
If X ⇠ Bin(n, p), then the pmf of X is given by
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Example 41. Each of six randomly selected cola drinkers is given a glass containing cola
S and one containing cola F . Suppose there is no tendency among cola drinkers to prefer
one cola to the other. Then p = P (a selected individual prefers S) = 0.5, so with X = the
number among the six who prefer S,
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Using Binomial tables

Even for a relatively small value of n, the computation of binomial probabilities can be te-
dious. Appendix Table A.1 tabulates the cdf for n = 5, 10, 15, 20, 25
in combination with selected values of p corresponding to di↵erent columns of the table.

Notation: For X ⇠ Bin(n, p), the cdf will be denoted by

Example 42. Suppose that 20% of all copies of a textbook fail a certain binding strength
test. Let X denote the number among 15 randomly selected copies that fail the test. Then

X has

1. The probability that at most 8 fail the test is

2. The probability that exactly 8 fail is

3. The probability that at least 8 fail is
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Bin (15
,

0 . 2) distribution.

p(x[8) =
0

. 999 (from table

p(X= 0) = p(X = 0)- p(x[7)

=
0 .

999-0. 996

P(Xy8) = 1 - P(X = 7)
= 1 - 0

. 996



4. The probability that between 4 and 7, inclusive, fail is
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