
MATH 3070 Applied Statistics I

Nan Shen

Disclaimer: These notes may NOT be distributed outside this class without the permission

of the Instructor.

1 Overview and Descriptive Statistics

What is Statistics?

•

•

1.1 Populations, Samples, and Processes

An investigation will typically focus on

.

There are two basic methods for studying a population:

•

•

What is a variable?

A variable is
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Note:

•

•

Data results from making observations either on a single variable or simultaneously on two
or more variables.

A univariate data set

• e.g.

A bivariate data set

• e.g.

A multivariate data set

• e.g.

Types of variables:

• Categorical:

• Quantitative:
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– Discrete:

– Continuous:

Summary:

Branches of Statistics:

1. Descriptive Statistics,

A. Some of these methods are in nature; e.g.

B. Other descriptive methods involve calculation of summary measures,

e.g.

2. Having obtained a sample from a population, an investigator would frequently like to

Techniques for generalizing from a sample to a population are gathered within the branch of

our discipline called
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1.2 Pictorial and Tabular Methods in Descriptive Statistics

Histograms

Histograms are .

To construct a histogram, the first step is to “bin” the range of values - that is,

and then

The bins are usually specified as

The bins must be and are often (but not required to be) of

If the bins are of equal size, a is erected over the bin with

proportional to the - the number of cases in each bin.

Consider data consisting of observations on a discrete variable x. The frequency of any

particular x value is

The relative frequency of a value is

relative frequency of a value =

Relative Frequency Histograms

A histogram may also be normalized to display .

It then shows the proportion of cases that fall into each of several categories, with

So relative frequency histograms are

bar charts of the .

Example 1. A website gives information on 50 charities. Here is a sample of 20 charities
and the amount (in thousands) they spend on fundraisers.

20, 10, 5, 1, 2, 19, 18, 2, 6, 29, 35, 11, 23, 13, 31, 32, 35, 25, 26, 22

Find the histogram and relative frequency histogram
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Describing Histogram Shapes

A unimodal histogram is one that

A bimodal histogram

A histogram is said to be multimodal.

And a histogram with is said to be uniform.

A histogram is symmetric if

A unimodal histogram is if the right

or upper tail is stretched out compared with the left or lower tail,

and if the stretching is to the left.

5



Example 2. Let’s take a look at the problem on HW1

1.3 Measures of Location

Suppose, that our data set is of the form x1, x2, · · · , xn, where each xi is a number. One

important characteristic of such a set of numbers is its , and in particular

its .

1.3.1 Sample Mean

For a given set of numbers x1, x2, · · · , xn, the most familiar and useful measure of the center

is the , or of the set.
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The sample mean x̄ of observations x1, x2, · · · , xn is given by

A physical interpretation of the sample mean demonstrates how it assesses the center of a

sample. Think of each dot in the dotplot below representing a 1-lb weight. Then a fulcrum

placed with its tip on the horizontal axis will precisely when it is located at

x̄. So the sample mean can be regarded as the of the distribution

of observations.

1.3.2 Sample Median

The sample median is the

The sample median is obtained by .
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Then,

Example 3.

(1) Suppose we have a data set as: 1.6, 3.0, 1.9, 0.6, 3.8. What are the mean and median
of this sample?

(a)

(b)

(2) Suppose we have a data set as: 6.9, 16.3, 32.8, 41, 47.7, 48.9. What is the median of
this sample?
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1.3.3 Population Mean

The average of all values in the population is called and

is denoted by . When there are N values in the population, then µ=

One of our first tasks in statistical inference will be to present methods based on the

for drawing conclusions about a

For example,

1.3.4 Population Median

Analogous to ex as the middle value in the sample, the population median is

denoted by . As with x̄ and µ, we can think of using ,

to make an inference about .

Summary:
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1.3.5 Other Measures of Location

Maximum

Minimum

An outlier is

Sometimes are outliers in the data set.

Quartiles and Percentiles

Quartiles

with the observations above the third quartile constituting the upper quarter of the data set,

the second quartile being identical to the , and the first quartile separating

the lower quarter from the upper three-quarters.

If the quantiles divide the data into , then they’re called .
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1.3.6 The e↵ect of skewness on the mean and median

Think about the graph in extreme cases.

Suppose we have 11 data in a set of students grades, in which ten of them are 60s and one
of them is 100.

On the other hand, suppose we have 11 data in a set of students grades, in which ten of them
are 100s and one of them is 60.
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Note.

Example 4. Suppose we have 10 people in a room, the mean salary x̄ is $105, 000, and the
median salary ex is $65, 000. What can we say about the distribution?

Ans :

What is the more appropriate measure of center when there are extreme valus
in the data set and why?

Ans :

1.4 Measures of Variability

Figure below shows dotplots of three samples with the same mean and median, but the

extent of spread about the center is di↵erent for all three samples. The first sample has the

, the third has the ,

and the second is
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Measures of Variability for Sample data

The simplest measure of variability in a sample is the , which is

•

The value of the range for sample 1 in Figure above is than sample 3,

reflecting in the first sample than in the third. A defect of the

range, though, is

Samples 1 and 2 in Figure above have , yet when the observations

between the two extremes are taken into account, there is in the

second sample than in the first.

Our primary measures of variability involve

A deviation will be positive (+) if and

negative (�) if

If all the deviations are , then all xi’s are

and there is . Alternatively, if some of the

deviations are , then some xi’s ,

suggesting a
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A simple way to combine the deviations into a is to .

Unfortunately, this is a bad idea:

sum of deviations =

so that the average deviation is .

To prevent from counteracting one

another when they are combined, we consider instead

To get the , for several reasons we will not cover here, we

divide the sum of squared deviations by instead of .

Definition 1. The sample variance, denoted by , is given by

s2 =

The sample standard deviation(SD), denoted by , is the of
the variance:

s =

The is our preferred measure of variability, because

A shortcut formula for s,

s =

sP
x2
i �

(
P

xi)2

n

n� 1

This is because we can write s2 as
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Example 5. Suppose we have a data set x1, x2, · · · , x5 where
P5

i=1 xi = 10.9 and
P5

i=1 x
2
i =

29.97. What is the SD?

Ans :

Properties of the mean and SD:

Let x1, x2, · · · , xn be a sample and c be any nonzero constant.

1. If y1 = x1 + c, y2 = x2 + c, · · · , yn = xn + c,

then mean

the sample variance

the SD

2. If y1 = cx1, y2 = cx2, · · · , yn = cxn,

then mean

the sample variance

the SD
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2 Probability

The term probability refers to

With a small number of observations, outcomes of random phenomena may look

from what you expect. As we make more observations, the of times that a

particular outcome occurs gets closer and closer to a certain number we would expect.

With any random phenomena, the probability of a particular outcome is

NOTE: A random phenomenon has the characteristic that is

2.1 Sample Spaces and Events

An experiment is

Experiments that may be of interest include:

• tossing a coin once or several times,

• selecting a card or cards from a deck,

• weighing a loaf of bread.

Definition 2. The sample space of an experiment, denoted by S,

Example 6.

• Experiment: Observing the tosses of two fair coins.

S =

• Experiment: Flip a fair coin until a tail appears for the first time

S =
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• Experiment: Flip a fair coin until the first tail and record the number of heads that
have occurred.

S =

• Experiment: Observe the highest temperature for today:

S =

• Experiment: Randomly select an American household and record the number of TV
sets.

S =

In our study of probability, we will be interested not only in the individual outcomes of S

but also in .

Definition 3. An event is

An event is if it consists of exactly one outcome and

if it consists of more than one outcome.

When an experiment is performed, a particular event A is said to occur if

Example 7. Experiment: Tossing a coin 3 times. The sample space is

S =

Suppose our event
A = First toss gives head.

Then A occurs only if the resulting experimental outcome is contained in the set

{ }
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Some relations from Set theory An event is just a set, so relationships and results from
elementary set theory can be used to study events.

Definition 4.

• The complement of an event A, denoted by , is the set of

Venn diagram:

• The union of two events A and B, denoted by , is the event

So the union includes outcomes for which A and B occur as well as outcomes

for which , that is, all outcomes in .

Venn diagram:

• The intersection of two events A and B, denoted by , is the event consisting

of .

Venn diagram:

• Two events aremutually exclusive or disjoint, if ;

i.e. both events can not happen at the same time

18



If events A and B are mutually exclusive, then

Venn diagram:

Example 8. For the experiment in which the number of pumps in use at a single six-pump
gas station is observed, let A = {0, 1, 2, 3, 4}, B = {3, 4, 5, 6}, and C = {1, 3, 5}. Then

Ac =

A [ B =

A [ C =

A \ B =

A \ C =

(A \ C)c =

2.2 Axioms, interpretations, and Properties of Probability

Interpreting Probability

Consider an experiment that can be

and let A be an event consisting of a set of outcomes of the experiment. For examples,

the coin-tossing experiment previously discussed. If the experiment is performed ,

let denote the number times on which A occurs. Then the ratio

is called of the event A in the sequence of n replications.

Given an experiment, the objective of probability is to ,
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called the probability of the event A, which will give a precise measure of the chance that A
will occur.

Relative frequency will stabilize as the number of replications n increases. That is, as

n gets arbitrarily large,

.

The objective interpretation of probability identifies this limiting relative frequency with
P (A), i.e. as n ! 1

P (A) =

NOTE: 0  P (A)  1. Why?

The assignment of probabilities should satisfy the following axioms of probability.

Probability Axioms

1.

2.

3. If A1, A2, . . . is an infinite collection of disjoint events, then
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More Probability Properties

(1)

(2)

(3)

Example 9. Suppose we flip a fair coin until a head appears for the first time. What is
the probability that more than one flip of the coin is required?

Solution. The sample space S is

S =

So the event A=more than one flip of the coin is required contains the outcomes

A =

Since each of the outcomes in A are can not occur simultaneously,

Therefore,

P (A) =

However, if we use property (3), we can solve the problem very quick by noticing that

(4) For any two events A and B, probability of either event A or event B occurring is

• Special case:

21
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Example 10. (Example 2.14 from textbook page 62) In a certain residential suburb, 60% of
all households get Internet service from the local cable company, 80% get television service
from that company, and 50% get both services from that company. If a household is randomly
selected,

Question:
1. what is the probability that it gets at least one of these two services from the company?

2. what is the probability that it gets exactly one of these services from the company?

Solution.
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Example 11. (Exercise 11 from textbook page 64) A mutual fund company o↵ers its cus-
tomers a variety of funds: a money-market fund, three di↵erent bond funds (short, interme-
diate, and long-term), two stock funds (moderate and high-risk), and a balanced fund.

Among customers who own shares in just one fund, the percentages of customers in the
di↵erent funds are as follows:

Money-market 20% High-risk stock 18%

Short bond 15% Moderate-risk stock 25%

Intermediate bond 10% Long bond 5% Balanced 7%

A customer who owns shares in just one fund is randomly selected.

Question:

a. What is the probability that the selected individual owns shares in the balanced fund?

b. What is the probability that the individual owns shares in a bond fund?

c. What is the probability that the selected individual does not own shares in a stock fund?

Solution.
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Example 12. (Exercise 14 from textbook page 65) Suppose that 55% of all adults regularly
consume co↵ee, 45% regularly consume carbonated soda, and 70% regularly consume at least
one of these two products.

Question:

a. What is the probability that a randomly selected adult regularly consumes both co↵ee
and soda?

b. What is the probability that a randomly selected adult does not regularly consume at
least one of these two products?

Solution.
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2.4 Conditional Probability

In this section, we examine

We will use the notation

to represent

Definition 5. For any two events A and B with P (B) > 0, the conditional proba-
bility of A given that B has occurred is defined by

Example 13. (Example 2.25 from textbook page 76) Suppose that of all individuals buying
a certain digital camera, 60% include an optional memory card in their purchase, 40% include
an extra battery, and 30% include both a card and battery.

Consider randomly selecting a buyer and let A = memory card purchased and B = battery
purchased.
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Move it earlier in 2.3 “ More probability properties part”
(5)

DeMorgan’s Laws:

1. (A \ B)c =
2. (A [ B)c =

Thus,
P (Ac \ Bc) =

(6) By distributive law we have

A =

Since and are disjoint, by Probability Axiom 3, we have

P (A) =

This gives
P (A \ Bc) =

Venn diagram:

End
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The definition of conditional probability yields the following result.

The Multiplication rule

Example 14. (Example 2.29 from textbook page 78) An electronics store sells three di↵erent
brands of DVD players. Of its DVD player sales, 50% are brand 1 (the least expensive), 30%
are brand 2, and 20% are brand 3. Each manufacturer o↵ers a 1-year warranty on parts and
labor. It is known that 25% of brand 1’s DVD players require warranty repair work, whereas
the corresponding percentages for brands 2 and 3 are 20% and 10%, respectively.

1. What is the probability that a randomly selected purchaser has bought a brand 1 DVD
player that will need repair while under warranty?

2. What is the probability that a randomly selected purchaser has a DVD player that will
need repair while under warranty?

3. If a customer returns to the store with a DVD player that needs warranty repair work,
what is the probability that it is a brand 1 DVD player? A brand 2 DVD player? A
brand 3 DVD player?

Solution.
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Problem 2 in Example 14 is an example of the Law of Total Probability.

The Law of Total Probability

NOTE: A set of events is jointly exhaustive if at least one of the events must occur.

Example 15. (Example 2.30 from textbook page 81) An individual has 3 di↵erent email
accounts. Most of her messages, in fact 70%, come into account # 1, whereas 20% come into
account #2 and the remaining 10% into account #3. Of the messages into account #1, only
1% are spam, whereas the corresponding percentages for accounts #2 and #3 are 2% and
5%, respectively.

Question: What is the probability that a randomly selected message is spam?

Solution.
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Bayes’ theorem
Let A1, A2, · · · , Ak be a collection of k

Then for any other

event B for which P (B) > 0, the posterior probability of Aj given that B has
occurred is

The transition from the second to the third expression rests on using the multiplication rule
in the numerator and the law of total probability in the denominator.

Example 16. (Example 2.31 from textbook page 81) Incidence of a rare disease. Only 1 in
1000 adults is a✏icted with a rare disease for which a diagnostic test has been developed. The
test is such that when an individual actually has the disease, a positive result will occur 99%
of the time, whereas an individual without the disease will show a positive test result only
2% of the time (the sensitivity of this test is 99% and the specificity is 98%; in contrast, the
Sept. 22, 2012 issue of The Lancet reports that the first at-home HIV test has a sensitivity
of only 92% and a specificity of 99.98%).

Question:

If a randomly selected individual is tested and the result is positive, what is the probability
that the individual has the disease?

Solution.
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Example 17. (Exercise 59 from textbook page 84) At a certain gas station, 40% of the
customers use regular gas (A1), 35% use plus gas (A2), and 25% use premium gas(A3). Of
those customers using regular gas, only 30% fill their tanks (event B). Of those customers
using plus, 60% fill their tanks, whereas of those using premium, 50% fill their tanks.

Question:

a. What is the probability that the next customer will request plus gas and fill the tank
(A2 \ B)?

b. What is the probability that the next customer fills the tank?

c. If the next customer fills the tank, what is the probability that regular gas is requested?
Plus? Premium?

Solution.
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Example 18. (Exercise 60 from textbook page 84) Seventy percent of the light aircraft that
disappear while in flight in a certain country are subsequently discovered. Of the aircraft that
are discovered, 60% have an emergency locator, whereas 90% of the aircraft not discovered
do not have such a locator. Suppose a light aircraft has disappeared.

Question:

a. If it has an emergency locator, what is the probability that it will not be discovered?

b. If it does not have an emergency locator, what is the probability that it will be discovered?

Solution.

33



2.5 Independence

We sayA andB are independent events, meaning that

Definition 6. Two events A and B are independent if

and are dependent otherwise.

NOTE: This definition implies if A and B are independent

•

•

It is also straightforward to show that if A and B are independent, then so are the following
pairs of events:

(1)

(2)

(3)
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Example 19. Consider an experiment where the next car sold from a dealership is observed.
Let C = a car has a CD player, M = a car has a manual transmission.

Given: P (C) = 0.75, P (M) = 0.15, P (M [ C) = 0.85.

Question:
1. Are C and M mutually exclusive/disjoint events?
2. Are C and M independent events?

Solution.

35
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Example 20. (Exercise 74 from textbook page 89) The proportions of blood phenotypes in
the U.S. population are as follows:

A B AB O

0.40 0.11 0.04 0.45

Assuming that the phenotypes of two randomly selected individuals are independent of
one another.

NOTE: randomly selected =) independent

Question:

1. What is the probability that both phenotypes are O?

2. What is the probability that the phenotypes of two randomly selected individuals match?

Solution.
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Example 21. The entire system will work if either the top two components both work or
the bottom two components both work. If components work independently of one another
and P (component i fails) = 0.4 for i = 1, 2, 3, 4.

Question:

1. What is the probability that all four components fails?

2. What is the probability that exactly one of the components fails?

3. What is the probability that at least one of the components fails?

4. What is the probability that at most one of the components fails?

5. What is the probability that the system works?

Solution.
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3 Discrete Random Variables and Probability Distri-
butions

3.1 Random Variables

Definition 7. A function, f , is a rule that takes an input value and returns an output.

For example, y = x+ 2. Then if x = 1 then we have y = 3.

Definition 8. A random variable is

Example 22. Suppose our experiment is tossing a coin two times. Then the sample space
is

S =

If we define the random variable

X = the number of heads you get in one experiment

Then we can see thatX can take values .

NOTE: Random variables are usually denoted by uppercase letters, such as .

We will use lowercase letters to represent of the

corresponding random variable. The notationX(!) = xmeans that

.

We sometimes consider several di↵erent random variables from the same sample space.

Example 23. Two gas stations are located at a certain intersection. Each one has six gas
pumps. Consider the experiment in which the number of pumps in use at a particular time
of day is determined for each of the stations.

Define random variables X, Y , and U by

X = the total number of pumps in use at the two stations

Y = the di↵erence between the number of pumps in use at station 1 and station 2

U = the maximum of the numbers of pumps in use at the two stations

38
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If this experiment is performed and results ! = (2, 3), then

X =

Y =

U =

Example 24. When a student calls a university help desk for technical support, he/she will
either immediately be able to speak to someone (S, for success) or will be placed on hold (F ,
for failure). With S = {S, F}, define an random variable X by

X(S) = 1 and X(F ) = 0

The random variable X indicates

Example 25. Suppose a location in the United States is selected. Define the random variable
Y by

Y = the height above sea level at the selected location

Then the largest possible value of Y is 14,494 (Mt. Whitney), and the smallest possible value
is 2282 (Death Valley). The set of all possible values of Y is the set of all numbers in the
interval between 2282 and 14,494, that is,

and there are in this interval.

Two Types of Random Variables

• . If the possible outcomes of a random
variable can be listed out using a finite (or countably infinite) set of single numbers
(Example 22, 23, 24), then the random variable is discrete.

• . If the possible outcomes of a random
variable can only be described using an interval or union of intervals of real numbers
(Example 25), then the random variable is continuous.

3.2 Probability Distributions for Discrete Random Variables

3.2.1 The Probability Mass Function

The probability distribution of X says how the total probability of 1 is distributed among
the various possible X values. The probability distribution of X lists all possible values of
X and their corresponding probabilities.
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Definition 9. For discrete random variables, the probability list of X is called
, which is defined for every

number x by p(x) = P (X = x) = P (all ! 2 S : X(!) = x).

The pmf returns the probability that the random variable X is equal to the value x.

To be a valid pmf, we need:

(1)

(2)

Example 26. Suppose we toss a fair coin three times, and define the random variable X to
be the number of heads that appear. Find the pmf of X.

Solution. The sample space is

S =

So the possible values for the random variable X are in the set {0, 1, 2, 3}. The pmf tells us
all possible values of X and their corresponding probabilities, i.e. p(x) = P (X = x). Since
we have a fair coin, so the is assumed here. Therefore

NOTE: This is NOT a proper format of writing a pmf. Write it in a proper way, X should
define on . So The pmf of X is given by
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Question: Is this a valid pmf?

Check:

The graph pf the pmf of X could be

Example 27. (Exercise #13 on page 107 of the textbook) A mail-order computer business
has six telephone lines. Let X denote the number of lines in use at a specified time. Suppose
the pmf of X is as given in the accompanying table.

Calculate the probability of each of the following events.

a. {at most three lines are in use}

b. {fewer than three lines are in use}

c. {at least three lines are in use}

d. {between two and five lines, inclusive, are in use }

e. {between two and four lines, inclusive, are not in use}

f. {at least four lines are not in use}
Solution. Before we calculate the probabilities, let’s check whether it is a valid pmf.
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Example 28. (Example 3.8 on textbook page 100) Six boxes of components are ready to be
shipped by a certain supplier. The number of defective components in each box is as follows:

Box 1 2 3 4 5 6
Number of defectives 0 2 0 1 2 0

One of these boxes is to be randomly selected for shipment to a particular customer. Let X
be the number of defectives in the selected box.

3.2.2 The Cumulative Distribution Function

Definition 10. The cumulative distribution function (cdf)
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Example 29. Experiment: rolling an unfair die

Define the random variable X as the number on the upper face. Then the pmf of X is give
in the table

x 1 2 3 4 5 6
p(x) 0.2 0.3 0.1 0.1 0.1 0.2

Then some of the probability we are interested in are
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Example 30. Continue with our example of tossing a fair coin three times in Example 26.
Find the CDF of X.

x 0 1 2 3
p(x) 0.125 0.375 0.375 0.125

Solution.
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Question: Given a CDF, how do we convert to pmf?

In Example 30,

Example 31. (Example 3.13 from textbook page 104) A store carries flash drives with either
1 GB, 2 GB, 4 GB, 8 GB, or 16 GB of memory. The accompanying table gives the distribution
of Y = the amount of memory in a purchased drive:

y 1 2 4 8 16
p(y) 0.05 0.1 0.35 0.4 0.1
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3.3 Expected Values

As with a sample, there are descriptive statistics that can be used to describe the population.

Definition 11. Let X be a discrete random variable with set of possible val-
ues D and pmf p(x). The expected value or mean value of X, denoted by

, is

Recall that, previously we use the mean as a measure of the center of the data set, i.e. the
arithmetic average. But now, the mean refers to the center of the population.

Example 32. Consider a university having 15,000 students and let X = the number of
courses for which a randomly selected student is registered. The pmf of X follows.

x 1 2 3 4 5 6 7
p(x) 0.01 0.03 0.13 0.25 0.39 0.17 0.02

Calculate the expected value of X, i.e E(X).

Solution.

Notice that µ here is not 4, the ordinary average of 1, · · · , 7, because the distribution puts
more weight on 4, 5, and 6 than on other X values.

Example 33. Let X = 1 if a randomly selected vehicle passes an emissions test and X = 0

otherwise. ThenX is a with pmf ,

from which E(X) = . That is, the

expected value of X is .
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The Expected Value of a Function

If the random variable X has a set of possible values D and pmf p(x), then the expected
value of any function h(X), denoted by E[h(X)] is computed by

Example 34. The cost of a certain vehicle diagnostic test depends on the number of cylinders
X in the vehicle’s engine. Suppose the cost function is given by Y = h(X) = 20+3X+0.5X2.
Calculate the expected value of Y . The pmf of X is as follows:

x 4 6 8
p(x) 0.5 0.3 0.2

Solution.

Example 35. A computer store has purchased three computers of a certain type at $500
apiece. It will sell them for $1000 apiece. The manufacturer has agreed to repurchase any
computers still unsold after a specified period at $200 apiece. Let X denote the number of
computers sold, and suppose that p(0) = 0.1, p(1) = 0.2, p(2) = 0.3, and p(3) = 0.4. With
h(X) denoting the profit associated with selling X units, the given information implies that
h(X) = revenue � cost = 1000X + 200(3�X)� 1500 = 800X � 900.

Find the expected profit.

Solution.
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Expected Value of a Linear Function

The h(X) function of interest is quite frequently a linear function aX + b. In this case,
E[h(X)] is easily computed from E(X) without the need for additional summation.

E(aX + b) =

Proof.

The Variance of X

We will use the variance of X to assess the amount of variability in (the distribution of) X,
just as s2 was used in Chapter 1 to measure variability in a sample.

Definition 12. Let X be a discrete random variable with pmf p(x) and expected value
µ. Then the variance of X, denoted by , is

The standard deviation (SD) of X is

Example 36. A library has an upper limit of 6 on the number of DVDs that can be checked
out to an individual at one time. Consider only those who currently have DVDs checked out,
and let X denote the number of DVDs checked out to a randomly selected individual. The
pmf of X is as follows:

x 1 2 3 4 5 6
p(x) 0.3 0.25 0.15 0.05 0.1 0.15

Find the variance of X.
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Solution.

A Shortcut Formula for �2

Var(X) =

Proof.

Example 37. (Example 36 continued)
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Variance of a Linear Function

The variance of aX + b is

The standard deviation of aX + b is

Example 38. In Example 35,

Example 39. An dealer sells three di↵erent models of freezers having 13.5, 15.9, and 19.1
cubic feet of storage space, respectively. Let X = the amount of storage space purchased by
the next customer. Suppose that X has pmf

x 13.5 15.9 19.1
p(x) 0.2 0.5 0.3

a. Compute E(X), E(X2), Var(X) = �2 and standard deviation �.

b. If the price of a freezer having capacity X cubic feet is 25X � 8.5, what is the expected
price paid by the next customer to buy a freezer?

c. What is the variance and the standard deviation of the price 25X � 8.5 paid by the next
customer?

d. Suppose that although the rated capacity of a freezer is X, the actual capacity is h(X) =
X � 0.01X2. What is the expected actual capacity of the freezer purchased by the next
customer?
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Solution.
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3.4 The Binomial Probability Distribution

Consider an experiment consisting of n trials, each of which has exactly two outcomes.

Example 40. Suppose 2% of all items produced from an assembly line are defective. We
randomly sample 50 items and count how many are defective (and how many are not).

Definition 13. A binomial experiment has the following characteristics:

(1)

(2)

(3)

(4)

Note: The probability of failure is .

More examples of binomial experiments:

• We toss a coin n times, let S = we observe a “head” and F = we observe a “tail”.

• Each of the next n vehicles undergoing an emissions test, and let S denote a vehicle
that passes the test and F denote one that fails to pass.

• Tossing a thumbtack n times, with S = point up and F = point down.

• The gender (S for female and F for male) is determined for each of the next n children
born at a particular hospital.

The Binomial random Variable and distribution

In most binomial experiments, it is , rather than knowledge
of exactly which trials yielded S’s, that is of interest.

Definition 14. The binomial random variable X associated with a binomial experi-
ment consisting of n trials is defined as

X =

Suppose, for example, that n = 3. Then there are eight possible outcomes for the experiment:

From the definition of X, we have that X(SSF ) = , X(SFF ) = , and so on.
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Possible values for X in an n-trial experiment are x = . We will often

write to indicate that X is a binomial random variable based

on trials with success probability .

Because the pmf of a binomial random variable X depends on the two parameters n and p,

we denote the pmf by , where n and p are known before the experiment starts.

To derive the expression of the pmf of a binomial random variable, consider the case n = 3
for which each outcome, its probability, and corresponding x value are displayed in the table
below.
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If X ⇠ Bin(n, p), then the pmf of X is given by

NOTE:
�
n
x

�
reads “n choose x”, this tells us

✓
n

x

◆
=

For example,
✓
5

2

◆
=

Example 41. Each of six randomly selected cola drinkers is given a glass containing cola
S and one containing cola F . Suppose there is no tendency among cola drinkers to prefer
one cola to the other. Then p = P (a selected individual prefers S) = 0.5, so with X = the
number among the six who prefer S,
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Using Binomial tables

Even for a relatively small value of n, the computation of binomial probabilities can be te-
dious. Appendix Table A.1 tabulates the cdf for n = 5, 10, 15, 20, 25
in combination with selected values of p corresponding to di↵erent columns of the table.

Notation: For X ⇠ Bin(n, p), the cdf will be denoted by

Example 42. Suppose that 20% of all copies of a textbook fail a certain binding strength
test. Let X denote the number among 15 randomly selected copies that fail the test. Then

X has

1. The probability that at most 8 fail the test is

2. The probability that exactly 8 fail is

3. The probability that at least 8 fail is
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4. The probability that between 4 and 7, inclusive, fail is
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The Mean and Variance of X

If X ⇠ Bin(n, p), then
E(X) =

Var(X) =

�X =

where q = 1� p.

Example 43. If 75% of all purchases at a certain store are made with a credit card and X
is the number among ten randomly selected purchases made with a credit card, then
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Example 44. (Exercise 46 on Page 123) Compute the following binomial probabilities di-
rectly from the formula for b(x;n, p):

a. b(3; 8, 0.35)

b. b(5; 8, 0.6)

c. P (3  X  5) when n = 7 and p = 0.6

d. P (1  X) when n = 9 and p = 0.1

Solution.
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Example 45. (Exercise 47 on Page 123) The article “Should You Report That Fender -
Bender? ” reported that 7 in 10 auto accidents involve a single vehicle. Suppose 15 accidents
are randomly selected. Use Appendix Table A.1 to answer each of the following questions.

a. What is the probability that at most 4 involve a single vehicle?

b. What is the probability that exactly 4 involve a single vehicle?

c. What is the probability that exactly 6 involve multiple vehicles?

d. What is the probability that between 2 and 4, inclusive, involve a single vehicle?

e. What is the probability that at least 2 involve a single vehicle?

f. Find the mean and standard deviation of X.

Solution.
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3.6 The Poisson Probability Distribution

Definition 15. A discrete random variable X is said to have a

if the pmf of X is

NOTE: The Poisson distribution spreads probability over all non-negative integers (in con-
trast to the binomial distribution), an infinite number of possibilities.

Appendix Table A.2 contains the Poisson cdf F (x;µ) for µ = 0.1, 0.2, · · · , 1, 2, · · · , 10, 15,
and 20. Alternatively, many software packages will provide F (x;µ) and p(x;µ) upon request.

Example 46. Let X denote the number of traps in a particular type of metal transistor,
and suppose it has a Poisson distribution with µ = 2.

The probability that there are exactly three traps is

and the probability that there are at most three traps is

This latter cumulative probability is found at the intersection of the
and the of Appendix Table A.2, whereas p(3; 2) = F (3; 2)�F (2; 2) =
0.857� 0.677 = 0.180, the di↵erence between two consecutive entries in the µ = 2 column of
the cumulative Poisson table.
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If X has a Poisson distribution with parameter µ, then

E(X) =

Var(X) =

Example 47. (Example 46 continued)

Example 48. Suppose the number of accidents per month at an industrial plant has a Pois-
son distribution with mean 2.6. If we denote Y = the number of accidents per month,

then

(a) Find the probability that there will be 4 accidents in the next month.
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(b) Find the probability of two or more accidents in the

(c) Find the probability of having between 3 and 6 accidents.

Example 49. Let X be the number of material anomalies occurring in a particular region
of an aircraft disk. Some article proposes a Poisson distribution for X. Suppose that µ = 4.

a. Compute both P (X  4) and P (X < 4).

b. Compute P (4  X  8).

c. Compute P (8  X).

d. What is the probability that the number of anomalies exceeds its mean value by no more
than one standard deviation?

Solution.
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Example 50. Some article proposed using the Poisson distribution to model the number of
failures in pipelines of various types. Suppose that for cast-iron pipe of a particular length, the
expected number of failures is 1. Then X, the number of failures, has a Poisson distribution
with µ = 1.

a. Obtain P (X  5).

b. Determine P (X = 2).

c. Determine P (2  X  4).

d. What is the probability that X exceeds its mean value by more than one standard
deviation?

Solution.

65



66



4 Continuous Random Variables and Probability Dis-
tributions

Chapter 3 concentrated on the development of probability distributions for discrete random
variables. In this chapter, we consider the second general type of random variable that arises

in many applied problems:

4.1 Probability Density Functions

Recall: A discrete random variable is one whose possible values either constitute a finite
set or can be listed in an infinite sequence.

A random variable X is continuous if

(1) possible values comprise either on the number line (for

some a < b, any number x between a and b is a possible value) or

, and

(2) for any number c that is a possible value of X.

Examples:

• A chemical compound is randomly selected and its pH X is determined, then X is a
continuous random variable because any pH value between 0 and 14 is possible.

• A location in the United States is selected and the height above sea level , Y , is observed.
Then the set of all possible values of Y is the set of all numbers in the interval between
2282 and 14,494.

• The highest temperature of the day, Z, is observed and theoretically speaking, Z could
be any numbers in R.
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Probability Distributions for Continuous Variables

Definition 16. Let X be a continuous random variable. Then the

of X is a function f(x) such that for any two
numbers a and b with a  b,

That is, the probability that X takes on a value in the interval [a, b] is the above
this interval and under the graph of the density function.

For f(x) to be a legitimate pdf, it must satisfy the following two conditions:

1.

2.

Example 51. Consider the reference line connecting the valve stem on a tire to the center
point, and let X be the angle measured clockwise to the location of an imperfection. One
possible pdf for X is

f(x) =

8
<

:

1

360
0  x  360

0 otherwise

Solution.
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NOTE: Because whenever 0  a  b  360 in Example 51, P (a  X  b) depends only on
the width b� a of the interval, X is said to have a uniform distribution.

Definition 17. A continuous random variable X is said to have a
on the interval [A,B] if the pdf of

X is

The graph of any uniform pdf looks like the graph in Figure above except that the interval
of positive density is [A,B] rather than [0, 360].

Recall: When X is a discrete random variable, each possible value is assigned a
probability. This is not true of a continuous random variable because the area under a density
curve that lies above any single value is zero:

The fact that P (X = c) = 0 when X is continuous has an important practical consequence:
The probability that X lies in some interval between a and b does not depend on whether
the lower limit a or the upper limit b is included in the probability calculation:

Example 52. “Time headway” in tra�c flow is the elapsed time between the time that one
car finishes passing a fixed point and the instant that the next car begins to pass that point.
Let X = the time headway for two randomly chosen consecutive cars on a freeway during a
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period of heavy flow. The pdf of X is

f(x) =

(
0.15e�0.15(x�5) x � 0.5

0 otherwise
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Example 53. (Exercise 1 on textbook page 146) The current in a certain circuit is a con-
tinuous random variable X with the following density function:

f(x) =

(
0.075x+ 0.2 3  x  5

0 otherwise

a. Graph the pdf and verify that the total area under the density curve is indeed 1.

b. Calculate P (X  4). How does this probability compare to P (X < 4)?

c. Calculate P (3.5  X  4.5) and also P (4.5 < X).
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4.2 Cumulative Distribution Functions and Expected Values

4.2.1 The Cumulative Distribution Function

Recall: The cumulative distribution function (cdf) F (x) of a discrete random variable X
with pmf p(x) is defined for every number x in R by

F (x) = P (X  x) =
X

y: yx

p(y)

The cdf of a continuous random variable gives the same probabilities P (X  x) and is
obtained by replacing summation by integration.

The cumulative distribution function F (x) for a continuous random variable X is
defined for every number x by

For each x, F (x) is the area under the density curve to the left of x. This is illustrated
in Figure below, where F (x) increases smoothly as x increases.

Example 54. Let X, the thickness of a certain metal sheet, have a uniform distribution on
[A,B]. The density function is shown in Figure below.
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For x < A, F (x) = 0, since there is no area under the graph of the density function to the
left of such an x. For x � B,F (x) = 1, since all the area is accumulated to the left of such
an x. Finally, for A  x  B,

The entire cdf is

The graph of this cdf is

Using F (x) to Compute Probabilities

As for discrete random variables, probabilities of various intervals can be computed from a
formula or table of F (x).

Let X be a continuous random variable with pdf f(x) and cdf F (x). Then for any
number a,

P (X > a) =

and for any two numbers a and b with a < b,

P (a  X  b) =

Figure below illustrates the second part of this proposition; the desired probability is the
shaded area under the density curve between a and b, and it equals the di↵erence between
the two shaded cumulative areas.

74



NOTE: This is di↵erent from a discrete random variable (e.g., binomial or Poisson): P (a 
X  b) = F (b)� F (a� 1) when a and b are integers.

Example 55. Suppose the pdf of the magnitude X of a dynamic load on a bridge (in
newtons) is given by

f(x) =

8
<

:

1

8
+

3

8
x 0  x  2

0 otherwise

For any number x between 0 and 2,

F (x) =

Thus in summary

The graphs of f(x) and F (x) are shown in Figure below.
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The probability that the load is between 1 and 1.5 is

The probability that the load exceeds 1 is

Obtaining f(x) from F (x)

Recall: For X discrete, the pmf is obtained from the cdf by taking the di↵erence between
two F (x) values.

If X is a continuous random variable with pdf f(x) and cdf F (x), then at every x at
which the derivative F 0(x) exists,

This result is a consequence of the Fundamental Theorem of Calculus.

Example 56. (Example 54 continued) When X has a uniform distribution, F (x) is di↵er-
entiable except at x = A and x = B, where the graph of F (x) has sharp corners. Since
F (x) = 0 for x < A and F (x) = 1 for x > B, F 0(x) = 0 = f(x) for such x. For A < x < B,

Percentiles of a Continuous Distribution

When we say that an individual’s test score was at the 85th percentile of the population, we
mean that 85% of all population scores were below that score and 15% were above.
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Definition 18. Let p be a number between 0 and 1. The (100p)th percentile of the
distribution of a continuous random variable X, denoted by ⌘(p), is defined by

According to Definition 18, ⌘(p) is that value such that 100p% of the area under the graph
of f(x) lies to the left of ⌘(p) and 100(1 � p)% lies to the right. Thus ⌘(0.75), the 75th
percentile, is such that the area under the graph of f(x) to the left of ⌘(0.75) is 0.75. Figure
below illustrates the definition.

Example 57. The distribution of the amount of gravel (in tons) sold by a particular con-
struction supply company in a given week is a continuous random variable X with pdf

f(x) =

8
<

:

3

2
(1� x2) 0  x  1

0 otherwise

The cdf of sales for any x between 0 and 1 is

The graphs of both f(x) and F (x) appear in Figure below.
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The (100p)th percentile of this distribution satisfies the equation

For the 50th percentile, p = 0.5, and the equation to be solved is

the solution is

Which means if the distribution remains the same from week to week, then in the long run
50% of all weeks will result in sales of less than 0.347 ton and 50% in more than 0.347 ton.

Definition 19. The median of a continuous distribution, denoted by eµ, is the 50th
percentile, so eµ, satisfies 0.5 = F (eµ). That is, half the area under the density curve is
to the left of eµ and half is to the right of eµ.

A continuous distribution whose pdf is symmetric - the graph of the pdf to the left of some
point is a mirror image of the graph to the right of that point - has median eµ, equal to the
point of symmetry, since half the area under the curve lies to either side of this point. Figure
below gives several examples.
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4.2.2 Expected Values

For a discrete random variable X, E(X) was obtained by summing x · p(x) over possible X
values. Here we replace summation by integration and the pmf by the pdf to get a continuous
weighted average.

Definition 20. The expected or mean value of a continuous random variable X with
pdf f(x) is

NOTE: E(X) is the most frequently used measure of population location or center.

Example 58. (Example 57 continued) The pdf of weekly gravel sales X was

f(x) =

8
<

:

3

2
(1� x2) 0  x  1

0 otherwise

So
E(X) =

Often we wish to compute the expected value of some function h(X) of the random variable
X.

If X is a continuous random variable with pdf f(x) and h(X) is any function of X,
then

E[h(X)] =

Definition 21. The variance of a continuous random variable X with pdf f(x) and
mean value µ is

�2
X = Var(X) =

The standard deviation (SD) of X is

�X =
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The variance and standard deviation give quantitative measures of how much spread there
is in the distribution or population of x values.

Shortcut formula

Example 59. (Example 57 continued) For X = weekly gravel sales, we computed E(X) = 3
8 .

Since
E(X2) =

Then
Var(X) =

and
�X =

When h(X) = aX + b, the expected value and variance of h(X) satisfy the same
properties as in the discrete case:

E[h(X)] =

and
Var[h(X)] =

4.3 The Normal Distribution

The normal distribution is the most important one in all of probability and statistics.

Definition 22. A continuous random variable X is said to have a normal distri-
bution with parameters µ and �2, where �1 < µ < 1 and � > 0, if the pdf of X
is

f(x;µ, �) =

The statement that X is normally distributed with parameters µ and �2 is often

abbreviated
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It can be shown that for X ⇠ N(µ, �2)

E(X) =

and
Var(X) =

Figure below presents graphs of f(x;µ, �2) for several di↵erent (µ, �2) pairs.

• Each density curve is symmetric about µ and bell-shaped, so the center of the bell
(point of symmetry) is both the mean of the distribution and the median.

• The mean µ is a location parameter, since changing its value shifts the density curve.

• �2 is referred to as a scale parameter, because changing its value stretches or compresses
the curve.

• The inflection points of a normal curve (points at which the curve changes from turning
downward to turning upward) occur at µ� � and µ+ �.
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4.3.1 The Standard Normal Distribution

Definition 23. The normal distribution with parameter values µ = 0 and � = 1 is
called the standard normal distribution. A random variable having a standard nor-
mal distribution is called a standard normal random variable and will be denoted
by Z. The pdf of Z is

f(z; 0, 1) =

Appendix Table A.3 gives , the area under the standard normal
density curve to the left of z for selected z’s. Figure below illustrates the type of cumulative
area (probability) tabulated in Table A.3.

Example 60. Let’s determine the following standard normal probabilities:

(a) P (Z  1.25);

(b) P (Z > 1.25);

(c) P (Z  �1.25);

(d) P (�0.38  Z  1.25);

(e) P (Z  5)

Solution.
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4.3.2 Percentiles of the Standard Normal Distribution

For any p between 0 and 1, Appendix Table A.3 can be used to obtain the (100p)th percentile
of the standard normal distribution.

In general, the (100p)th percentile is identified by the row and column of Appendix Table
A.3 in which the entry p is found (e.g., the 67th percentile is obtained by finding .6700 in
the body of the table, which gives z = 0.44).

If p does not appear, the number closest to it is typically used, although linear interpolation
gives a more accurate answer. For example, to find the 95th percentile, look for .9500 inside
the table. Although it does not appear, both .9495 and .9505 do, corresponding to z = 1.64
and 1.65, respectively. Since .9500 is halfway between the two probabilities that do appear,
we will use 1.645 as the 95th percentile.

Example 61. Find the 99th percentile of the standard normal distribution.

Solution.
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Example 62. Determine the value of the constant c that makes the probability statement
correct.

(a) �(c) = 0.9838

(b) P (0  Z  c) = 0.291

(c) P (c  Z) = 0.121

(d) P (�c  Z  c) = 0.668

(e) P (c  |Z|) = 0.016

(f) Find the 6th percentile for the standard normal curve
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4.3.3 z↵ Notation for z Critical Values

Notation: z↵ will denote the value on the z axis for which ↵ of the area under the
z curve lies to the right of z↵. (See Figure below.)

For example, z.10 captures upper-tail area .10, and z.01 captures upper-tail area .01.

Since ↵ of the area under the z curve lies to the right of z↵, 1� ↵ of the area lies to its left.
Thus z↵ is the 100(1 � ↵)th percentile of the standard normal distribution. By symmetry
the area under the standard normal curve to the left of �z↵ is also ↵. The z↵’s are usually
referred to as z critical values.

Example 63.

(a) Find z0.0055

(b) Find z0.6630
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4.3.4 Nonstandard Normal Distributions

When X ⇠ N(µ, �2), probabilities involving X are computed by “standardizing.”

If X has a normal distribution with mean µ and standard deviation �, then

has a standard normal distribution. Thus

By standardizing, any probability involving X can be expressed as a probability involving a
standard normal random variable Z, so that Appendix Table A.3 can be used.

Example 64. (Exercise 33 on textbook page 167) X = maximum speed of a car. A normal
distribution with mean value 46.8 km/h and standard deviation 1.75 km/h is postulated.
Consider randomly selecting a single such car.

a. What is the probability that maximum speed is at most 50 km/h?

b. What is the probability that maximum speed is at least 48 km/h?

c. What is the probability that maximum speed di↵ers from the mean value by at most 1.5
standard deviations?

d. Find the 75th percentile for the max speed.

Solution.
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Part (c) in Example 64 can be answered without knowing either µ or �, as long as the
distribution is known to be normal, the answer is the same for any normal distribution:

Example 65. The breakdown voltage of a randomly chosen diode of a particular type is
known to be normally distributed. What is the probability that a diode’s breakdown voltage
is within 1 standard deviation of its mean value?

Solution.

If the population distribution of a variable is (approximately) normal, then
1. Roughly of the values are within 1 SD of the mean.

2. Roughly of the values are within 2 SDs of the mean.

3. Roughly of the values are within 3 SDs of the mean.

4.3.5 Normal Approximation to the Binomial Distribution

• Let X be a binomial random variable based on n trials with success probability
p. So X ⇠ b(n, p).

• If the binomial probability histogram is not too skewed, and both np and n(1�p)
are � 10.

Then X has approximately a normal distribution with µ = np and � =
p

np(1� p).
Then
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Note: 0.5 is the correction for continuity. Let’s see why we want this correction in the next
example.

Example 66. If X ⇠ b(25, 0.6), We can approximate X with

Therefore,

P (X  13)

while the exact binomial calculation gives:

P (X  13)

The approximation is good! But still can be improved.

Normal approximation with the continuity correction.

Figure above shows that when we use P (Y  13) to approximate P (X  13), the normal
approximation is than the exact binomial value. The area of the bars to
the left of 13.5 gives P (X  13); the area under the curve to the left of 13 gives P (Y  13).

Correction:

P (X  13)

The result is improved greatly!

Summary:
P (X  x) ⇡ P (Y  x+ 0.5)

P (X � x) ⇡ P (Y � x� 0.5)
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Example 67. (Exercise 55 on textbook page 169) Suppose only 75% of all drivers in a certain
state regularly wear a seat belt. A random sample of 500 drivers is selected. What is the
probability that

a. Between 360 and 400 (inclusive) of the drivers in the sample regularly wear a seat belt?

b. Fewer than 400 of those in the sample regularly wear a seat belt?

Solution. Let X = the number of drivers regularly wear a seat belt.
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Example 68. (Exercise 54 on textbook page 169) Suppose that 10% of all steel shafts
produced by a certain process are nonconforming but can be reworked. Consider a random
sample of 200 shafts, and let X denote the number among these that are nonconforming and
can be reworked. What is the (approximate) probability that X is

a. At most 30?

b. Less than 30?

c. Between 15 and 25 (inclusive)?

Solution. X= the number of nonconforming and can be reworked shafts,
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5 Joint Probability Distributions and Random Sam-
ples

5.1 Jointly Distributed Random Variables

There are many experimental situations in which more than one random variables will be
of interest to an investigator. For example, X and Y might be the height and weight,
respectively, of a randomly selected individual.

5.1.1 Two Discrete Random Variables

Recall: The probability mass function (pmf) of a single discrete random variableX specifies
how much probability mass is placed on each possible X value.

The joint pmf of two discrete random variables X and Y describes how much probability

mass is placed .

Definition 24. Let X and Y be two discrete random variables defined on the sample
space S. The joint probability mass function p(x, y) is defined for each pair of numbers
(x, y) by

To make it a valid pmf:

1.

2.

Let A be any particular set consisting of pairs of (x, y) values. Then the probability
P [(X, Y ) 2 A] is

Example 69. The joint pmf is given as

p(x, y) y = 0 y = 1 y = 2
x = 0 0.1 0.04 0.02
x = 1 0.08 0.2 0.06
x = 2 0.06 0.14 0.3
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Question:

a. Is it a valid pmf?

b. Find P (X = 1 and Y = 1).

c. Find P (X  1 and Y  1).

d. Find P (X 6= 0 and Y 6= 0).

Definition 25. The marginal probability mass function of X, denoted by pX(x),
is given by

for each possible value x. Similarly, the marginal probability mass function of Y is

for each possible value y.

The marginal pmf of X gives the distribution of X if it is observed without Y , and the
marginal pmf of Y gives the distribution of Y if it is observed without X,
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Example 70. (Example 69 continued)

e. Find the marginal pmf of X.

f. Find P (X  1).

g. Find the marginal pmf of Y .

Definition 26. Two discrete random variables are independent if for every pair of
(x, y), we have

If p(x, y) 6= pX(x) ·pY (y) for at least one pair of (x, y), then X and Y are dependent.
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Example 71. (Example 69 continued)

h. Are X and Y independent?

i. Find P (X < Y ).

j. Find P (5X + Y  7).

k. Find E(X).

l. Find E(Y ).
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5.2 Expected Values, Covariance, and Correlation

LetX and Y be jointly distributed random variables with pmf p(x, y). Let h : R2 �! R
be any function. Then the expected value of h(X, Y ), denoted by E[h(X, Y )] is given
by

For example, E(XY ) =

5.2.1 Covariance

When two random variables X and Y are not independent, it is frequently of interest to
assess if the two random variables are linearly dependent and if so, how strongly they are
related to one another.

Definition 27. The covariance is a measure of the strength between two random

variables X and Y of , which is defined as

Example 72. The joint and marginal pmf’s for X = automobile policy deductible amount
and Y = homeowner policy deductible amount are

y
p(x, y) 500 1000 5000
100 0.3 0.05 0

x 500 0.15 0.20 0.05
1000 0.10 0.10 0.05

x 100 500 1000
pX(x) 0.35 0.4 0.25

y 500 1000 5000
pY (y) 0.55 0.35 0.10

Find the Cov(X, Y ).

Solution.
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5.2.2 Correlation

Note: The unit of the covariance are squared and thus it is di�cult to interpret.

The correlation coe�cient, ⇢, divides the covariance by its maximum value to give a measure
of linear strength between the values of �1 and 1.

The correlation coe�cient ofX and Y , denoted by corr(X, Y ), ⇢X,Y , or just ⇢, is defined
by

Example 73. (Example 72 continued) It is easily verified that

Properties of covariance and correlation

1. Covariance and correlation both measure the strength of the
between X and Y .

2. If the covariance and correlation are both> 0, thenX and Y have a ,
i.e., as X increases, Y increases as well.

3. If the covariance and correlation are both< 0, thenX and Y have a ,
i.e., as X increases, Y decreases.

Figure:
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4. If the covariance and correlation are ⇡ 0, then there is
between X and Y .

5. For any two random variables X and Y , �1  ⇢  1.

6. If a and c are either both positive or both negative,

7. If X and Y are independent or uncorrelated, then , but ⇢ = 0 does not
imply independence. It just means that there is no linear association between X and Y .
But it can also mean that X and Y may have a non-linear association.

8. ⇢ = 1 or �1 if and only if for some numbers a and b
with a 6= 0.

5.3 Statistics and Their Distributions

Definition 28. The random variables X1, X2, · · · , Xn are said to form a (simple) random
sample of size n if

1.

2.

Consider taking a random sample from a population, and compute the sample mean, y, for
the observations.

• Because the sample is , the observations will also be .

Hence, y will also be .

• Because y is random, it has a associated with it. This

distribution plays an important role in drawing conclusion about the population, This

is what we called
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Definition 29. A statistic is any quantity whose value can be calculated from

. Prior to obtaining data, there is uncertainty as to

what value of any particular statistic will result. Therefore, a statistic is a

.

Examples: the sample mean y, the sample median y, the sample standard deviation s, etc.
are all statistics.

Definition 30. The distribution of the statistics is called the
of the statistics.

5.4 The Distribution of the Sample Mean

The importance of the sample mean X arises from its use in drawing conclusions about

.

Let X1, X2, · · · , Xn be a random sample from a distribution with mean µ and standard
deviation �. Then

• E(X)

• Var(X)

• The distribution of X becomes more concentrated about µ as ,
i.e. averaging moves probability in toward the middle.

NOTE: The standard deviation �X is often called the standard error of the mean; it
describes the magnitude of a typical or representative deviation of the sample mean from the
population mean.

NOTE: These formulas are true for any distribution.
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Example 74. The inside diameter of a randomly selected piston ring is a random variable
with mean value 12cm and standard deviation 0.04cm.

a. If X is the sample mean diameter for a random sample of n = 16 rings, where is the sam-
pling distribution of X centered, and what is the standard deviation of the X distribution?

b. Answer the questions posted in part (a) for a sample size of n = 64 rings.

c. For which of the two random samples, the one of part (a) or the one of part (b), is X
more likely to be within 0.01cm of 12cm? Explain your reasoning.

Solution.
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5.4.1 Samples from Normal Distribution

Let X1, X2, · · · , Xn be a random sample from a normal distribution with mean µ and
standard deviation �. Then for any n, X is

Example 75. (Example 74 continued) For the random sample in part (a), suppose Xi’s
are normally distributed, what is the probability that X is within one standard error of the
mean?

Solution.
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5.4.2 The Central Limit Theorem

When the Xi’s are normally distributed, so is X for any sample size n. Even when the
population distribution is highly non-normal, if n is large, a normal curve will approximate
the actual distribution of X.

The Central Limit Theorem (CLT)
Let X1, X2, · · · , Xn be a random sample from any distribution with mean µ and vari-
ance �2. Then if n is su�ciently large,

•

•

•

In summary,
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Figure above illustrates the Central Limit Theorem. According to the CLT, when n is large
and we wish to calculate a probability such as P (a  X  b), we need only “pretend” that
X is normal, standardize it, and use the normal table.

Example 76. Suppose that a certain type of cable strength is normally distributed with
mean µ = 450lb and sd=� = 50lb.

(a) Find the probability that the strength of the cable is greater than 536lbs.

(b) Let X = the mean strength for a sample of 9 cables. Find the shape, mean and sd of X.
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(c) Find the probability that the sample mean of 9 cables will be between 423lbs and 480
lbs.

(d) Suppose we have 35 cables, find P (X < 428).

(e) Suppose that the population is not normal (or unknown)

• Can we still solve part(a)?

• Can we still solve part (c)?

• Can we still solve part (d)?
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5.5 The Distribution of a Linear Combination

Definition 31. Given a collection of n random variables X1, · · · , Xn and n numerical
constants a1, · · · , an, the random variable

is called a linear combination of the Xi’s.

Taking a1 = a2 = · · · = an = 1 gives

Taking a1 = a2 = · · · = an = 1
n gives

Let X1, X2, · · · , Xn have mean values µ1, µ2, · · · , µn, respectively and variances �2
1,

�2
2, · · · , �2

n, respectively.

1. Whether or not the Xi’s are independent,

2. If X1, · · · , Xn are independent,

The Case of Normal Random Variables

If X1, X2, · · · , Xn are independent normally distributed random variables (with
possibly di↵erent means and variances), then any linear combination of Xi’s is

with mean and variance as given earlier.

Example 77. (From homework)

I have two errands to take care of on campus. Let X1 and X2 represent the times that it
takes for the first and second errands, respectively. Let X3 = the total time in minutes that
I spend walking to and from my o�ce and between the errands. Suppose that X1, X2, X3

are independent and normally distributed with µ1= 15, �1 = 4, µ2 = 5, �2 = 1, µ3= 12, and
�3=3.
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(a) Find the chance that the total time I am away from my o�ce is less than 45 minutes, i.e.
find P (X1 +X2 +X3 < 45).

(b) Find the probability of the average amount of time it takes less than 12 minutes.

(c) Find the probability P (X1 �X3 > 0).
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7 Statistical Intervals Based on a Single Sample

Consider a population with an unknown parameter µ, the mean.

• for µ is a single value that can be considered as a
sensible estimate for µ.

• The point estimate is obtained by taking a representative sample and use the corre-
sponding statistics, x.

• Because of sampling variability, it is virtually never the case where x = µ.

• The statistics x does not give any information about how close x is to µ. Thus, we
need to consider the around µ.

• An alternative way to a point estimate for µ is to report
of plausible values, called .

• A confidence interval reports a range of values where µ is likely to fall.

• A confidence interval depends on ↵, where (1�↵)100% is ,
which is a measure of the degree of reliability of the interval. A confidence level of 95%
implies that 95% of all samples would give an interval that includes µ.

7.1 Basic Properties of Confidence Intervals

Suppose X1, · · · , Xn is a random sample of size n. Suppose that the unknown parameter of
interest is the population mean µ.

1.

2.

Then,
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Note: � and n are known, but X is unknown since we did not take the sample yet.

This interval is random because the two endpoints of the interval involve a random variable.
The interval’s width is 2 · (1.96) · �/

p
n, a fixed number; only the location of the interval (its

midpoint X) is random.

In general, for all CI:
estimate ± critical value · � estimate

Example 78. (Exercises 1 on textbook page 284) Consider a normal population distribution
with the value of � known.

Question: What is the confidence level for the interval x± 2.81�/
p
n?
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Example 79. Consider a normal population distribution with the value of � = 3.

Question: What is the 95% for the population mean, µ, when n = 25 and x = 58.3?

Example 80. A sample of n = 31 trained typists was selected, and the preferred keyboard
height was determined for each typist. The resulting sample average preferred height was
x = 80.0 cm. Assuming that the preferred height is normally distributed with � = 2.0 cm,
obtain the 95% confidence interval for µ, the true average preferred height for the population
of all experienced typists.

Solution.

NOTE: How to interpret a CI?

Choosing a level of confidence:

• The precision of the CI refers to the width, w, of the interval. The more
a CI is, the its width. Because the smaller width implies the interval
identifies fewer value µ.

• The reliability of a CI refers to its CL. The more the CI is, the
you are to the population mean.

• As the CL , the width of the interval also . So less
precision implies more reliable.

• As the CL , the width of the interval also . So more
precision implies less reliable.
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Question: How do we balance precision and reliability?

Answer: Specify both CL and interval width, then determine the
as needed. Suppose we have a normal population where � is known. Then

Example 81. A new operating system has been installed, and we wish to estimate the true
average response time µ for the new environment. Assuming that response time is normally
distributed with � = 25 millisec, what sample size is necessary to ensure that the resulting
95% CI has a width of (at most) 10?

Solution.

7.2 Large-Sample Confidence Intervals for a Population Mean and
Proportion

The CI for µ given in the previous section assumed that the population distribution is
with the value of . We now present a

whose validity does not require these assumptions.

7.2.1 A Large-Sample Interval for µ

Let X1, X2, · · · , Xn be a random sample from a population having a mean µ and standard de-
viation �. Provided that n is su�ciently large, the
implies that X has approximately a distribution whatever the nature of the
population distribution. It then follows that has approximately a
standard normal distribution, so that
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A practical di�culty with this development is that computation of the CI requires the value
of , which will rarely be known. Consider replacing the population standard
deviation � by the , which gives

If n is su�ciently large, the standardized variable

has approximately a standard normal distribution. This implies that

is a large-sample confidence interval for µ with confidence level approximately 100(1�
↵)%. This formula is valid regardless of the shape of the population distribution.
NOTE: will be su�cient to justify the use of this interval.

Example 82. A random sample of 110 lightning flashes in a certain region resulted in a
sample average radar echo duration of 0.81 sec and a sample standard deviation 0.34 sec.
Calculate a 99% (two-sided) confidence interval for the true average echo duration µ, and
interpret the resulting interval.

Solution.
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7.2.2 A confidence Interval for a Population Proportion

Consider a population whose members can be divided into 2 separate groups. Let p be the
population proportion or the true proportion, which is unknown. To estimate p, we use

where
X = the number of people in the sample who have a given characteristic, n = sample size.

• X follows a .

• Furthermore, if both np � 10 and n(1 � p) � 10, X has approximately a
distribution.

• Since p̂ is just X multiplied by the constant 1
n , p̂ also has approximately a

distribution with mean

E(p̂)

and variance

Var(p̂)

• If n > 40, then a CI for the proportion p is

Since in general, for all CI:

estimate ± critical value · � estimate

Example 83. (Exercise 21 on textbook page 294) In a sample of 1000 randomly selected
consumers who had opportunities to send in a rebate claim form after purchasing a product,
250 of these people said they never did so. Calculate an upper confidence bound at the
95% confidence level for the true proportion of such consumers who never apply for a rebate.
Based on this bound, is there compelling evidence that the true proportion of such consumers
is smaller than 1/3? Explain your reasoning.

Solution.
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7.2.3 Sample Size Consideration

Again, if we specify our confidence level (i.e. the reliability) and the width w of the CI (i.e.
the precision), then the “smallest” sample size can be found as

Example 84. (Exercise 25 on textbook page 294) A state legislator wishes to survey residents
of her district to see what proportion of the electorate is aware of her position on using state
funds to pay for abortions.

a. What sample size is necessary if the 95% CI for p is to have a width of at most 0.1
irrespective of p?

b. If the legislator has strong reason to believe that at least 2/3 of the electorate know of
her position, how large a sample size would you recommend?

Solution.
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7.3 Intervals Based on a Normal Population Distribution

We know how to estimate µ when n is large. But what should we do when n is small?

Assumptions:

(1) The population of interest has to be normal.

(2) Population mean, µ, is unknown.

(3) Population SD, �, is unknown.

Theorem 7.1. When X is the mean of a random sample of size n from a
distribution with mean µ, then the random variable

has a probability distribution called

Properties of t distribution:

Let t⌫ denote the t distribution with ⌫ df.

1. Each t⌫ curve is .

2. Each t⌫ curve is more spread out than the .

3. As ⌫ , the spread of the corresponding t⌫ curve .

4. As ⌫ ! 1, the sequence of t⌫ curves approaches .
Usually when n > 30, then we can use the z curve.
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Notation:
Let t↵,⌫ = the number on the x�axix for which the area under the t⌫ curve to the

of t↵,⌫ is ↵. t↵,⌫ is called a .

Example 85. (HW question 8) Given the sample size n = 15 and the confidence level is
90%. Assume � is unknown. Find the t↵/2 critical value for the confidence interval x±t↵/2

sp
n .

Solution.

Let x and s be the sample mean and sample standard deviation computed from the
results of a random sample from a population with mean µ. Then a 100(1�
↵)% confidence interval for µ is

Example 86. (HW question 9) A random sample of 10 brands of vanilla yogurt was selected
and the calorie count per serving was recorded, resulting in the following data:

130, 160, 150, 120, 120, 110, 170, 160, 110, 90

Calculate a 90% confidence interval to estimate the true mean calorie count.

Solution.
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Summary:
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8 Tests of Hypotheses Based on a Single Sample

A parameter can be estimated from sample data either by a single number (a point estimate)
or an entire interval of plausible values (a confidence interval). Frequently, however, the
objective of an investigation is not to estimate a parameter but to decide which of two
contradictory claims about the parameter is correct. Methods for accomplishing this is called

.

8.1 Hypotheses and Test Procedures

A hypothesis is

Examples:

• The claim µ = 0.75, where µ is the true average inside diameter of a certain type of
PVC pipe.

• The statement p = 0.1, where p is the proportion of defective circuit boards among all
circuit boards produced by a certain manufacturer.

In any hypothesis-testing problem, there are
under consideration.

• One hypothesis might be the claim µ = 0.75 and the other µ 6= 0.75.

• One hypothesis might be the claim p = 0.1 and the other p < 0.1.

8.1.1 Test Procedures

The objective is to decide, based on sample information, which of the two hypotheses is
correct.

is the claim that is initially
assumed to be true.

is the assertion that is
contradictory to H0.
The null hypothesis will be rejected in favor of the alternative hypothesis only if sample
evidence suggests that H0 is false. If the sample does not strongly contradict H0, we
will continue to believe in the plausibility of the null hypothesis.
The two possible conclusions from a hypothesis-testing analysis are

.
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is a method for using sample data to decide whether the
null hypothesis should be rejected.

Step 1:

The null hypothesis, H0, (in STAT 300)

-

-

The alternative hypothesis, HA,

-

-

For example, suppose the true average time to pain relief for the current best-selling pain
reliever is known to be 15 minutes. A new formulation has been developed that it is hoped
will reduce this time. The relevant hypotheses are H0 : µ = 15 versus HA : µ < 15, where µ
is the true average time to relief using the new formulation.

-

•

•

•

NOTE:

1. The only di↵erence between the null hypothesis H0 and HA is the sign in the middle.

2. Only one hypothesis can be true in a given situation.

Example 87. (From HW) Determine whether or not each of the following is a valid pair of
hypotheses.

(a) H0 : x = 5 vs HA : x < 5

(b) H0 : p = 0.7 vs HA : p 6= 0.7

(c) H0 : µ = 5 vs HA : µ � 5
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(d) H0 : p = 0.3 vs HA : p = 0.5

(e) H0 : µ = 5 vs HA : µ < 5

Step 2:

Suppose we want to test a population mean µ.

Example 88. We know that the national average on a standardized math exam is 50 points.
The test average for a random sample of 100 second-graders is 54 points with a sd of 10
points.

Question: Are the second-graders smarter than the national average?

Step 1:

Step 2:

Step 3:

In order to find the RR, we need:

(1) , (for our example, we need the
distribution of X).

(2) , usually given to you. If ↵ is not
given, always assume .

Example 88 continued. Say 1% significant level,

Step 4:
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Example 88 continued.

Step 5: Decision.

The decision always has to be a statement about H0. We reject H0 or we fail to reject H0

based on where our test statistic falls in relationship to our RR.

Example 88 continued.

Example 89. (From HW) Determine whether or not each of the following statements is
correct.

(a) The value of the test statistic does not lie in the rejection region. Therefore, we accept
the null hypothesis.

(b) The value of the test statistic lies in the rejection region. Therefore, there is su�cient
evidence to suggest the alternative hypothesis is true.

(c) The value of the test statistic does not lie in the rejection region. Therefore, there is
evidence to suggest the null hypothesis is true.

(d) The value of the test statistic does not lie in the rejection region. Therefore, there is
insu�cient evidence to suggest the alternative hypothesis is true.

8.1.2 Errors in Hypothesis Testing

A type I error

A type II error

Example 90.

1) H0 : µ = 100 (This is true) vs HA : µ > 100. If our test fails to reject H0,

2) H0 : µ = 100 (This is true) vs HA : µ > 100. If our test reject H0,
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Usually ↵ is given in our test. If ↵ is not given, we use ↵=0.05.

3) H0 : µ = 100 vs HA : µ > 100 (This is true). If our test fails to reject H0,

4) H0 : µ = 100 vs HA : µ > 100 (This is true). If our test reject H0,

Example 91. Water samples are taken from water used for cooling as it is being discharged
from a power plant into a river. It has been determined that as long as the mean temperature
of the discharged water is at most 150�F , there will be no negative e↵ects on the river’s
ecosystem. To investigate whether the plant is in compliance with regulations that prohibit
a mean discharge water temperature above 150�F , 50 water samples will be taken at randomly
selected times and the temperature of each sample recorded. The resulting data will be used
to test the hypotheses H0 : µ = 150 versus HA : µ > 150. In the context of this situation,
describe type I and type II errors.

Solution.

Step 6: “Based on our evidence, at ↵ significant level, we conclude that
· · · ”

Example 92. (Exercise 19 on textbook page 333) The melting point of each of 16 samples
of a certain brand of hydrogenated vegetable oil was determined, resulting in x = 94.32.
Assume that the distribution of the melting point is normal with � = 1.2.

Question: Test H0 : µ = 95 versus HA : µ 6= 95 using a two-tailed level 0.01 test.

Solution.
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8.2 z Tests for Hypotheses about a Population Mean

8.2.1 A normal Population distribution with Known �

Null Hypothesis:
Test statistic:

Significant level: ↵
Alternative Hypothesis:

Assumptions:

Example 93. A manufacturer of sprinkler systems used for fire protection in o�ce buildings
claims that the true average system-activation temperature is 130�F. A sample of n = 9
systems yields a sample average activation temperature of 131.08�F. If the distribution of
activation times is normal with standard deviation 1.5�F, does the data contradict the
manufacturer’s claim at significance level ↵ = 0.01?

Solution.
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Example 94. The desired percentage of SiO2 in a certain type of aluminous cement is 5.5.
To test whether the true average percentage is 5.5 for a particular production facility, 16
independently obtained samples are analyzed. Suppose that the percentage of SiO2 in a
sample is normally distributed with � = 0.3 and that x = 5.25.

Does this indicate conclusively that the true average percentage di↵ers from 5.5?

Solution.

125



8.2.2 Large-Sample Tests

When the sample size is large, the foregoing z tests are easily modified to yield valid test
procedures without requiring either a normal population distribution or known �.

When we have a large sample n > 30, X is approximately normal, � is unknown, then
we use the test statistic

Example 95. (HW #6) The biological dessert in the Gulf of Mexico called the Dead Zone
is a region in which there is very little or no oxygen. Most marine life in the Dead Zone dies
or leaves the region. The area of this region varies and is a↵ected by agriculture, fertilizer
runo↵, and weather. The long-term mean area of the Dead Zone is 5960 square miles. As
a result of recent flooding in the Midwest and subsequent runo↵ from the Mississippi River,
researchers believe that the Dead Zone area will increase. A random sample of 50 days was
obtained and the sample mean area of the Dead Zone was 6759 mi2 with a sample standard
deviation of 1850 mi2. Does the sample provide enough evidence to confirm the researchers’
belief? Test using ↵ = 0.025.

Solution.
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Example 96. Suppose that for a particular application it is required that the true average
DCP value for a certain type of pavement be less than 30. The pavement will not be
used unless there is conclusive evidence that the specification has been met. A descriptive
summary obtained from a sample of n = 52 data shows that the sample mean x = 28.76 and
the sample sd s = 12.2647. Let’s state and test the appropriate hypotheses for the use of the
pavement.

Solution.
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8.3 The One-Sample t Test

When n is small, the Central Limit Theorem (CLT) can no longer be invoked to justify the

use of a large-sample test. Our approach here is

and describing test procedures whose
validity rests on this assumption.

Hypothesis test for µ when:
1. sample size is small
2. X follows normal distribution
3. � is unknown
Then the test statistic

T =
X � µ

S/
p
n

has a t distribution with n� 1 degrees of freedom (df).
Null hypothesis: H0 : µ = µ0

Significant level: ↵
Alternative Hypothesis:
HA : µ > µ0 RR: T � tn�1,↵ upper-tail test
HA : µ < µ0 RR: T  �tn�1,↵ lower-tail test
HA : µ 6= µ0 RR: |T | � tn�1,↵/2 two-tail test

Example 97. (HW #7) Light bulbs of a certain type are advertised as having an average
lifetime of 750 hours. The price of these bulbs is very favorable and so a potential customer
has decided to go ahead with the purchase unless it can be conclusively demonstrated that
the true average lifetime is smaller than what is advertised. A random sample of 20 bulbs
was selected and the lifetime of each was recorded. Suppose that the sample mean was 738.4
hours with a sample standard deviation of 41.2 hours. Does the sample provide evidence
that the true mean lifetime is less than 750? Assume lifetimes vary according to a normal
distribution and test using ↵ = 0.10.

Solution.
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Example 98. After a 24-hour smoking abstinence, each of 20 smokers was asked to estimate
how much time had elapsed during a 45-second period. The collected elapsed time gives
sample mean x = 59.3 sec and sample sd s = 9.84 sec. Assume the data follows a normal
distribution. Let’s carry out a test of hypotheses at significance level 0.05 to decide whether
true average perceived elapsed time di↵ers from the known time 45 sec.

Solution.
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8.4 Tests Concerning a Population Proportion

Let p denote the proportion of individuals or objects in a population who possess a specified
property (e.g., college students who graduate without any debt, or computers that do not
need service during the warranty period). If an individual or object with the property is
labeled a success (S), then p is .

X (the number of S’s in the sample) has approximately .
Furthermore, if n is large [np � 10 and n(1� p) � 10], both X and the estimator p̂ = X

n are
approximately .

For the estimator p̂ = X
n , we have

It follows that when n is large and H0 : p = p0 is true, the test statistic

has approximately .

Null hypothesis: H0 : p = p0
Test statistic

Z =
p̂� p0q
p0(1�p0)

n

Significance level : ↵
Alternative Hypothesis:
HA : p > p0 RR: Z � z↵ upper-tailed test
HA : p < p0 RR: Z  �z↵ lower-tailed test
HA : p 6= p0 RR: |Z| � z↵/2 two-tailed test
These test procedures are valid provided that

np0 � 10 and n(1� p0) � 10

Example 99. The use of a phone to text during an exam is a serious breach of conduct.
One article reported that 27 of the 267 students in a sample admitted to doing this. Can it
be concluded at significance level 0.001 that more than 5% of all students in the population
sampled had texted during an exam?

Solution.
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Example 100. A plan for an executive travelers’ club has been developed by an airline
on the premise that 5% of its current customers would qualify for membership. A random
sample of 500 customers yielded 40 who would qualify. Using this data, test at level 0.01 the
null hypothesis that the company’s premise is correct against the alternative that it is not
correct.

Solution.
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Section 8.1: P -value

One way to report the result of a hypothesis test is using .

Definition 32. The P -value is , calculated
, of obtaining a value of the test

statistic at least as the value calculated
from the available sample data.

A conclusion is reached in a hypothesis testing analysis by comparing the P -value with the
specified significant level ↵.

1. P -value  ↵ =)

2. P -value > ↵ =)

P -value for z Test:

Example 92 continued : The melting point of each of 16 samples of a certain brand
of hydrogenated vegetable oil was determined, resulting in x = 94.32. Assume that the
distribution of the melting point is normal with � = 1.2.

Question: Test H0 : µ = 95 versus HA : µ 6= 95 using a two-tailed level 0.01 test.

Solution. Given n = 16, x = 94.32, � = 1.2, X ⇠ N(µ, � = 1.2).So

X ⇠ N

✓
µ,

�p
n
=

1.2

4
= 0.3

◆

Step 1: H0 : µ = 95 versus HA : µ 6= 95 Note, this is a two tail test.

Step 2: Assume the null is true, i.e.

X ⇠ N (95, 0.3)

Step 3: Since ↵ = 0.01, so from the z-table we have the critical values are

z↵/2 = 2.57, �z↵/2 = �2.57
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Thus, the RR = we will reject H0 is |z| � 2.57.

Step 4: Test statistic

z =
x� µX

�X

=
94.32� 95

0.3
= �2.27

Step 5: Decision: we fail to reject H0.

Step 6: Conclusion: Bases on our evidence at ↵ = 0.01 or at the 1% significance level, we
cannot conclude that the average melting point is di↵erent from 95�F.

Let’s achieve the same conclusion by calculating the P -value.

Example 93 continued : A manufacturer of sprinkler systems used for fire protection
in o�ce buildings claims that the true average system-activation temperature is 130�F. A
sample of n = 9 systems yields a sample average activation temperature of 131.08�F. If the
distribution of activation times is normal with standard deviation 1.5�F, does the data
contradict the manufacturer’s claim at significance level ↵ = 0.01?

Solution.

Step 1:

Hypothesis: H0 : µ = 130 vs HA : µ 6= 130

Step 2: Assume H0 is true

Step 3: From the z-table, we have �(2.575) = 0.995 = 1 � ↵/2. Thus, the critical value is
z0.005 = 2.575, the RR for a two-tail test is: reject H0 if |Z| > 2.575.

Step 4: Test statistic

Z =
X � µ0

�/
p
n

=
131.08� 130

1.5/
p
9

= 2.16

Step 5: Decision: since Z = 2.16 < 2.575, so we fail to reject H0.

Step 6: Conclusion: Based on our evidence at ↵= 0.01, we conclude that the data does not
give strong support to the claim that the true average di↵ers from the design value of 130.
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Let’s achieve the same conclusion by calculating the P -value.

Example 94 continued : The desired percentage of SiO2 in a certain type of aluminous
cement is 5.5. To test whether the true average percentage is 5.5 for a particular production
facility, 16 independently obtained samples are analyzed. Suppose that the percentage of
SiO2 in a sample is normally distributed with � = 0.3 and that x = 5.25.

Does this indicate conclusively that the true average percentage di↵ers from 5.5?

Solution.

Step 1: Hypothesis: H0 : µ = 5.5 vs HA : µ 6= 5.5

Step 2: Assume H0 is true.

Step 3: Since part (a) does not specify a significant level, so we use ↵ = 0.05 for this two-tailed
test. From the z-table we have �(1.96) = 0.975 which give the critical value z0.025 = 1.96.
So RR: we reject H0 if |Z| � 1.96.

Step 4: Test statistic

Z =
x� µ0

�/
p
n

=
5.25� 5.5

0.3/
p
16

= �3.33

Step 5: Decision: since |Z| = 3.33 > 1.96, we reject H0.

Step 6: Conclusion: Based on our evidence at ↵= 0.05, we conclude that the true average
percentage di↵ers from 5.5.

Let’s achieve the same conclusion by calculating the P -value.
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Example 95 continued : The biological dessert in the Gulf of Mexico called the Dead Zone
is a region in which there is very little or no oxygen. Most marine life in the Dead Zone dies
or leaves the region. The area of this region varies and is a↵ected by agriculture, fertilizer
runo↵, and weather. The long-term mean area of the Dead Zone is 5960 square miles. As
a result of recent flooding in the Midwest and subsequent runo↵ from the Mississippi River,
researchers believe that the Dead Zone area will increase. A random sample of 50 days was
obtained and the sample mean area of the Dead Zone was 6759 mi2 with a sample standard
deviation of 1850 mi2. Does the sample provide enough evidence to confirm the researchers’
belief? Test using ↵ = 0.025.

Solution. Given information µ = 5960, n = 50, x = 6759, s = 1850, ↵ = 0.025.

Step 1: H0 : µ = 5960 vs HA : µ > 5960 (right tail test)

Step 2: Assume H0 is true.

Step 3: From z-table, we have �(1.96) = 0.975, so the critical value z0.025 = 1.96. We will
reject H0 if Z is greater than 1.96. RR: Z � 1.96

Step 4:

z =
x� µX

s/
p
n

= 3.05

Step 5: Decision: we reject H0.

Step 6: Conclusion: Based on our evidence at ↵ = 0.025, we conclude that the area of the
Dead zone was increased.

Let’s achieve the same conclusion by calculating the P -value.

Example 96 continued : Suppose that for a particular application it is required that the
true average DCP value for a certain type of pavement be less than 30. The pavement will not
be used unless there is conclusive evidence that the specification has been met. A descriptive
summary obtained from a sample of n = 52 data shows that the sample mean x = 28.76 and
the sample sd s = 12.2647. Let’s state and test the appropriate hypotheses for the use of the
pavement.

Solution.

Step 1: Hypothesis: H0 : µ = 30 vs HA : µ < 30
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So the pavement will not be used unless the null hypothesis is rejected.

Step 2: Assume the H0 is true.

Step 3: The significant level is not specified, so we use ↵ = 0.05. Since we have a lower-
tail test and �(1.645) = 0.95, the critical value is �z0.05 = �1.645. RR: we reject H0 if
Z  �1.645.

Step 4: Test statistics

Z =
x� µ0

s/
p
n

=
28.76� 30

12.2647/
p
52

= �0.73

Step 5: Decision: since Z = �0.73 > �1.64, we fail to reject H0.

Step 6: Conclusion: Based on our evidence at ↵= 0.05, we conclude that the use of the
pavement is not justified.

Let’s achieve the same conclusion by calculating the P -value.

Example 97 continued : Light bulbs of a certain type are advertised as having an average
lifetime of 750 hours. The price of these bulbs is very favorable and so a potential customer
has decided to go ahead with the purchase unless it can be conclusively demonstrated that
the true average lifetime is smaller than what is advertised. A random sample of 20 bulbs
was selected and the lifetime of each was recorded. Suppose that the sample mean was 738.4
hours with a sample standard deviation of 41.2 hours. Does the sample provide evidence
that the true mean lifetime is less than 750? Assume lifetimes vary according to a normal
distribution and test using ↵ = 0.10.

Solution. Given information µ = 750, n = 20, x = 738.4, s = 41.2, ↵ = 0.1.

Step 1: H0 : µ = 750 vs HA : µ < 750 (lower-tail test)

Step 2: Assume H0 is true.

Step 3: From t-table, we have tn�1,↵ = t19,0.1 = 1.328. Since we have a left tail test, so
the critical value is �t19,0.1 = �1.328. We will reject H0 if T is smaller than -1.328. RR:
T  �1.328
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Step 4:

t =
x� µX

s/
p
n

= �1.259 > �1.328

Step 5: Decision: we fail to reject H0.

Step 6: Conclusion: Based on our evidence at ↵ = 0.1, we conclude that the sample does not
have enough evidence to show the true mean bulb lifetime is less than 750 hours.

Let’s achieve the same conclusion by calculating the P -value.

Example 98 continued : After a 24-hour smoking abstinence, each of 20 smokers was asked
to estimate how much time had elapsed during a 45-second period. The collected elapsed
time gives sample mean x = 59.3 sec and sample sd s = 9.84 sec. Assume the data follows a
normal distribution. Let’s carry out a test of hypotheses at significance level 0.05 to decide
whether true average perceived elapsed time di↵ers from the known time 45 sec.

Solution. µ = true average perceived elapsed time for all smokers.

Hypothesis: µ = 45 vs µ 6= 45

Test statistic:

T =
x� µ

s/
p
n
=

59.3� 45

9.84/
p
20

= 6.5

Rejection Region: Since we have a two-tailed test , so we reject H0 if |T | � tn�1,↵/2 =
t19,0.025 = 2.093.

Decision: Since T = 6.5 � 2.093, we reject H0.

Conclusion: Based on our evidence at ↵ = 0.05, we conclude that the true average perceived
elapsed time is evidently something other than 45.

Let’s achieve the same conclusion by calculating the P -value.
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Example 99 continued : The use of a phone to text during an exam is a serious breach
of conduct. One article reported that 27 of the 267 students in a sample admitted to doing
this. Can it be concluded at significance level 0.001 that more than 5% of all students in the
population sampled had texted during an exam?

Solution. The parameter of interest is the proportion p of the sampled population that has
texted during an exam.

Step 1: Hypothesis: H0 : p = 0.05 vs HA : p > 0.05

Step 2: Assume H0 is true and check conditions:

np0 = (267)(0.05) = 13.35 � 10 and n(1� p0) = (267)(0.95) = 253.65 � 10

the large-sample z test can be used.

Step 3: Since it is the upper-tail test, from the z-table we have the critical value is z0.001 = 3.1
which give RR : reject H0 if Z � 3.1.

Step 4: Since p̂ = 27
267 = 0.1011, then the test statistic

Z =
p̂� p0q
p0(1�p0)

n

=
0.1011� 0.05q

(0.05)(0.95)
267

= 3.84

Step 5: Decision: we reject H0.

Step 6: Conclusion: Based on our evidence at ↵ = 0.001, we conclude that the evidence for
concluding that the population percentage of students who text during an exam exceeds 5%
is very compelling.

Let’s achieve the same conclusion by calculating the P -value.

Example 100 continued : A plan for an executive travelers’ club has been developed by
an airline on the premise that 5% of its current customers would qualify for membership. A
random sample of 500 customers yielded 40 who would qualify. Using this data, test at level
0.01 the null hypothesis that the company’s premise is correct against the alternative that it
is not correct.

Solution.
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Hypothesis: H0 : p = 0.05 vs HA : p 6= 0.05

Test statistic:

p̂ =
40

500
= 0.08

Z =
p̂� p0q
p0(1�p0)

n

=
0.08� 0.05q

(0.05)(0.95)
500

= 3.0779

Rejection Region: ↵ = 0.01 and we have a two tailed test here, so the critical value is

z↵/2 = z0.005 = 2.575

So we reject H0 when |Z| � 2.575.

Decision: since Z = 3.0779 � 2.575, we reject H0.

Conclusion: Based on our evidence at ↵ = 0.01, we conclude that the company’s premise is
not correct.

Let’s achieve the same conclusion by calculating the P -value.
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9 Inferences Based on Two Samples

Chapters 7 and 8 presented confidence intervals (CI’s) and hypothesis-testing procedures for a
single mean µ, and a single proportion p. Chapter 9 extend these methods to situations involv-
ing the means, proportions, and variances of .

9.1 z Tests and Confidence Intervals for a Di↵erence Between Two
Population Means

The inferences discussed in this section concern
.

Basic Assumptions:

• Suppose we have a random sample from population 1 with mean , pop-
ulation standard deviation , sample size , sample mean , and
sample standard deviation .

• Suppose we have a random sample from population 2 with mean , pop-
ulation standard deviation , sample size , sample mean , and
sample standard deviation .

• The two samples are of one another.

The natural estimator of µ1�µ2 is , the di↵erence between the corresponding
. Inferential procedures are based on this estimator,

so we need expressions for the expected value and standard deviation of X1 �X2.

Let the random variable Y = X1 �X2, then

141

Lec 28
-



9.1.1 Test Procedures for Normal Populations with Known Variances

Assume that both population distributions are and the values of
. Thus the di↵erence X1�X2 is also

distributed, with expected value and standard deviation given previ-
ously. Standardizing X1 �X2 gives the standard normal variable

Null Hypothesis:
Test statistic:

Significance level:
Alternative Hypothesis:

Assumptions:

•

•

•

P -value for z Test:
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Example 101. Analysis of a random sample consisting of m = 20 specimens of cold-rolled
steel to determine yield strengths resulted in a sample average strength of x = 29.8 ksi. A
second random sample of n = 25 two-sided galvanized steel specimens gave a sample average
strength of y = 34.7 ksi. Assuming that the two yield-strength distributions are normal with
�1 = 4.0 and �2 = 5.0, does the data indicate that the corresponding true average yield
strengths µ1 and µ2 are di↵erent? Test at significance level ↵ = 0.01.

Solution.
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9.1.2 Large-Sample Tests

The assumptions of population distributions and values of
�1 and �2 are fortunately unnecessary when both sample sizes are .
In this case, the Central Limit Theorem guarantees that X1 � X2 has approximately a

distribution regardless of the underlying population distributions.

Null Hypothesis:
Test statistic:

Significance level:
Alternative Hypothesis:

Assumptions:

•

•

9.1.3 Confidence Intervals for µ1 � µ2

When both population distributions are (at least approximately) normal, standardizing X1�
X2 gives a random variable Z with a standard normal distribution. Since the area under the
z curve between �z↵/2 and z↵/2 is 1� ↵, it follows that

which implies
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This implies that a 100(1� ↵)% for µ1 � µ2.

Provided that n1 > 40 and n2 > 40, a CI for µ1 � µ2 with a confidence level of
100(1� ↵)% is

Example 102.

Solution.
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9.2 The Two-Sample t Test and Confidence Interval

Pooled t Procedures

• Consider 2 samples from 2 populations.

• for at least one sample.

• Population variance .

The pooled test statistic uses a average of the two sample variances:

Null Hypothesis:
Test statistic:

Significant level:
Alternative Hypothesis:

Assumptions:

•

•

•

Provided the above assumptions in a pooled t test, a CI for µ1 � µ2 with a confidence
level of 100(1� ↵)% is
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Example 103.
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Example 104.
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9.3 Analysis of Paired Data

We are interested in the between two observations of each subject. Sup-
pose the data consists of n independently selected pairs (X1, Y1), (X2, Y2), · · · , (Xn, Yn), with
E(Xi) = µ and E(Yi) = µ2. Let , so
the Di’s are the di↵erence within pairs.

The Paired t test

Because di↵erent pairs are independent, the Di’s are of one another. Let
D = X � Y , where X and Y are the first and second observations, respectively, within an
arbitrary pair. Then the expected di↵erence is

Null Hypothesis:
Test statistic value:

Significance level:
Alternative Hypothesis:

Assumptions: The Di’s constitute a random sample from a “di↵er-
ence” population.

Example 105.
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9.4 Inferences Concerning a Di↵erence Between Population Pro-
portions

Population 1:

n1 = # of observations in sample 1

X1 = # of subjects in sample 1 that have a certain characteristic we are interested

p̂1 =
X1

n1
= sample 1 proportion

p1 = population 1 proportion (unknown)

Population 2:

n2 = # of observations in sample 2

X2 = # of subjects in sample 2 that have the same characteristic we are interested

p̂2 =
X2

n2
= sample 2 proportion

p2 = population 2 proportion (unknown)

The natural estimator for p1�p2, the di↵erence in population proportions, is the correspond-
ing di↵erence in sample proportions . Since we know

with X1 and X2 are variables. Then

A Large-Sample Test Procedure

Suppose we want to test or equivalently . When
H0 is true, let p denote the common value of p1 and p2, i.e. . Then we have
the standardized variable

has approximately a distribution when H0 is true.
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Null Hypothesis:
Test statistic:

where

Significant level:
Alternative Hypothesis:

Assumptions:

•

•

Provided the above assumptions satisfied, a CI for p1 � p2 with a confidence level of
100(1� ↵)% is

Example 106.
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12 Simple Linear Regression and Correlation

is the part of statistics that investigates the relationship
between two or more variables related in a non-deterministic fashion.

12.1 The Simple Linear Regression Model

The simplest deterministic mathematical relationship between two variables x and y is called
a

The set of pairs (x, y) determines with
.

gives preliminary impression about the nature of a rela-
tionship between (xi, yi) in a 2 dimension coordinate system.

12.2 Estimating Model Parameters

�0 and �1 are almost never known. We take a sample and approximate for �0 and �1.
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The of the slope coe�cient �1 of the true re-
gression line is

Computing formulas for the numerator and denominator of �̂1 are

The least squares estimate of the intercept �0 of the true regression line is

We define the to be an equation:

Now, for each we obtain a corresponding
, which can be used to estimate .

Example 107.
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