
MATH 5050: Extra Credit Homework (Due Monday, April 28)

In Problem 1, we implement the generative AI approach we learned in class, but on the
smallest possible non-trivial state space: {0, 1}. Before I state the questions, let me go
through the theory. This will be a baby version of the approach that uses the Ornstein-
Uhlenbeck process we saw in class.

Consider the state space {0, 1} and suppose the probabilities on this space are given by
P(0) = 3/4 and P(1) = 1/4. Suppopse though that we do not know these numbers. Our
goal is to estimate these probabilities. We do not want to do this by computing the relative
frequencies of 0 and 1 in the given samples. Instead, we want to follow the noising and
denoising procedure that generative AI uses.

For the forward Markov chain, we choose to use the transition matrix

P =

[
7/9 2/9
2/9 7/9

]
.(1)

Since all the entries are positive, the Markov chain is irreducible and has a unique invariant
measure Φ∞.

Let us denote by N the terminal time for the forward Markov chain. We will choose N
so that by this time, the Markov chain is very close to the invariant measure. As we have
seen in 5040, the probabilities Φn = (P(Xn = 0),P(Xn = 1)) converge exponentially fast to
the invariant measure. Therefore, N will not be a large number.

As we said above, we are pretending we do not know the initial probabilities Φ0 =

(3/4, 1/4). We want to learn the transition probabilities
←−
Pn,u,v of the reverse Markov

chain. Things simplify a bit because the state space consists of the values 0 and 1. Namely,←−
Pn,u,v is the probability that Xn−1 = v, given that Xn = u. But since Xn−1 takes only
the values 0 or 1, it is a Bernoulli random variable. For a Bernoulli random variable, the
probability it takes the value 1 is equal to the mean of the Bernoulli random variable.
Therefore,

←−
Pn,u,1 = E[Xn−1|Xn = u].

Another simplification is that we only need to compute
←−
Pn,u,1, because

←−
Pn,u,0 = 1−

←−
Pn,u,1.

Let us, therefore, denote

s(n, u) =
←−
Pn,u,1 = E[Xn−1|Xn = u].

By what was mentioned in the class about conditional expectations, sn is the function that
minimizes

E
[
|Xn−1 − s(n,Xn)|2

]
.(2)

This turns the task of estimating
←−
Pn,u,v into a regression problem.

For simplicity, we will use Machine Learning with just one layer. Also, when in the case
of an SDE-based generative AI, time is continuous and, as we saw in clas, we have to sample
the times at which we sample the forward stochastic process. Since here time is discrete
and we are only looking at a small number of steps N , we will go ahead and estimate the
transition probabilities s(n, u) of the backward Markov chain for every n ∈ {1, . . . , N}.

1

2

We thus have N estimation problems, one for each n ∈ {1, . . . , N}. For each such n, we
consider estimators of sθ(u) of the form

sθ(u) = ϕ(wu+ b),(3)

where, θ = (w, b) are the two parameters we need to estimate. The function ϕ is given by
ϕ(x) = min(1,max(0, x)). So ϕ(x) = x if x is between 0 and 1, ϕ(x) = 0 if x < 0, and
ϕ(x) = 1 if x > 1. In other words, ϕ is almost like a ReLU function, but it also cuts things
off when they go above 1. This is to make sure that sθ(u) is a number between 0 and 1,
since it is supposed to be estimating a probability.

Before describing the estimation procedure, let us describe where the data comes from.
Since this is an exercise to see how things work, we will generate the data ourselves.

This is the only time when we will use the knowledge of the probabilities P(0) = 3/4 and
P(1) = 1/4. Thus, we generate a number M of random samples of the initial state X(0)
according to these probabilities: 0 with probability 3/4 and 1 with probability 1/4. Let us
denote these samples by a1, . . . , aM .

Next, we use this data to estimate the transition probabilities s(n, u). For each n ∈
{1, . . . , N}, we run through our initial samples ai and, for each such initial state, we get a
sample xi of Xn−1 and a sample yi of Xn. Then we we use these samples x1, . . . , xM and
y1, . . . , yM to estimate s(n, u). At this point, we recall that s minimizes (2) and that we
decided to use estimators of the form (3). Consequently, the task is to find w and b that
minimize the loss function

L(w, b) =

M∑
i=1

|xi − ϕ(wyi + b)|2.(4)

If we dentoe the parameters that achieve this minimization problem by wn and bn (they
depend on n because x and y are samples of Xn−1 and Xn), then

we can use ϕ(wnu+ bn) as our approximation of s(n, u), for each n ∈ {1, . . . , N}.(5)

Once we have the above learning step achieved, we can now generate as many new
samples from {0, 1} as we want, with the guarantee that the probability of 0 will be close
to 3/4 and the probability of 1 will be close to 1/4. Here is the algorithm:

1. The initial state is sampled from the invariant measure distribution, i.e. 0 with prob-
ability Φ∞(0) and 1 with probability Φ∞(1).

2. Once the inital state is known, we run the Markov chain for N steps. This chain is
not time-homogenous and so at step n ∈ {0, . . . , N − 1}, we use the transition matrix[

1− ϕ(bn) ϕ(bn)
1− ϕ(wn + bn) ϕ(wn + bn)

]
.

(Recall that ϕ(wN−nu+ bN−n) is our estimate of s(N −n, u), which is the probability that
XN−n−1 = 1, given that XN−n = u. Thus, this is the probability the backward Markov
chain goes from being at u at time n to being at 1 at time n + 1. One minus that is that
probability it goes from u to 0. Also, note that u is 0 or 1. Thus, wnu+ bn is either bn or
wn + bn.)

Now you have all the necessary background and can proceed to working on Problem 1.

3

Problem 1. Consider the setting described above.

(a) Compute the invariant measure of the matrix P in (1).

(b) What is the limit of Pn as n → ∞? (Answer this from your knowledge of what Pn

means, NOT by plugging in a large value of n and computing Pn.) Denote this limit by A.
Calculate P 10 − A and obswerve that all the entries are tiny. This tells us that already at
10 steps, the Markov chain is super close to the invariant measure. Thus, we will take the
terminal time to be N = 10.

(c) In your code, define a function L as in (4). The inputs are vectors x and y and numbers
w and b. The output is the right-hand side in (4).

Hint. In matlab, the code looks like this
function r=phi(z)

r=min(1,max(0,z));

end

function r=s(w,b,u)

r=phi(w*u+b);

end

function r=L(x,y,w,b)

r=sum((x-s(w,b,y)).^2);

end

(d) Sample 1, 000 numbers from the set {0, 1}, with 0 having probability 3/4 and 1 having
probability 1/4. Denote these samples by a1, . . . , a1000.

Hint. In matlab, binornd(1,p,1,M) gives M independent Bernoulli(p) random variables.

(e) Next, run a for loop over n going from 1 to 10. For each n, do the following:

(e.1) Run a for loop over i ∈ {1, . . . , 1000} and for each such i, use ai as the initial state
and sample of the Markov chain at times n− 1 and n. Denote these two states by xi and
yi. To do this, you do not need to run the Markov chain for n steps. Instead, you just
need to use the (n− 1)-step transition matrix Pn−1 to sample xi and then the matrix P to
sample yi.

For example, if n = 3, then

Pn−1 = P 2 =

[
53/81 28/81
28/81 53/81

]
.

This means that if ai = 0, then we look at the first row and we pick xi = 0 with probability
53/81 and xi = 1 with probability 28/81. Once we know what xi is, we can sample yi. For
example if xi = 1, then we look at the second row of P and pick yi = 0 with probability
2/9 and yi = 1 with probability 7/9.

Hint. The probability xi = 1 is the entry in Pn−1 on row number ai + 1 and column 2.
Then once we have sampled xi ∈ {0, 1}, we know that the probability yi = 1 is the entry
in P on row xi + 1 and column 2. Also, in matlab, binornd(1,p) returns a Bernoulli(p)
random variable.

(e.2) Let x dentoe the vector (x1, · · · , xM) and y the vector (y1, · · · , yM). Find the param-
eters (w, b) that minimize L.

4

Hint. In matlab, you can use
[thmin Lmin] = fminsearch(L,[0 0]);

w(n)=thmin(1); b(n)=thmin(2);

Then matlab starts the search for the minimum with the values w = b = 0 and returns the
minimizers w(n) and b(n).

(e.3) To ensure that the algorithm is not gettings stuck at a local minimum, as well as to
see how compllicated L can be, plot L as a function of w ∈ [−10, 10] and b ∈ [−10, 10] and
point out the point (w(n), b(n), L(w(n), b(n)).

Hint. In matlab, you can use
range=[-10 10 -10 10];

figure(n)

clf

fsurf(@(w,b)L(x,y,w,b),range)

xlabel(’w’); ylabel(’b’);

hold on

plot3(w(n),b(n),Lmin,’ro’,’MarkerFaceColor’,’r’)

You will get 10 plots, one for each n.

Now that we learned the transition probabilities of the backward Markov chain, we will
generate new samples and test their distribution.

(f) Run a for loop on i going from 1 to 1000. For each i, do the following.

(f.1) Generate Y from the invariant measure.

Hint. In matlab, binornd(1,p) gives a Bernoulli(p) random variable.

(f.2) Run a for loop on n going from 0 to 9. For each n, use the existing value of Y as the
state of backward Markov chain at time n to generatre the value of the Markoc chain at
the next time n+ 1. This will be the new value of Y .

Hint. If Y is the value of the backward chain at time n, then ϕ(w10−nY + b10−n) is the
probability the chain is 1 at time n+1. Also, in matlab, binornd(1,p) gives a Bernoulli(p)
random variable.

(f.3) After the for loop on n ends, Y is the new sample the AI algorithm generates. Record
these samples. (E.g. as output(i)=Y;)

(g) Moment of truth: Calculate the mean of your output samples. (E.g. sum(out)/1000)
Did it work? IT CLOSE TO 1/4?!

5

Let B be a standard Brownian motion, starting at B(0) = 0. We aim to construct a
time-reversed version of this Brownian motion. So fix the terminal time to be 2 and let
Y (t) = B(2 − t) be the time-reversed process. So at t = 0, Y (0) is a normal with mean 0
and variance 2 and at the end, Y (2) = 0. One way to generate samples of Y is to generate
samples of B and then plot B(2−t) as a function of t ∈ [0, 2]. But we would like to generate
Y by first sampling its starting point Y (0) (as a normal with mean 0 and variance 2), and
then solving an SDE. That is, we do not want to have to use the forward process to generate
the backward one. We want to be able to generate the backward process directly.

The forward Brownian motion satsfies the simple SDE dB(t) = dB(t). In other words, it
has a diffusion coefficient of 1 and no drift. In class, we saw that the time-reverse process
must then satisfy the equation

dY (t) =
∂ log p

∂x
(2− t, Y (t)) dt+ dB(t).

Here, B is another standard Brownian motion and p(t, x) is the pdf of the forward process
B(t). In words, Y has the same diffusion coefficient of 1, but the zero drift of the original
process (the Brownian motion) acquires an additional drift given by the space-derivative of
log p, evaluated at the backward running time 2− t.

Problem 2. Consider the above setting.

(a) In this particular example, we know exactly what p(t, x) is. Write down its formula and

compute ∂ log p
∂x . Plug it 2− t for time and Y (t) for space and write down the SDE that Y (t)

satisfies.

(b) Sample Y (0) as a normal random variable with mean 0 and variance 2 and then nu-
merically solve the SDE you found in (a) up to time 2. (You will need to stop right before
you reach time 2 because you will not be able to plug in t = 2 into the SDE. You will see
why when you answer (a)!)

(c) Plot Y (t) as a function of t ∈ [0, 2). Does that look to you like the time-reversed path
of a standard Brownian motion?

