If $X \sim Bin(n, p)$, then the pmf of X is given by

$$b(x;n,P) = \binom{n}{x}P^{x}(1-P)^{n-x}$$

NOTE: $\binom{n}{x}$ reads "n choose x", this tells us _

$$\binom{n}{x} = \frac{\binom{n}{x} \binom{n-1}{n-2} \binom{n-2}{n-2}}{2 \binom{n-2}{n-2}} = \frac{\binom{n}{x}}{2 \binom{n-2}{n-2}}$$

For example,

$$\binom{5}{2} = \frac{5 \times 4}{21} = \frac{20}{2} = 10$$
 $\frac{5}{2! \cdot 3!} = \frac{120}{2 \times 6} = (0)$

Example 41. Each of six randomly selected cola drinkers is given a glass containing cola S and one containing cola F. Suppose there is no tendency among cola drinkers to prefer one cola to the other. Then p = P(a selected individual prefers S) = 0.5, so with X = b the number among the six who prefer S,

$$\begin{array}{c}
X \sim Bin(6, \pm) \\
P(X = 3) = b(3, 6, \pm) \\
= (6)(2)(1 - 2)(1 - 2)(3)(1$$

Using Binomial tables

Even for a relatively small value of n, the computation of binomial probabilities can be tedious. Appendix Table A.1 tabulates the cdf for n = 5, 10, 15, 20, 25in combination with selected values of p corresponding to different columns of the table.

Notation: For $X \sim Bin(n, p)$, the cdf will be denoted by

 $B(x;n,p) = P(X \leq x)$

Example 42. Suppose that 20% of all copies of a textbook fail a certain binding strength test. Let X denote the number among 15 randomly selected copies that fail the test. Then

Bin (15,0.2) distribution.

1. The probability that at most 8 fail the test is

P(X < 8) = 0.999 (from table)

The probability that exactly 8 fail is

P(X=8) = P(X=8) - P(X=7)- 0.999 - 0.996

3. The probability that at least 8 fail is

P(X>8)=1-P(X < T) = 1-0-996

4. The probability that between 4 and 7, inclusive, fail is

$$P(44x47) = P(x47) - P(x43)$$

= 0.996 - 0.648

Table A.1 Cumulative Binomial Probabilities

$$e. n = 15$$
 $Pz 0.2$

$$P(X \le 6) = 0.982$$

$$P(X = 6) = P(X \le 6) - P(X \le 5)$$

$$= 0.982 - 0.939$$

		0.01	0.05	0.10	0.20	0.25	0.30	0.40	0.50	0,60	0.70	0.75	0.80	0.90	0.95	0.99
	0	.860	.463	.206	.035	.013	.005	(.000	.000	.000	.000	.000	.000	.000	.000	.000
	1	.990	.829	.549	.167	.080	.035	.005	000	.000	.000	.000	.000	.000	.000	.000
	2	1.000	.964	.816	.398	.236	.127	.027	.004	.000	.000	.000	.000	.000	.000	.000
	3	1.000	.995	.944	.648	.461	.297	.091	.018	.002	.000	.000	.000	.000	.000	.000
	4	1.000	999	.987	.836	.686	.515	.217	.059	.009	001	.000	.000	.000	.000	.000
	5	1.000	1.000	998	.939	.852	.722	.403	.151	.034	.004	.001	.000	.000	.000	.000
	6	1.000	1.000	1.000	.982	.943	.869	.610	.304	.095	.015	.004	.001	000	.000	.000
	7	1.000	1.000	1.000	.996	.983	.950	.787	.500	.213	.050	.017	.004	000	.000	.000
	8	1.000	1.000	1.000	.999	.996	.985	.905	.696	.390	.131	.057	.018	.000	.000	.000
	9	1.000	1.000	1.000	1.000	.999	.996	.966	.849	.597	.278	.148	.061	.002	.000	.000
1	0	1.000	1.000	1.000	1.000	1.000	.999	.991	.941	.783	.485	.314	.164	.013	.001	.000
1	1	1.000	1.000	1.000	1.000	1.000	1.000	.998	.982	.909	.703	.539	.352	.056	.005	.000
1	2	1.000	1.000	1.000	1.000	1.000	1.000	1.000	.996	.973	.873	.764	.602	.184	.036	000

$$P(34 \times 46) = P(\times 46) - P(\times 42)$$
= 0,982 - 0,398

$$= 0.982 - 0.648$$