algorithm that uses the provided samples to generate new samples from (approximately) the same
probability mass function (pmf) as the original samplest. In other words, we want to generate
random samples from {A,B,C} that have approximately the probabilities α, β, and γ, but without
really learning the values of α, β, and γ.

The main idea will be to take each sample and add a lot of noise to it, generating this way a bunch
of noisy versions of our original samples. Then we solve an inverse problem: now that we have
noisy versions of our samples, can we denoise them and figure out the original samples? Of course,
the answer is NO. We have added noise and removing the noise completely will not be possible.
But the added noise will actually still play in our favor! Reversing the process by attempting to
remove the noise will give “new initial samples”. These are the inputs we are after! That is, these
new samples will be new samples (i.e. not simply resampled from our original samples), but will
have a pdf that is close to the one our original samples came from.

Suppose we denote the initial distribution by the row vector Φ0 = [α β γ] and suppose we denote
the initial sample by X0. This means that X0 is a random variable with values in {A,B,C} and
that P(X0 = A) = α, P(X0 = B) = β, and P(X0 = C) = γ.

To add noise to X0, we run a Markov chain on the state space {A,B,C}. The transition matrix

of this chain is up to us to choose. We denote it by
−→
P . We are using a “right-arrow” above the

P to remind us that this is the transition matrix of the “forward” Markov chain. We will shortly
reverse the course of time and construct a “backward” Markov chain.

We denote the state after n steps by Xn and the pmf of this state by the row-vector Φn. Thus,
P(Xn = A) = Φn(A), P(Xn = B) = Φn(B), and P(Xn = C) = Φn(C). We have

Φn = Φn−1
−→
P and Φn = Φ0

−→
Pn. (2.1)
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Suppose now we are actually given Φn and we would like to devise an algorithm to generate X0

with pmf given by Φ0. We will do this recursively by first generating Xn−1 with pmf Φn−1 and
then repeating the process until we get to X0.

For a Markov chain, it is simpler to generate Xn given Xn−1. To generate Xn−1, given Xn, we
need to use the Bayes rule. That is, we write

P(Xn−1 = j | Xn = i) =
P(Xn−1 = j,Xn = i)

P(Xn = i)
=

P(Xn = i | Xn−1 = j)P(Xn−1 = j)

P(Xn = i)
=

−→
Pj,iΦn−1(j)

Φn(i)
.

That is, if we are at state i at time n, then the probability we are at state j at time n− 1 is given
by

←−
Pn,i,j =

−→
Pj,iΦn−1(j)

Φn(i)
. (2.2)

Thus, we see that when the Markov chain is reversed, we get again a Markov chain. However,
since the dependence on the time n does not disappear in the formula (2.2), the time-homogenous
forward Markov chain becomes an inhomogenous Markov chain when reversed.

Let us run a sanity check here and make sure that
←−
Pn,i,j is actually a pmf. For this, we add over

all states j and get∑
j

←−
Pn,i,j =

∑
j

−→
Pj,iΦn−1(j)

Φn(i)
=

∑
j Φn−1(j)

−→
Pj,i

Φn(i)
=

(Φn−1
−→
P )i

Φn(i)
=

Φn(i)

Φn(i)
= 1.

Expalanation: for the second equality, we factored out the common facter Φn(i) (since we are adding

over j, not over i), for the third equality we observed that the sum of Φn−1(j)
−→
Pj,i is precisely the

i-th entry of the row vector Φn−1
−→
P , and then we used (2.1) to get the second-to-last equality.

Note now that if Xn is chosen according to the mgf given by Φn, then Xn−1 will have mgf Φn−1.
Indeed,

P(Xn−1 = j) =
∑
i

P(Xn−1 = j | Xn = i)P(Xn = i) =
∑
i

−→
Pj,iΦn−1(j)

Φn(i)
· Φn(i)

=
∑
i

−→
Pj,iΦn−1(j) = Φn−1(j)

∑
i

−→
Pj,i = Φn−1(j).

Explanation: the first equality applies the law of total probability, the second applies (2.2) and the
assumption that Xn has mgf Φn, then Φn(i) is cancelled out, Φn−1(j) is factored out, and lastly

we use the fact that the rows of
−→
P add up to one.

The upshot of the above computation is that if we do know Φn, then we can generate Xn from
this mgf and run the backward Markov chain with (time-dependent) transition probabilities given
by (2.2), and once we get to X0, it will be generated from precisely the mgf Φ0.

The problem with the above is that to know Φn we need to know Φ0, as is clear from (2.1). But

without knowing Φn, we cannot generate Xn, nor can we compute
←−
Pn,i,j using (2.2).

So far, the choice of n was immaterial. That is, the above story would be the same whether we
use n = 1 or n = 1, 000, 000. However, we do know that if a Markov chain runs for a long time,

then the mgf of Xn will approach a stationary distribution. If we choose
−→
P so that our whole state

space {A,B,C} is the unique communicating class, e.g. if we choose the matrix to have all positive

entries, then the matrix
−→
P will have a unique left-eigenvector Φ∞ that has nonnegative entries that

add up to one. Furthermore, we know these entries will in fact be all positive and that as n→∞,

Φ0
−→
Pn will converge to Φ∞, irrespective of the values of the entries of Φ0 (as long as they add up

to one, of course).
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This gives us a solution to our first problem: even though we do not know the value of Φn to
sample Xn, we can work with a large enough n and sample Xn from Φ∞ instead. Note here that

Φ∞ only depends on
−→
P , which was chosen by us and so now we do not need to know Φn to generate

our samples Xn.

Of course, this will mean that Xn will not be sampled from exactly Φn, but from a distribution
that is close to Φn. So, if everything else works out, we will not get to generate X0 from exactly Φ0,
but we can hope that our procedure will generate X0 from a distribution that is close enough to Φ0

for us to not really see a difference. This should be acceptable, since Daĺıwasn’t really a random
vector generator and didn’t really have a pdf. This is only our modeling process. Plus, even if
we were trying to solve the problem of guessing the pdf, we were only going to get an estimate of
the pdf, based on the samples we have. Thus, the best we can hope for anyway is to manage to
generate random variables from a pdf that is close to whatever the true pdf is.

Now that we know how to generate Xn, we are faced with the second problem: how do we
run the backward Markov chain, if we do not know Φn and hence cannot compute the transition
probabilities in (2.2)?

This is where statistical estimation comes in or, as it is called nowadays: statistical learning or

machine learning. Here, one estimates the transition probabilities
←−
Pn,i,j , from the available data,

instead of computing them explicitly in terms of the unknown Φ0. To do this, one posites that←−
Pn,i,j has a certain form, pθ(n, i, j), where θ represents a small number of parameters, and once
we know θ, pθ is a function of n, i, and j, of some given form. The task is then to estimate the
function pθ.

The above is then similar to the classical parameter estimation problem. To think of a familiar
classical example, imagine we have independent samples from a normal distribution. We are after
figuring out the pdf of the random variables, but we know that the pdf has the special form

fθ(x) = 1√
2πσ2

e−
(x−µ)2

2σ2 , where here θ = (µ, σ2) are the two unkown parameters. We seek to

estimate the mean µ and the variance σ2 from the samples we have. We know in this case that the
maximum likelihood estimator of the two parameters is a very good solution to the problem and it
tells us that µ can be estimated by the sample mean and σ2 by the sample variance.

The problem we have is similar. From (2.1), we have that

Φn−1(A) = α
−→
Pn−1
A,A + β

−→
Pn−1
B,A + γ

−→
Pn−1
C,A ,

Φn−1(B) = α
−→
Pn−1
A,B + β

−→
Pn−1
B,B + γ

−→
Pn−1
C,B ,

Φn−1(C) = α
−→
Pn−1
A,C + β

−→
Pn−1
B,C + γ

−→
Pn−1
C,C ,

Φn(A) = α
−→
Pn
A,A + β

−→
Pn
B,A + γ

−→
Pn
C,A,

Φn(B) = α
−→
Pn
A,B + β

−→
Pn
B,B + γ

−→
Pn
C,B, and

Φn(C) = α
−→
Pn
A,C + β

−→
Pn
B,C + γ

−→
Pn
C,C .

Then (2.2) gives us

←−
Pn,i,j =

an,i,jα+ bn,i,jβ + cn,i,jγ

dn,iα+ en,iβ + fn,iγ
, (2.3)

where an,,j , bn,i,j , cn,i,j , dn,i, en,i, and fn,i are quantities that we can explicitly compute from our

transition matrix
−→
P . For example, to get bn,A,C , we look at the coefficient in front of β in the

numerator of (2.2), with i = A and j = C. That is, we look at

−→
PC,AΦn−1(C) =

−→
PC,A

(
α
−→
Pn−1
A,C + β

−→
Pn−1
B,C + γ

−→
Pn−1
C,C

)
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and take bn,C,A to be the coefficient in front of β, i.e.,

bn,A,C =
−→
PC,A

−→
Pn−1
B,C .

Similarly, to get fn,B, we look at the denominator of (2.2), with i = B, and take fn,B to be the
coefficient in front of γ. Thus, we consider

Φn(B) = α
−→
Pn
A,B + β

−→
Pn
B,B + γ

−→
Pn
C,B

and take

fn,B =
−→
Pn
C,B.

Long story short,
←−
Pn,i,j turns out to be simply a function of three parameters, α, β, and γ.

Specifically, its the ratio of two linear combinations of these parameters. We can at this point work
out a maximum likelihood estimator to estimate these parameters.

More precisely, first, take N be a large integer that ensures that ΦN is quite close to Φ∞. How

large N should be is solely dependent on the matrix
−→
P , because

−→
PN converges to the matrix whose

rows are all equal to Φ∞ and so we can choose N large enough so that
−→
PN is close to that matrix

and this choice does not involve the value of Φ0.

Next, we are given a number of samples of X0 (think of Daĺıpaintings). Denote these by

X
(1)
0 , X

(2)
0 , · · · , X(M)

0 . For each sample, run the Markov chain with transition matrix
−→
P for N

steps. Denote the result of running X
(1)
0 for n steps by X

(1)
n and, similarly, for X

(2)
0 , X

(3)
0 , etc.

For each integer n between 1 and N consider the paired samples (X
(1)
n , X

(1)
n−1), · · · , (X

(M)
n , X

(M)
n−1).

This is the data to be used to calculate
←−
Pn,i,j for i, j ∈ {A,B,C}. Since this quantity depends on

three parameters, α, β, γ, we can compute the maximum likelihood estimator and estimate these

parameters, solving our problem of estimating
←−
Pn,i,j .

HOWEVER, doing things as described above assumes we know the actual form of the thing

we are trying to estimate, i.e. we know the formula (2.3), i.e. that
←−
Pn,i,j is a ratio of two linear

functions of α, β, and γ. Even worse, it assumes that the parameters we are trying to estimate are
exactly the entries of Φ0. Thus, at the end of the day, we are doing something that is essentially
the same as estimating α, β, and γ by looking at the frequency of A’s, B’s, and C’s in our samples
of X0. This is something that we are trying to avoid, since it would not be feasable in the practical
situation where we have a very large sample space. Furthermore, estimating these parameters, in
the large state space case, would be equivalent to estimating the pdf of X0, and computing the
maximum likelihood estimator for such a problem is computationally very expensive, which is why
we said in the introduction that this is a very hard problem and is not how we should approach
things.

But if we pretend we do not know the formula (2.3), then what form should we postulate for
←−
Pn,i,j , and what parameters should it depend on?

We could assume that
←−
Pn,i,j depends linearly or polynomially on a reasonable number of pa-

rameters and run a linear or polynomial regression to estimate the parameters. However, from the
actual form of (2.3), we see that neither linear nor polynomial regression would do a good job.
The maximum likelihood estimator is out of question because we do not know what parameters
we should be using to even compute the likelihood function, let alone maximizing it over these
unknown parameters.

In fact, asking the above question is a little bit silly in this simple model, since we already know
that the real parameters are α, β, and γ, and that the best solution is to just estimate them from
the frequencies of A’s, B’s, and C’s in our samples of X0. However, the non-linear form of the
function in (2.3) almost points the way to the method that is used in the bigger, more realistic,
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problem. There, we will see that this estimation step is done using a sort of non-linear regression
method that attempts to mimic the way neural networks work in the brain.

Let us summarized what we have learned so far about the generative AI algorithm.

We are given a number of samples X
(1)
0 , · · · , X(M)

0 . We choose a transition matrix
−→
P that has

an invariant measure Φ∞ and we pick an integer N that is large enough so that the Markov chain
at time N is very close to its invariant measure. We now add noise to the initial samples by
running the Markov chain forward, from these initial values. This gives us the random variables

X
(1)
1 , X

(1)
2 , · · · , X(1)

N , from the first sample, X
(2)
1 , X

(2)
2 , · · · , X(2)

N , from the second sample, and so

on. We now use these samples to estimate (learn) the transition probabilities
←−
Pn,i,j of the backward

Markov chain. (This is the step that is done using the machine learning algorithm.) Once we learned
these transition probabilities, we can release the software to the public, for we have achieved our
goal and can perform the task we were after.

To generate a new sample from the (unkown to us) mgf Φ0, we generate an XN from the mgf

Φ∞. (Note that we know both N and Φ∞, because they only depend on our choice of
−→
P .) We

then run the reverse Markov chain using our estimates of the transition probabilities
←−
Pn,i,j . Once

we get to n = 0, X0 would be the sample we spit out. Its mgf will not be exactly Φ0, but it will be
close enough to Φ0 for X0 to look like it was generated from the same pdf that gave the training

samples X
(1)
0 , · · · , X(M)

0 .

3. SDE-based generative AI

Now, we describe the real algorithm. As before, we are given a number of random samples of
X0. These are now vectors in the large state space R3kℓ, where 3kℓ is somewhere between 200,000
and 25 million. Instead of adding noise to our samples by running a Markov chain, we will run
a stochastic differenital equation (SDE) with the initial condition X(0). Specifically, we will run
the Ornstein-Uhlenbeck (OU) process, which is defined as the solution to the following stochastic
differential equation (SDE):

dX(t) = −1

2
β(t)X(t) dt+

√
β(t) dB(t). (3.1)

Here, B is a standard Brownian motion in R3kℓ, meaning it consists of 3kℓ independent one-
dimensional standard Brownian motions. In class, we focused on one-dimensional SDEs, but the
theory extends directly to higher dimensions.

In equation (3.1), the term −1
2β(t)X(t)dt represents the drift, which contracts X(t) toward zero

at a rate controlled by β(t). The term
√
β(t) dB(t) is the diffusion, which injects random noise

into the system. The choice of
√
β(t) will help having an explicit formula when we compute the

distribution of X(t) below.

The function β(t) is called the noise schedule. It controls both the rate at which the process
decays toward zero and the amount of noise added at each moment in time. Typically, β(t) is
chosen so that the decay rate is small at the beginning (when t ≈ 0) and increases as t approaches
the terminal time T .

A common choice is a linear schedule:

β(t) = βmin + (βmax − βmin)
t

T
,

where βmin and βmax are positive constants. For example, typical values are βmin = 0.01 and
βmax = 5. This means the decay rate starts near 0.01 and increases to around 5 by time T .
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Other commonly used schedules include cosine schedule

β(t) = 1− cos
(π
2
· t
T

)
and quadratic schedule

β(t) = βmin + (βmax − βmin)
( t
T

)2
.

Each choice of β(t) leads to different behavior in the forward diffusion process and can impact
the quality of results in downstream generative tasks. While other SDEs are also used in practice,
we will focus here on the one given in (3.1).

The SDE (3.1) has an explicit solution given by

X(t) = X(0)e−
1
2

∫ t
0 β(r) dr +

∫ t

0
e−

1
2

∫ t
r β(u) du

√
β(r) dB(r). (3.2)

The first term on the right-hand side of (3.2) says that X(t) decays to 0 exponentially fast, as
expected. The second term is a stochastic integral, which is hence a martingale and represents the
added noise.

Note that the initial condition is easily seen to be satisfied because plugging in t = 0 in (3.2)

sets the integrals
∫ t
0 to 0 and we get X(0) on the right-hand side. Let us check that the process

given in (3.2) does solve the equation (3.1).

Differentiating the first term on the right-hand side of (3.2) gives

d
(
X(0)e−

1
2

∫ t
0 β(r) dr

)
= X(0)

(
−1

2
β(t)

)
e−

1
2

∫ t
0 β(r) dr dt. (3.3)

To differentiate the second term we first pull out the dependence on t from inside the integral by

first writing the integral
∫ t
r as

∫ t
0 −

∫ r
0 and then using the fact that the exponential of a sum is the

product of exponentials. Hence, we have∫ t

0
e−

1
2

∫ t
r β(u) du

√
β(r) dB(r) =

∫ t

0
e−

1
2

∫ t
0 β(u) du e

1
2

∫ r
0 β(u) du

√
β(r) dB(r)

= e−
1
2

∫ t
0 β(u) du

∫ t

0
e

1
2

∫ r
0 β(u) du

√
β(r) dB(r).

Now we can use the product rule, keeping in mind that, by definition,

d
(∫ t

0
e

1
2

∫ r
0 β(u) du

√
β(r) dB(r)

)
= e

1
2

∫ t
0 β(u) du

√
β(t) dB(t).

Thus, we get that

d
(∫ t

0
e−

1
2

∫ t
r β(u) du

√
β(r) dB(r)

)
= d

(
e−

1
2

∫ t
0 β(u) du

∫ t

0
e

1
2

∫ r
0 β(u) du

√
β(r) dB(r)

)
=

(∫ t

0
e

1
2

∫ r
0 β(u) du

√
β(r) dB(r)

)
d
(
e−

1
2

∫ t
0 β(u) du

)
+ e−

1
2

∫ t
0 β(u) du d

(∫ t

0
e

1
2

∫ r
0 β(u) du

√
β(r) dB(r)

)
=

(∫ t

0
e

1
2

∫ r
0 β(u) du

√
β(r) dB(r)

)(
−1

2
β(t) e−

1
2

∫ t
0 β(u) du

)
dt+ e−

1
2

∫ t
0 β(u) du e

1
2

∫ t
0 β(u) du

√
β(t) dB(t)

= −1

2
β(t)

(∫ t

0
e−

1
2

∫ t
0 β(u) due

1
2

∫ r
0 β(u) du

√
β(r) dB(r)

)
dt+

√
β(t) dB(t)

= −1

2
β(t)

(∫ t

0
e−

1
2

∫ t
r β(u) du

√
β(r) dB(r)

)
dt+

√
β(t) dB(t). (3.4)
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Adding (3.3) and (3.4) together, we get that

dX(t) = X(0)
(
−1

2
β(t)

)
e−

1
2

∫ t
0 β(r) dr dt− 1

2
β(t)

(∫ t

0
e−

1
2

∫ t
r β(u) du

√
β(r) dB(r)

)
dt+

√
β(t) dB(t)

= −1

2
β(t)

(
X(0)e−

1
2

∫ t
0 β(r) dr +

∫ t

0
e−

1
2

∫ t
r β(u) du

√
β(r) dB(r)

)
dt+

√
β(t) dB(t)

= −1

2
β(t)X(t)dt+

√
β(t) dB(t).

We have shown that X(t) indeed solves (3.1).

We can in fact figure out the distribution of X(t), given the value of X(0). For this, recall
that if 0 = t0 < t1 < · · · < tn−1 < tn = t is a discretization of the interval [0, t], then the
random variables B(ti+1)−B(ti) are independent centered normal random variables. They are in
fact 3kℓ-dimensional normal random variables, with entries that are themselves independent and
have variance ti+1 − ti. Thus, B(ti+1) − B(ti) are centered multivariate normal random variables
with variance-covariance matrices given by (ti+1 − ti) times the identity matrix (with 3kℓ rows
and columns). If g is a deterministic function, then g(ti)(B(ti+1) − B(ti)) are again independent
centered multivariate normal random variables, but now with variance-covariance matrices given
by g(ti)

2(ti+1 − ti) times the identity matrix. Their sum is then a centered multivariate normal

random variable with a variance-covariance matrix equal to
∑n−1

i=0 g(ti)
2(ti+1−ti) times the identity

matrix. If g is continuous, then as we make the discretization finer,
∑n−1

i=0 g(ti)(B(ti+1) − B(ti))

converges to
∫ t
0 g(r) dB(r), while

∑n−1
i=0 g(ti)

2(ti+1 − ti) converges to
∫ t
0 g(r)

2 dr. Therefore, we see

that
∫ t
0 g(r) dB(r) must be a multivariate normal random variable with mean 0 and a variance-

covariance matrix given by
∫ t
0 g(r)

2 dr times the identity matrix.

Apply this to get that the stochastic integral term in (3.2) is in fact a multivariate normal random
variable with mean 0 and a variance-covariance matrix given by the identity matrix times∫ t

0

(
e−

1
2

∫ t
r β(u) du

√
β(r)

)2
dr =

∫ t

0
e−

∫ t
r β(u) duβ(r) dr = e−

∫ t
0 β(u) du

∫ t

0
e
∫ r
0 β(u) duβ(r) dr

= e−
∫ t
0 β(u) du

∫ t

0

(
e
∫ r
0 β(u) du

)′
dr = e−

∫ t
0 β(u) due

∫ r
0 β(u) du

∣∣∣t
0

= e−
∫ t
0 β(u) du

(
e
∫ t
0 β(u) du − 1

)
= 1− e−

∫ t
0 β(u) du.

Note how the choice of
√
β(t) in the diffusion term allowed us do have a perfect derivative under

the integral on the second line of the above display.

The first term on the right-hand side of (3.2) is deterministic and so it only changes the mean of
the normal random variable. Thus, we conclude that X(t) it a multivariate normal random variable

with mean X(0)e−
1
2

∫ t
0 β(r) dr and a variance-covariance matrix equal to the identity matrix times

1− e−
∫ t
0 β(u) du. Note that as t → ∞, the mean converges to 0 and 1− e−

∫ t
0 β(u) du converges to 1.

This means that X(t) converges to a standard 3kℓ-dimensional normal random variable. This is
the invariant measure of the OU process and this is the distribution we will draw from when we
start the reverse process.

Next, we need to work out how to run the OU process in reverse, from time T back to time
0. Note at this point that one does not really need the full construction of stochastic integrals to
define the stochastic integral in (3.2), nor does one need the full stochastic calculus to verify that
X(t) in (3.2) satisfies (3.1). Indeed, if g is a continuously differentiable deterministic function, then
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we can use integration by parts to write∫ t

0
g(r) dB(r) = g(t)B(t)−

∫ t

0
g′(r)B(r) dr

and turn the stochastic integral into a regular integral. However, to construct the reverse process,
one does need to have developed stochastic integrals, stochastic calculus, and, in particular, derived
Itô’s formula. This was first achieved in a paper titled “Reverse-time diffusion equation models”
by Brian Anderson back in 1982.

We begin with a derivation of a partial differential equation (PDE) that the pdf of X(t) satisfies.
We will do this for a more genral diffusion process than the one we have in (3.1). So suppose X(t)
solves

dX(t) = f(t,X(t))dt+ g(t,X(t))dB(t),

where f(t, x) is valued in R3kℓ and g(t, x) is real-valued. Let p(t, x) denote the pdf of X(t). Thus,
if h is a function from R3kℓ to R, then

E[h(Xt)] =

∫ ∞

−∞
h(x)p(t, x) dx.

As we have seen in class, Itô’s formula tells us that

dh(X(t)) = h′(X(t))dX(t) +
1

2
h′′(X(t))(dX(t))2

= h′(X(t))f(t,X(t))dt+ h′(X(t))g(t,X(t))dB(t)

+
1

2
h′′(X(t))(f(t,X(t))dt+ g(t,X(t))dB(t))2.

Expanding the square on the right-hand side gives terms that have (dt)2, dt dB(t), and (dB(t))2.
The first two can be ignored because (dt)2 and dt dB(t) are much smaller than dt. But (dB(t))2

gets replaced by dt (heuristically, because dB(t) is like a centered normal random variable with

variance dt and hence its size is of order
√
dt, which when squared becomes dt.) Therefore, we get

dh(X(t)) =
(
h′(X(t))f(t,X(t)) +

1

2
h′′(X(t))g(t,X(t))2

)
dt+ h′(X(t))g(t,X(t))dB(t). (3.5)

This would be the right formula if X and B were one-dimensional. Since we have vector-valued
processes, we have to repeat the above computation using partial derivatives instead. We also need
to use the fact that the coordinates of B are independent of each other and hence when we expand
the square term, we also get to ignore terms that have dBi(t)dBj(t), with i ̸= j. (Here, we are
using the notation B(t) = (B1(t), . . . , B3kℓ(t)) for the various coordinates of B(t).) The end result
is then that

dh(X(t)) =
(
∇h(X(t)) · f(t,X(t)) +

1

2
∆h(X(t))g(t,X(t))2

)
dt+ g(t,X(t))∇h(X(t)) · dB(t).

Here, ∇h(x) is the gradient of h, which is the vector made up of the partial derivatives of h with
respect to the various coordinates of x. (Recall that x is a vector in R3kℓ.) Then∇h(X(t))·f(t,X(t))
is the scalar product of the two vectors, ∇h(X(t)) and f(t,X(t)) and ∇h(X(t)) ·dB(t) is the scalar
product of the two vectors, ∇h(X(t)) and dB(t). On the other hand, ∆h(x) is the Laplacian of h,
calculated at x. That is, if we write x = (x1, . . . , x3kℓ), then

∆h(x) =
3kℓ∑
i=1

∂2h

∂x2i
(x).

Thus, ∆h(x) is just a number, not a vector.

https://doi.org/10.1016/0304-4149(82)90051-5
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The formula (3.5) really means that

h(X(t))−h(X(0)) =

∫ t

0
∇h(X(r))·f(r,X(r)) dr+

∫ t

0

1

2
∆h(X(r))g(r,X(r))2 dr+

∫ t

0
g(r,X(r))∇h(X(r))·dB(r).

Take an expected value of both sides and recall that the mean of a stochastic integral is zero. So
we get

E[h(X(t))]− E[h(X(0))] =

∫ t

0
E
[
∇h(X(r)) · f(r,X(r))

]
dr +

1

2

∫ t

0
E
[
∆h(X(r))g(r,X(r))2

]
dr.

In the above calculation, we moved the E inside the integral. This step usually needs a careful
analysis because there are conditions one needs to check, but I will ignore this technical issue and
I will just say here that this step does work out as intended.

Now we take a derivative of the above in t:

d

dt
E[h(X(t))] = E

[
∇h(X(t)) · f(t,X(t))

]
+

1

2
E
[
∆h(X(t))g(t,X(t))2

]
.

Next, we use the fact that X(t) has pdf p(t, x) and replace the expected values with integrals
against this pdf:

d

dt

∫ ∞

−∞
h(x)p(t, x) dx =

∫ ∞

−∞
∇h(x) · f(t, x) p(t, x) dx+

1

2

∫ ∞

−∞
∆h(x)g(t, x)2 p(t, x) dx.

Now, we move the time derivative under the integral. The idea is that an integral is a limit of a sum
(think Riemann sums) and the derivative of a sum is the sum of derivatives. There are technical
details to verify, of course, because this logic works only when we have a finite sum and here we
are taking a limit with more and more terms in the Riemann sum. But I will sweep the technical
details under the rug and will write∫ ∞

−∞
h(x)

∂p

∂t
(t, x) dx =

∫ ∞

−∞
∇h(x) · f(t, x) p(t, x) dx+

1

2

∫ ∞

−∞
∆h(x)g(t, x)2 p(t, x) dx. (3.6)

Now, we use integration by parts to move the derivatives from being on h to being on the other
functions in the integrals on the right-hand side.

To this end, consider a real-valued function a and a vector-valued function b. Then∫ ∞

−∞
∇a(x) · b(x) dx =

3kℓ∑
i=1

∫ ∞

−∞

∂a

∂xi
(x)bi(x) dx

= −
3kℓ∑
i=1

∫ ∞

−∞
a(x)

∂bi
∂xi

(x) dx

= −
∫ ∞

−∞
a(x)∇ · b(x) dx,

where for a vector-valued function b, ∇ · b denotes what is called the divergence of b:

∇ · b =
3kℓ∑
i=1

∂bi
∂xi

.

(For a real-valued function a, its gradient ∇a is a vector. On the other hand, for a vector-valued
function b, its divergence ∇ · b is a number.)

One thing to be careful about is that in the above integration by parts formula, we did not have

the usual boundary terms a(x)bi(x)
∣∣∣∞
−∞

. This is OK if say a decays to 0 both when x → ∞ and

when x→ −∞, because then the boundary terms are 0.
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Suppose we also have a real-valued function c. Then its gradient ∇c is a vector-valued function.
Apply the above integration by pats formula with b = ∇c to get∫ ∞

−∞
∇a(x) · ∇c(x) dx = −

∫ ∞

−∞
a(x)∇ · ∇c(x) dx.

Note now that ∇ · ∇c is exactly ∆c. Therefore, we have shown that∫ ∞

−∞
a(x)∆c(x) dx = −

∫ ∞

−∞
∇a(x) · ∇c(x) dx.

Now notice that the integral on the right-hand side is symmetric in a and c. So, exchanging the
roles of a and c, we also have∫ ∞

−∞
c(x)∆a(x) dx = −

∫ ∞

−∞
∇c(x) · ∇a(x) dx = −

∫ ∞

−∞
∇a(x) · ∇c(x) dx.

The last two displays now say that∫ ∞

−∞
c(x)∆a(x) dx =

∫ ∞

−∞
a(x)∆c(x) dx.

Applying this formula and the integration by parts formula we have∫ ∞

−∞
∇h(x) · f(t, x)p(t, x) dx = −

∫ ∞

−∞
h(x)∇ ·

(
f(t, x)p(t, x)

)
dx

and ∫ ∞

−∞
∆h(x)g(t, x)2p(t, x) dx =

∫ ∞

−∞
h(x)∆

(
g(t, x)2p(t, x)

)
dx.

Going back to (3.6) we get∫ ∞

−∞
h(x)

∂p

∂t
(t, x) dx = −

∫ ∞

−∞
h(x)∇ ·

(
f(t, x)p(t, x)

)
dx+

1

2

∫ ∞

−∞
h(x)∆

(
g(t, x)2p(t, x)

)
dx.

Rearranging, we get∫ ∞

−∞
h(x)

[∂p
∂t

(t, x) +∇ ·
(
f(t, x)p(t, x)

)
− 1

2
∆
(
g(t, x)2p(t, x)

)]
dx = 0.

This formula is valid for any function h for which we can check the conditions that are necessary

for swapping E and
∫ t
0 and then moving the time derivative under the integral. Also, we need that

h vanishes as x → ∞ and as x → −∞ so that the boundary terms in the integration by parts
computations vanish. It turns out that there are in fact enough such functions to deduce that the
only way the above integral would be 0 is by having the quantity in square brackets be equal to
zero. (Roughly speaking, we can find enough functions h to approximate the quantity in brackets.
This allows us to replace h with the quantity in brackets, in the above formula. But then what we
have is that the integral of the square of the quantity in brackets is zero, which means the quantity
in brackets must be equal to 0.)

We have derived the PDE that the pdf p satisfies:

∂p

∂t
(t, x) =

1

2
∆
(
g(t, x)2p(t, x)

)
−∇ ·

(
f(t, x)p(t, x)

)
. (3.7)

This is called Kolmogorov’s forward equation. It is also sometimes known as the Fokker-Planck
equation. Note that it is a heat equation, since we have one time derivative on the left and a space
Laplacian on the right. But it also has a drift term −∇ · (f(t, x)p(t, x)).
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To apply it to the OU process (3.1), we use f(t, x) = −1
2β(t)x and g(t, x) =

√
β(t). Then

Plugging this into (3.7), we get Kolmogorov’s equation for the pdf of the OU process:

∂p

∂t
(t, x) =

1

2
β(t)∆p(t, x) +

1

2
β(t)∇ · (xp(t, x)).

Now we are ready to derive the SDE for the reverse OU process. For this, let Y (t) = X(T − t),
for t ∈ [0, T ]. This is the reverse-time process we are after. Let α(t) = β(T − t) and let q(t, x) =
p(T − t, x).

q satisfies a PDE that we can derive from the PDE that p satisfies. Namely, first apply the chain
rule to get

∂q

∂t
(t, x) = −∂p

∂t
(T − t, x).

Then use Kolmogrov’s equation for p to continue

= −1

2
β(T − t)∆p(T − t, x)− 1

2
β(T − t)∇ ·

(
xp(T − t, x)).

Since the space-derivatives of p(T − t, x) and of xp(T − t, x) are the same as those of q(t, x) and
xq(t, x), respectively, we can continue with

= −1

2
α(t)∆q(t, x)− 1

2
α(t)∇

(
xq(t, x)

)
.

Therefore,

∂q

∂t
(t, x) = −1

2
α(t)∆q(t, x)− 1

2
α(t)∇ ·

(
xq(t, x)

)
. (3.8)

An argument that uses martingales and that I will skip here shows that Y (t) must satisfy an

SDE and, more importantly, that its diffusion term has to equal
√
α(t)dB(t), where B is a standard

Brownian motion. So the claim that I am making without showing its proof is that the diffusion
coefficient does not change when we go backward in time and all that changes is the drift coefficient.
Let us go with that and figure out what the drift coefficient should be.

Thus, we will postulate that

dY (t) = f(t, Y (t))dt+
√
α(t)dB(t)

and we want to figure out the formula for f . Since q(t, x) is the pdf of Y (t), we can apply (3.7)

with g(t, x) =
√
α(t) and write

∂q

∂t
(t, x) =

1

2
α(t)∆q(t, x)−∇ ·

(
f(t, x)q(t, x)

)
.

This and (3.8) imply that

−1

2
α(t)∆q(t, x)− 1

2
α(t)∇ ·

(
xq(t, x)

)
=

1

2
α(t)∆q(t, x)−∇ ·

(
f(t, x)q(t, x)

)
.

From this, we get

∇ ·
(
f(t, x)q(t, x)

)
= α(t)∆q(t, x) +

1

2
α(t)∇ ·

(
xq(t, x)

)
.

Recalling that ∆q = ∇ · ∇q we can rewrite the above as

∇ ·
(
f(t, x)q(t, x)

)
= ∇ ·

(
α(t)∇q(t, x) + 1

2
α(t)xq(t, x)

)
.

This leads to the equation

f(t, x)q(t, x) = α(t)∇q(t, x) + 1

2
α(t)xq(t, x).
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Dividing by q and noting that ∇q
q = ∇ log q we get that

f(t, x) = α(t)∇ log q(t, x) +
1

2
α(t)x.

Therefore, the reverse OU process Y (t) satisfies the SDE

dY (t) =
1

2
α(t)

(
Y (t) + 2∇ log q(T − t, Y (t))

)
dt+

√
α(t) dB(t).

Returning to the original notation with β and p instead of α and q, we get

dY (t) =
1

2
β(T − t)

(
Y (t) + 2∇ log p(T − t, Y (t))

)
dt+

√
β(T − t) dB(t). (3.9)

We now see that the role of
←−
P n,i,j in (2.2) is played here by ∇ log p(T − t, x). This is called the

“score function.” Heuristically speaking, this drift term guides the process along the gradient of
the log-likelihood function log p(T − t, x), as it goes backward in time. And the math shows that
this drift is exactly what is needed to ensure the backward process matches the forward process in
terms of its pdf at every moment in time.

Thus, the next order of business is to estimate the score function s(t, x) = ∇ log p(t, x). Once
we have an estimate ŝ of the function s, we can generate samples of X(0) as follows.

The algorithm: Generate a standard 3kℓ-dimensional normal random variable Ŷ (0). Next, use
this as the initial condition and numerically solve the SDE

dŶ (t) =
1

2
β(T − t)

(
Ŷ (t) + 2ŝ(T − t, Ŷ (t))

)
dt+

√
β(T − t) dB(t) (3.10)

up to time T . Give Ŷ (T ) as the outcome.

The upshot is that these samples will have a pdf that is close p(0, x), the pdf of X(0).

Note: in (3.10), we used the symbol Ŷ instead of Y to disntinguish between the SDE (3.9) that
uses ∇ log p(t, x) in its drift and the SDE (3.10) that uses the approximation ŝ(t, x) that is learned
from the data.

4. Learning the score function

To estimate (or “learn”) the gradient of the score function s(t, x) = ∇ log p(t, x), we first derive
a formula for this function that makes it rather clear how things should go.

First, let us recall that if we know X(0) = a, then (3.2) says that X(t) is a multivariate normal

random variable with mean ae−
1
2

∫ t
0 β(r) dr and a variance-covariance matrix

(
1 − e−

∫ t
0 β(r) dr

)
I. In

particular, since X(t) is normal, its coordinates are jointly normal random variables and since
the off-diagonal entries of the variance-covariance matrix are zeros, the coordinates of X(t) are
uncorrelated (they have zero covariance), which, because the coordinates are jointly normal, implies
they are independent. Furthermore, since the diagonal entries of the variance-covariance matrix

are all equal to 1− e−
∫ t
0 β(r) dr, we deduce that the coordinates of X(t) all have the same variance

1 − e−
∫ t
0 β(r) dr. Their means, however, may differ: the i-th coordinate of X(t) has mean equal to

the i-th cooridinate of ae−
1
2

∫ t
0 β(r) dr.

Denote the j-th coordinates of X(t) by Xj(t) and let aj denote the j-th coordinate of a. The
pdf of Xj(t), as a function of the variable xj , is then given by

1√
2π

(
1− e−

∫ t
0 β(r) dr

) exp{−
(
xj − aje

− 1
2

∫ t
0 β(r) dr

)2
2
(
1− e−

∫ t
0 β(r) dr

) }
.
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Since the coordinates are independent, the pdf p(t, x | 0, a) of X(t) (given X(0) = a) is the product
of the above pdfs. The first term 1/

√
· · · is the same in all these pdfs and thus gets raised to the

power 3kℓ, which is the number of coordinates. The product of the exponential functions can be
written as an exponential of a sum and, therefore, we have

p(t, x | 0, a) = 1[√
2π

(
1− e−

∫ t
0 β(r) dr

)]3kℓ exp{− 3kℓ∑
j=1

(
xj − aje

− 1
2

∫ t
0 β(r) dr

)2
2
(
1− e−

∫ t
0 β(r) dr

) }
.

Taking a log on both sides we get

log p(t, x | 0, a) = − log
[√

2π
(
1− e−

∫ t
0 β(r) dr

)]3kℓ
−

3kℓ∑
j=1

(
xj − aje

− 1
2

∫ t
0 β(r) dr

)2
2
(
1− e−

∫ t
0 β(r) dr

) .

The first term on the right-hand side only depends on t and so its derivative with respect to xi
vanishes. When we take derivatives of the terms inside the sum, with respect to xi, they all vanish,
except for the term j = i, whose derivative follows the power rule and equals

2(xi − aie
− 1

2

∫ t
0 β(r) dr)

2(1− e−
∫ t
0 β(r) dr)

=
xi − aie

− 1
2

∫ t
0 β(r) dr

1− e−
∫ t
0 β(r) dr

.

The vector that has these coordinates is (conveniently!)

x− ae−
1
2

∫ t
0 β(r) dr

1− e−
∫ t
0 β(r) dr

.

Therefore, we have shown that

∇ log p(t, x | 0, a) = −x− ae−
1
2

∫ t
0 β(r) dr

1− e−
∫ t
0 β(r) dr

. (4.1)

We are, however, after a formula for ∇ log p(t, x). We know from the law of total probability
that

p(t, x) =

∫ ∞

−∞
p(t, x | 0, a)p(0, a) da. (4.2)

However, the log function is not a linear function and so

log p(t, x) = log

∫ ∞

−∞
p(t, x | 0, a)p(0, a) da ̸=

∫ ∞

−∞

(
log p(t, x | 0, a)

)
p(0, a) da.

So how do we make use of (4.1)?
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Here is how:

∇ log p(t, x) =
∇p(t, x)
p(t, x)

=
∇
∫∞
−∞ p(t, x | 0, a)p(0, a) da

p(t, x)

=

∫∞
−∞∇p(t, x | 0, a)p(0, a) da

p(t, x)

=

∫ ∞

−∞
∇p(t, x | 0, a) · p(0, a)

p(t, x)
da

=

∫ ∞

−∞

∇p(t, x | 0, a)
p(t, x | 0, a)

· p(t, x | 0, a)p(0, a)
p(t, x)

da

=

∫ ∞

−∞

∇p(t, x | 0, a)
p(t, x | 0, a)

· p(0, a | t, x) da

=

∫ ∞

−∞

(
∇ log p(t, x | 0, a)

)
p(0, a | t, x) da

=

∫ ∞

−∞

ae−
1
2

∫ t
0 β(r) dr − x

1− e−
∫ t
0 β(r) dr

p(0, a | t, x) da

= E
[X(0)e−

1
2

∫ t
0 β(r) dr −X(t)

1− e−
∫ t
0 β(r) dr

∣∣∣X(t) = x
]
. (4.3)

Explanation: the first equality is expressing the derivative of the log of a function as being the ratio
of the derivative of the function and the function itself, the second equality used (4.2), the third
equality brought the derivative inside the integral (and, as we have done before, ignored the details
that make that possible), the fourht equality brought the denominator inside the integral, the fifth
equality used the common math trick of multiplying by 1! (more precisely, we multiplied and divided

by p(t, x | 0, a)), the sith equality used Bayes’ rule to recognize that p(t,x|0,a)p(0,a)
p(t,x) = p(0, a | t, x),

the seventh equality recognized that the ratio of the derivative of a function by the function itself is
the derivative of the log of the function, the second-to-last equality used (4.1), and the last equality
interpreted the integration over a against p(0, a | t, x) as a conditional expected value of a function
of X(0), given the information that X(t) = x.

Note how in the above computation, we did make use of (4.1), after some manipulations, and,
more importantly, that we used the Bayes’ rule. So we see that the Bayes’ rule is indeed underlying
the reversal of the stochastic process, just like it was the main idea in the baby example of Section
2. It was more visible in the Markov chain example and is rather hidden in the real example we
are treating here.

It is important to note that in (4.3), X(t) is considered to be known (equal to x) and the expected
value is on the random variable X(0). This does go with the intuition that we are computing a
quantity that is needed for reversing the course of time for the stochastic process X. Also, note
that the terms involving integrals of β are deterministic and known to us. So the quantity inside
the expected value is linear in X0. In other words, the problem of computing s(t, x) = ∇ log p(t, x)
really boils down to computing u(t, x) = E

[
X(0) | X(t) = x], the average of X(0) given X(t) = x.

Observe how this should be a simpler problem than to estimate the pdf of X(0): estimating an
average is ought to be easier than estimate the full distribution!

So, we essentially are after estimating the conditional expectation u(t, x) = E
[
X(0) | X(t) = x],

using samples of X(0). To achieve this, we use the following property of conditional expectations:
u(t, x) = E

[
X(0) | X(t) = x] is the function that minimizes E[||X(0) − u(t,X(t))||2]. Here, the

expectation E is over both X(0) and X(t), i.e. neither X(0) nor X(t) are considered to be given



18 F. RASSOUL-AGHA

and they are both averaged out. Consequently,

s(t, x) = ∇ log p(t, x) = E
[X(0)e−

1
2

∫ t
0 β(r) dr −X(t)

1− e−
∫ t
0 β(r) dr

∣∣∣X(t) = x
]

is the function that minimizes

E
[∣∣∣∣∣∣X(0)e−

1
2

∫ t
0 β(r) dr −X(t)

1− e−
∫ t
0 β(r) dr

− s(t,X(t))
∣∣∣∣∣∣2]. (4.4)

Again, here, both X(0) and X(t) are being averaged out.

With the above minimization property, the problem of estimating the score function s from
samples of X(0) becomes a regression problem. I will explain this in steps.

1. Choose the type of regression probelm.

First, we postulate that the approximation of s(t, x) = ∇ log p(t, x) will come from a certain
family of functions sθ : [0, T ]× R3kℓ → R3kℓ, with θ being a vector of parameters that parametrize
the family. We then need to choose a good family of estimation functions, rich enough to get us very
close to the true function s we want to estimate. Then, the main task would be use the available
data to estimate θ so that we use the corresponding sθ in place of the unknown s.

A familiar such estimation problem is linear or polynomial regression: If we believe s(t, x) is
close to being linear or polynomial in t and the coordinates of x, then we can consider the family of
linear or polynomial functions and θ would be the vector that gives the coefficients of the linear or
polynomial function. For example, if we only had a two-dimensional problem and so x = (x1, x2)
and we decided a linear s is good enough, then sθ(t, x) (which must also have two coordinates)
would be given by a+ bt+ cx1 + dx2 as the first coordinate and a′ + b′t+ c′x1 + d′x2 as the second
coordinate. Here, θ = (a, b, c, d, a′, b′, c′, d′) is an eight-dimensional vector. Since in reality x has
3kℓ entries, we would need 3kℓ× (3kℓ+ 2) parameters to do a full linear regression. A polynomial
regression will need even more parameters, depending on the degree of the polynomial we choose
to use.

The problem with the above is that s is unlikely to be linear or polynomial in either t or x. The
machine learning method suggests a different (neither linear nor polynomial) form for the functions
sθ that attempts to mimic the way neural connections are believed to work in the brain. I will give
a brief description of a basic version of this approach at the end of this section.

2. The regression problem.

Suppose we settled on a family of functions sθ, parametrized by some vector θ. How do we
estimate the values of the entries of θ that make the estimated function sθ closest to the true
function s? The answer hides in the fact that s minimizes (4.4).

We are given M random samples of X(0) that we denote by a(1), . . . , a(M). Sample times

t(1), . . . , t(M) independently and uniformly on the interval [0, T ]. For each i ∈ {1, . . . ,M}, sam-

ple a multivariante normal x(i), with mean a(i)e−
1
2

∫ t(i)

0 β(r) dr and a variance-covariance matrix(
1 − e−

∫ t(i)

0 β(r) dr
)
I. This means the coordinates of x(i) are sampled as independent normal ran-

dom variables with the same variance 1 − e−
∫ t(i)

0 β(r) dr and such that the j-th coordinate of x(i)

has mean a
(i)
j e−

1
2

∫ t(i)

0 β(r) dr, where a
(i)
j is the j-th coordinate of a(i). Let

s(i) =
a(i)e−

1
2

∫ t(i)

0 β(r) dr − x(i)

1− e−
∫ t(i)

0 β(r) dr
.
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Then the fact that the true function s minimizes (4.4) tells us that the optimal θ is the one that
minimizes the so-called Quadratic Loss Function

L(θ) =

M∑
i=1

||sθ(t(i), x(i))− s(i)||2. (4.5)

3. Minimize the Quadratic Loss Function L.

There are many numerical methods to minimize L(θ). A very widely used one is “gradient
descent”. To get the idea, first think of a function of one variable. That is, think of θ as being
real-valued. Visualize the graph of L, which is what the point (θ, L(θ)) would trace if you vary
θ. This graph sometimes goes up and sometimes goes down. So it has “mountains” and “valeys”
and our task is to locate its deepest valey (the place where L is minimal). We know that when
L′(θ) > 0, the function will increase if we move θ to the right, i.e. in the positive direction or, in
the direction L′(θ) is pointing to. Similarly, L will decrease if we move θ to the left, i.e. in the
direction −L′(θ) is pointing to. The same happens if L′(θ) < 0. Thus, we see that if we move
from θ in the direction given by −L′(θ), then the value of L will always go down. A similar story
happens if you think of θ as being two-dimensional. In this case, (θ, L(θ)) will trace a surface, as
you vary the two-dimensional θ. Again, we have mountains and valleys, and now may also have
saddles (a structure where the surface is concave in one direction and convex in the other - like a
horse saddle). Here, the thing that plays the role of the derivative of L is its gradient ∇L(θ). This
is here a two-dimensional vector and if move from any θ in the direction of −∇L(θ), then L would
always go down. You can now imagine that dimension two is not special and this fact holds in all
dimensions. The method of “gradient descent” thus goes like this: We start at some “good guess”
θ0, then move to a new value θ1 such that θ1 = θ0 − γ0∇L(θ0). Here, γ0 > 0 indicates how far we
move from θ0 (roughly speaking, how fast you should run downhill). The process is then repeated,
i.e. we move from θ1 to a new θ2 = θ1 − γ1∇L(θ1), and so on. I will not explain in this note how
one chooses the starting guess θ0, nor how one determines the values of γ0, γ1, . . . . That said, these
are very important problems. Choose the γ’s too small and the method moves in very increments
and, as a result, the convergence to the minimum will be very slow. Choose them too large and
you will overshoot the minimum and ruin the convergence (think of driving downhill so fast that
you are not able to stop in time and end up on the other side of the hill!). The next paragraph
explains more about the importance of choosing an appropriate starting point θ0.

Although gradient descent looks neat and seems intuitive, it does have a big potential problem!
If we always go down the hill, then we should indeed be able to locate the bottom of a valley.
However, if our initial value θ0 happens to be in a valley that is not the deepest valley, then we will
be stuck in the shallower valley and will never get out of it to find the deeper one. This is fixed by
instead using the method called “stochastic gradient descent”. Here, when we move from a value
of θ, the new value is chosen to go in the direction of −∇L(θ) with some high probability, but it
can also go in the direction of ∇L(θ) with some small probability. Then, this process most often
goes to regions that lower L, but every now and then, it climbs back up instead of going down the
hill. It turns out that this probabilistic modification of the original method allows the process to
always exist any valley, until it finds the deepest one and then it will eventually end up near the
bottom of that valley, finding the value of θ that (globally) minimizes L.

It is noteworthy that the high number of coordinates of θ (typically of at least order 3kℓ, which
is about 200, 000 for a 256 × 256 RGB image) makes L a function of a large number of variables
and as such, it will typically have a huge number of local valleys. This makes it unclear how fast
even the stochastic graduent descent method is able to find the deepest valley and settle on the
optimal θ.
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In short, we have only skimmed over the general idea and there is a large body of mathematical
research that is being developped and that still needs to be developped to fully understand how
exactly things work.

I close this section by briefly explaining the machine learning method.

4. Estimating the score function s via Machine Learning.

To simplify the notation, we think of t as just another variable and so we think of s(t, x) as a
function s(u), where u ∈ [0, T ]× R3kℓ.

In one of the simplest machine learning settings, we use the family of functions

sθ(u) = W2(W1u+ b1)
+ + b2. (4.6)

Here, u is viewed as a column vector, W1 is an m× (3kℓ+1) matrix, where m is an integer that is
usually taken to be much smaller than 3kℓ, W2 is a 3kℓ×m matrix, b1 is an m-vector, and b2 is a
vector with 3kℓ entries. This way, the matrix multiplications make sense (recall that u has 3kℓ+1
entries) and sθ(u) ends up having 3kℓ entries. The function that is applied to W1u + b1 is called
“the activation function”. Here, we used the function x+. If x is a real number, then the function
x+ is simply the maximum of 0 and x: when x is positive, the function simply returns x, but
when x becomes negative, the function cuts it off and replaces it by a 0. If x is a vector, then x+

means we apply this function to each coordinate. In the machine learning literature, this particular
function is called the Rectified Linear Unit function and the notation for it is ReLU(x) = x+. Other
non-linear activation functions are also sometimes used in place of ReLU.

Note how if we did not use the activation function, then W2(W1u+ b1) + b2 can be rewritten as
(W2W1)u + (W2b1 + b2), which is of the form Wu + b and we would then be just doing a linear
regression. So it is the activation function that creates the nonlinearity in sθ.

Including t as just another variable is often too simple. Instead, to reflect a more complex
dependence on time, one uses what is called a “time embedding”. A simple way to do this is to
use Fourier modes. That is, instead of taking u = (t, x), one takes

u =
(
sin(2πt/T ), cos(2πt/T ), . . . , sin(2πLt/T ), cos(2πLt/T ), x

)
,

where L is the desired number of modes, e.g. L = 10. This increases the dimension of u from 3kℓ+1
to 3kℓ+ 2L. Then W1 needs to be an m× (3kℓ+ 2L) matrix.

The parameters of the model (i.e. the entries of θ) are precisely the entries of the matrices W1

and W2 and the vectors b1 and b2. So these matrices and vectors are what we want to estimate.
Consequently, we have here (3kℓ + 1)m + 3kℓm + m + 3kℓ = 3kℓ(2m + 1) + 2m parameters to
estimate (3kℓ(2m+1)+(2L+1)m, if using a time embedding). Even though this is a large number
of parameters, this is still an easier problem to handle than the problem of estimating the pdf
p(0, x) of X(0) directly (e.g. we do not have to normalize things to integrate to one).

Summary. Now one can use (4.6) to compute the loss function L(θ) in (4.5). We apply, for
example, the stochastic gradient descent method to find the optimal θ that minimizes this L.
Using this optimal θ, we now can approximate the true score function s(t, x) = ∇ log p(t, x) by
ŝ(t, x) = sθ(t, x). Now that we learned an approximation of s(t, x), we can produce as many new

images as we wish. Namely, we run the reverse OU process Ŷ (i.e. numerically solve the SDE

(3.10)) from its starting point Ŷ (0), chosen as a multivariate standard normal, to its terminal point

Ŷ (T ), which presumably will have a pdf that is close to that of X(0).

Before closing the section, let us touch on the connection with neural networks.

(4.6) is what is called a two-layer fully-connected neural network. The input layer is the vector
u, which you should think of as 3kℓ + 1 neurons, each sending a signal to another (hidden) layer
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of m neurons. The m neurons process the signals from the input layer and each of these neurons
sends out a signal. This is modeled by W1u + b1, where W1 summarizes the weights that the m
neurons put on the various signals coming from the input neurons and b1 models the biases that
the intermediate neurons add to the signals. The neurons also apply a non-linear step, modeled
here by the ReLU function. Thus, the output of the m neurons is in fact given by (W1u + b1)

+.
These signals are sent to a second layer of 3kℓ neurons that apply their own matrix and bias vector
and end up outputing W2(W1u+ b1)

+ + b2.

One can add more layers to enlarge the family of estimation functions sθ, much like increasing
the degree in polynomial regression expands the space of approximating functions.

5. Incorporating a prompt

A prompt is a chunk of text that provides guidance on what should be generated. For example,
the prompt “a painting of a dog in the style of Salvador Daĺı ” suggests generating an image of a
dog with characteristics reminiscent of Daĺı ’s artistic style.

To work with such prompts computationally, we represent them as sets of tags, such as “painting”,
“dog”, and “Salvador Daĺı ”. In fact, for our purposes, we will treat a prompt and a set of tags
as equivalent. Just as a prompt can be broken down into individual tags, you do not need to use
a single coherent text as your prompt and can specify the prompt directly as a collection of tags
from the outset.

This prompt–or more precisely, this set of tags–is then converted into a numerical representation:
a high-dimensional vector, which we denote as π. This encoding process is analogous to how an
image is transformed into a vector x, although we will not touch on the details here.

Our goal is to generate an image vector that corresponds to a given prompt vector. To formalize
this, we define the state space as the set of pairs (x, π). We assume a probability distribution
function (pdf) p(0, x, π) over this space. This pdf is not known to us and the task is to develop an
algorithm that, given a prompt π, samples an image x from the conditional distribution p(0, x | π).
In other words, we aim to generate an image that is consistent with the given prompt.

The procedure with a prompt is almost identical to the case without one, but we must carefully
adjust the problem setup. Previously, in the forward diffusion process, we assumed the initial state
X(0) had an unknown pdf denoted by p(0, x). Now, however, we introduce an additional random
variable: the prompt Π. At time t = 0, we consider the joint distribution of the pair (X(0),Π),
which is governed by the joint pdf p(0, x, π).

Importantly, noise is added only to the image variable, not to the prompt. That is, the forward
stochastic process remains the same Ornstein-Uhlenbeck (OU) process X(t) solving the SDE in
equation (3.1). The prompt Π remains fixed throughout the entire process.

As we have already seen, for sufficiently large T , the distribution of X(T ) approaches a standard
normal in R3kℓ. Therefore, when initializing the backward process to generate new samples, we
continue to sample the starting point Y (0) from a 3kℓ-dimensional standard normal distribution.

The key difference now lies in the drift term of the reverse-time SDE (3.9). Instead of using the
gradient ∇ log p(t, x), we must now use the conditional gradient ∇ log p(t, x | π), where p(t, x | π)
denotes the conditional pdf of X(t) given the prompt Π = π. That is, the SDE for the backward
process is now

dY (t) =
1

2
β(T − t)

(
Y (t) + 2∇ log p(T − t, Y (t) | π)

)
dt+

√
β(T − t) dB(t). (5.1)
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The computation that led to (4.3) goes the same way, except that we now replace the fact that

p(t, x) =

∫ ∞

−∞
p(t, x | 0, a)p(0, a) da

with the fact that

p(t, x | π) =
∫ ∞

−∞
p(t, x | 0, a)p(0, a | π) da.

Thus, p(0, a) is replaced by p(0, a | π) and the change appears when we use the Bayes formula:

p(t, x | 0, a)p(0, a | π)
p(t, x | π)

=
p(t, x | 0, a)p(0, a, π)/p(π)

p(t, x, π)/p(π)

=
p(t, x | 0, a)p(0, a, π)

p(t, x, π)

=
p(t, x | 0, a, π)p(0, a, π)

p(t, x, π)

=
p(π, 0, a, t, x)

p(t, x, π)

= p(0, a | π, t, x).

Explanation: The first equality follows from the definition of conditional pdfs, where p(π) denotes
the pdf of the random variable Π. The second equality results from canceling out the common factor
p(π). The third equality relies on the fact that the evolution of the Markov process is independent of
the prompt–i.e., the distribution of X(t) depends only on the initial condition X(0) = a, regardless
of whether we condition on Π = π or not. The third and fourth equalities again apply the definition
of conditional pdfs (with p(π, 0, a, t, x) denoting the joint pdf of of the triple (Π, X(0), X(t))).

With the above change, we get a formula for the conditional score function:

s(t, x | π) = ∇ log p(t, x | π) = E
[X(0)e−

1
2

∫ t
0 β(r) dr −X(t)

1− e−
∫ t
0 β(r) dr

∣∣∣X(t) = x,Π = π
]
.

As before, this implies that s(t, x | π) is the function that minimizes

E
[∣∣∣∣∣∣X(0)e−

1
2

∫ t
0 β(r) dr −X(t)

1− e−
∫ t
0 β(r) dr

− s(t,X(t) | Π)
∣∣∣∣∣∣2]. (5.2)

Now, all three random variables (Π, X(0), X(t)) are being averaged out.

Note how now the function we need to learn is a function of three variables, t, x, and also π.
As before, we postulate that we are working with a given family of estimators sθ(t, x | π) and the
problem becomes a regression problem. We just have more dimensions than before, because we
have the extra variable π. So, e.g., if we decide to use machine learning, then we can use the same
formula (4.6), but the vector u will now contain t (or the time embedding), x, and also π.

The learning process is similar to before, though now the data that is given to us consists of
image-prompt pairs2 (a(i), π(i)). We still sample the times t(i), independently and uniformly on

2The images in the training data are typically tagged. They are either tagged by the users who produced them
(like your phone camera tags the pictues you take with it) or they are tagged by web crawlers that scour the web
and collect the images. These bots tag the images by either scraping text they find around where the images appear
(like on Wikipedia) or by running the images through a pattern-recognition software that tags them.
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[0, T ], and then sample x(i) as a multivariate normal with mean a(i)e−
1
2

∫ t(i)β(r) dr
0 and variance-

covariance matrix
(
1− e−

∫ t(i)

0 β(r) dr
)
I. We still define

s(i) =
a(i)e−

1
2

∫ t(i)

0 β(r) dr − x(i)

1− e−
∫ t(i)

0 β(r) dr

as before. But now, since s(t, x | π) minimizes (5.2), we use the quadratic loss function

L(θ) =
M∑
i=1

||sθ(t(i), x(i) | π(i))− s(i)||2. (5.3)

As before, we find the parameter θ that minimizes the loss function and then use the correspond-
ing sθ from the family we chose and plug sθ(T − t, Y (t) | π) in place of ∇ log p(T − t, Y (t) | π) in
(5.1), when we run that SDE to generate new samples. Then, Y (T ) will presumably have a pdf
close to p(0, a | π), as desired.

Several tools have been developed to enhance the alignment of the generated image with the
given prompt. For example, during the training period, both the unconditional and the conditional
gradients ∇ log p(t, x) and ∇ log p(t, x | π) are learned. So the first one is estimated using the loss
function (4.5) and all the available images, without regard to their tags, and the second one is
estimated using the loss function (5.3) and all the available images with their tags. Denote the
estimators by ŝ(t, x) and ŝ(t, x | π), respectively. Then, when a prompt π is given, a sample is
generated by choosing Y (0) as a standard multivariate normal and then runnig the SDE

dY (t) =
1

2
β(T − t)

(
Y (t) + 2

[
(1 + λ)ŝ(T − t, Y (t) | π)− λŝ(T − t, Y (t))

])
dt+

√
β(T − t) dB(t)

and returning Y (T ) as the output. Here, λ > 0 is the “guidance scale”–a parameter that is tuned
to optimize the outcome. Basically, the term in the square brackets rewards alignment with the
prompt and penalizes deviations from it, in an attempt to have Y (T ) more aligned with the given
prompt π.
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