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As with a sample, there are descriptive E‘;a:éistics that can be used to describe the population.

Definition 11. Let X be a discrete random variable with set of possible val-
ues D and pmf p(z). The expected value or mean value of X, denoted by
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Recall that, previously we use the mean as a measure of the center of the data set, i.e. the
arithmetic average. But now, the mean refers to the center of the population.

Example 32. Consider a university having 15,000 students and let X = the number of
courses for which a randomly selected student is registered. The pmf of X follows.

|1 2 3 4 5 6 T
p(z) [0.01 0.03 013 025 0.39 017 0.02

Calculate the expected value of X, i.e E(X).
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Notice that p here is not 4, the ordinary average of 1,--- .7, because the distribution puts
more weight on 4, 5, and 6 than on other X values.

Example 33. Let X = 1 if a randomly selected vehicle passes an emissions test and X = 0
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The Expected Value of a Function

If the random variable X has a set of possible values D and pmf p(z), then the expected
value of any function h(X), denoted by E[h(X)] is computed by
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Example 34. The cost of a certain vehicle dlagnostlc test depends on the number of cylinders
X in the vehicle’s engine. Suppose the cost function is given by Y = h(X) = 20+3X +0.5X2.

Calculate the expected value of Y. The pmf of X is as follows: /
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Example 35. A computer store has purchased three computers of a certain type at $500
apiece. It will sell them for $1000 apiece. The manufacturer has agreed to repurchase any
computers still unsold after a specified period at $200 apiece. Let X denote the number of
computers sold, and suppose that p(0) = 0.1, p(1) = 0.2, p(2) = 0.3, and p(3) = 0.4. With
h(X) denoting the profit associated with selling X units, the given information implies that
h(X) = revenue — cost = 1000X + 200(3 — X) — 1500 = 800X — 900.
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Find the expected profit.
Solution.
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Expected Value of a Linear Function

The h(X) function of interest is quite frequently a linear function aX + b. In this case,
E[h(X)] is easily computed from E(X) without the need for additional summation.
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We will use the variance of X to assess the amount of variability in (the distribution of) X,
just as s* was used in Chapter 1 to measure variability in a sample.
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The Variance of X

Definition 12. Let X be a discrete random variable with pmf p(z) and expected value
. Then the variance of X, denoted by RV/ N A2 | is
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The standard deviation (SD) of X is
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Example 36. A library has an upper limit of 6 on the number of DVDs that can be checked
out to an individual at one time. Consider only those who currently have DVDs checked out,
and let X denote the number of DVDs checked out to a randomly selected individual. The
pmf of X is as follows:

z |1 2 3 4 5 6
p(z) |03 025 015 0.05 0.1 0.15

Find the variance of X.
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Solution.
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A Shortcut Formula for o2 J'
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