2.4 Conditional Probability

In this section, we examine how the information are event Boccurred affects the property we will use the notation P(AIB) to represent the conditional property of A then B

Definition 5. For any two events A and B with P(B) > 0, the conditional probability of A given that B has occurred is defined by P(B) = P(B)

Example 13. (Example 2.25 from textbook page 76) Suppose that of all individuals buying a certain digital camera, 60% include an optional memory card in their purchase, 40% include an extra battery, and 30% include both a card and battery.

Consider randomly selecting a buyer and let A = memory card purchased and B = battery

purchased.

$$P(A) = 0.6$$
 $P(B) = 0.4$
 $P(A \cap B) = 0.7$
 $P(A \cap B) = 0.7$
 $P(A \cap B) = \frac{0.3}{0.4} = 0.7 = 75\%$
 $P(B \cap B) = \frac{P(A \cap B)}{P(B)} = \frac{0.3}{0.6} = \frac{1}{2}$
 $P(A \cap B) \neq P(B \cap B) \text{ (in Seneral)}$

DeMorgan's Laws:

1.
$$(A \cap B)^c = A \cup B$$

1.
$$(A \cap B)^c = \bigwedge \bigcup B^c$$

2. $(A \cup B)^c = \bigwedge \bigcap B^c$

es(An(Buc)nD)

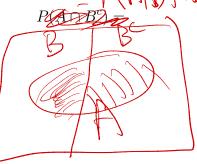
Thus,

$$P(A^c \cap B^c) = I - P(A \cup B)$$

(6) By distributive law we have

$$A = (A \cap B) \cup (A \cap B^{c})$$

Since $(A \cap B)$ and $(A \cap B^c)$ are disjoint, by Probability Axiom 3, we have


$$P(A) = P(A \cap B) + P(A \cap B') =$$

$$= P(A \mid B) P(B) + P(A \mid B') P(B) =$$

This gives

End

Venn diagram:

$$\rightarrow P(AOB) = P(B)P(AIB)$$

$$\rightarrow P(AOB) = P(B)P(AB)$$

similar Ay:
$$P(AOB) = P(B)P(AB)$$

Law of total probability

Eg. Drawing 2 cards (one than the next)
from a Lech of 52.

$$P(2^{nJ}K) = P(1^{sf}K)^{26} 2^{nJ}K + P(1^{sf}K)^{2nJ}K$$

$$P(1^{1}K \cap 2^{n-1}K) = P(1^{5}K) P(2^{n}K) 1^{3}K$$

$$= \frac{4}{52} \times \frac{3}{51}$$

$$P(1^{5}k \cap 1 + K) = P(1^{5}k \cap 1 + K) P(2^{n}K) Indik$$

$$= \frac{48}{52} \cdot \frac{4}{51}$$

$$P(2^{n}K) = \frac{4}{52} \cdot \frac{3}{51} + \frac{48}{52} \cdot \frac{4}{51}$$

IFBCA (B1) Mislde A) Then: $P(A \setminus B) = P(A) - P(B) \leftarrow$ because: AB and & are disjoint ond (A/B)UB=(ANBC)UB=(AUB)(BUB) P(A) = P(A)B)UB = P(A)B)+P(B)In Severaling P(A/B) = P(A) - P(AOB)