
ADJUNCTION AND INVERSION OF ADJUNCTION

STEFANO FILIPAZZI

Abstract. These notes are meant to be a handout for the student seminar in
algebraic geometry at the University of Utah. They are a short introduction to
the notions of adjunction and inversion of adjunction for pairs.
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1. Introduction

Among the techniques in birational geometry, adjunction theory is one of the most
powerful tools. It allows to relate the geometry, and in particular the singularities,
of the ambient variety with the one of appropriate subvarieites. We call adjunction
the process of inferring statements about a subvariety from some knowledge of the
ambient variety, while the inverse and usually more complicated process is called
inversion of adjunction. The most satisfactory formulation of this theory in the case
of pairs is the following, due to Hacon [Hac14].

Theorem 1.1 ([Hac14, Theorem 0.1]). Let V be a log canonical center of a pair
(X,∆ =

∑
δi∆i) where 0 ≤ δi ≤ 1. Then (X,∆) is log canonical in a neighborhood

of V if and only if (V,B(V ;X,∆)) is log canonical.

In the case V has codimension 1, the statement takes the following and simpler
form, originally due to Kawakita [Kaw07].

Theorem 1.2 ([Kaw07]). Let (X,S + B) be a log pair such that S is a reduced
divisor which has no common component with the support of B, let Sν denote the
normalization of S, and let Bν denote the different of B on Sν. Then (X,S+B) is
log canonical near S if and only if (Sν , Bν) is log canonical.

The purpose of this note is to give an overview of the ideas behind these results,
and to present a slightly simplified version of Theorem 1.2.
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2. Adjunction on singular varieties: the different

Consider a smooth projective variety X, and let D be a smooth prime divisor on
it. Then, the classic literature gives an explicit relation between the line bundles
ωX = OX(KX) and ωD = OD(KD) [Har77, Proposition II.8.20]. The adjunction
formula tells us that

ωX(D)|D ∼= ωD.

The above can be rephrased as

(KX +D)|D = KD

in the language of divisors.
A natural question is how much such a relation can be generalized in the case of

singular varieties. We will explore this through an example.
Let X be the cone over a projectively normal rational curve of degree n, and

let L be a line through the vertex V . If we blow up V , we obtain a morphism
π : X̃ → X, where X̃ is smooth. Denote by L̃ the strict transform of L, and by E
the π-exceptional divisor.

A direct computation shows that KX and L are a Q-Cartier divisor with the latter
having Cartier index exactly n [Har77, cf. Example II.6.5.2]. Also, one can show
that E2 = −n.

What happens in the smooth case suggests to consider the divisor (KX +L)|L. As
KX+L is just a Q-Cartier divisor, the direct computation is not the most convenient
approach. Instead, we notice that the morphism πL̃ : L̃→ L obtained restricting π
is an isomorphism. Under the identification given by πL̃, we have

(KX + L)|L = (π∗(KX + L))|L̃.

As π is birational, we have KY = π∗KX +aE for some a. The adjunction formula
for smooth varieties gives us

KE = (KY + E)|E = (π∗KX + (a+ 1)E)|E.

As E is a rational curve, this gives

−2 = deg(π∗KX + (a+ 1)E)|E = (π∗KX + (a+ 1)E) · E = −n(a+ 1).

Thus, we have a = −1 + 2
n
.

By construction, nL ∼ H, where H is a very ample divisor with H2 = n. In
particular, this implies L2 = 1

n
. Now, consider π∗L = L̃+ bE. Then, we have

1

n
= L2 = (π∗L)2 = L̃2 + 2bL̃ · E + E2.

As L̃2 = 0 and L̃ · E = 1, we conclude that b = 1
n
.

Putting all the above together, we get

(KX + L)|L =

(
KY + L̃+

(
1− 1

n

)
E

)∣∣∣∣
L̃

= KL̃ +

(
1− 1

n

)
O,

where {0} := L̃ ∩ E is identified with V via πL̃. We will call the correction term
appearing in the formula different, and we will write

Diff(0) :=

(
1− 1

n

)
V.
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Such a term appears because of the singularities of X, and the fact that L is not a
Cartier divisor.

This example illustrates how in birational geometry it is natural to consider the
notion of pair (X,∆), where X is a normal projective variety, and ∆ is an effective
Q-divisor such that KX + ∆ is Q-Cartier. Indeed, on a mildly singular variety as
the cone over a rational curve, the natural operation of adjunction produces a pair
with non-zero boundary. This is a common phenomenon, as many proofs in higher
dimensional geometry rely on induction on dimension and adjunction. Therefore,
even if we are interested in statement A for varieties, the inductive step would require
having knowledge of statement A for pairs in lower dimension.

Now, assume that (X,∆) is a pair, where ∆ = S + B, with S normal prime
divisor. Let π : Y → X a log resolution of (X,∆), i.e. a birational morphism with
Y smooth, and Supp(π−1

∗ ∆) + Ex(π) is a simple normal crossing divisor. Denote by
S̃ the strict transform of S. Then, we can write

KY + ∆Y = π∗(KX + ∆),

and then define

Diff(B) := πS̃,∗((∆Y − S̃)|S̃),

where πS̃ : S̃ → S is the restriction of π. One can show that the definition does not
depend on Y , and that Diff(B) is effective [Hac14]. Thus, this procedure provides
us with a new pair (S,Diff(B)).

3. A quick review of singularities of pairs

Given a pair (X,∆), it is natural to introduce some measure of its singularities.
As KX + ∆ is Q-Cartier, for any birational morphism π : Y → X from a normal
variety, we can consider

KY + ∆Y = π∗(KX + ∆),

where ∆Y is implicitly defined, given the choice π∗KY = KX .
If X is smooth and ∆ = 0, then ∆Y < 0 for all Y 6= X. On the other hand, as

we saw with the cone over a rational curve, this is not always the case for singular
varieties. Furthermore, if ∆ 6= 0, the bigger its coefficients are, the more positive
∆Y becomes. In particular, if ∆ has some irreducible component with coefficient
greater than one, one can find a higher model Y where some coefficient of ∆Y gets
arbitrarily positive [KM98, cf. Chapter 2].

Therefore, the coefficients of ∆Y , as Y varies among the higher birational models
of X, measure how singular the pair (X,∆) is. We say that (X,∆) is Kawamata log
terminal, in short klt, if for any divisor E on a model Y we have multE(∆Y ) < 1.
Similarly, we say that (X,∆) is log canonical, in short lc, if multE(∆Y ) ≤ 1 for any
such E. Log canonical singularities are the broader class of singularities appearing
in the minimal model program. Kawamata log terminal singularities represent a
class of milder singularities, and they are considerably better behaved than general
log canonical ones.

Given a pair (X,∆), there is an algorithmic way to determine whether it is klt or
lc. Let π : Y → X be a log resolution of (X,∆). Then, (X,∆) is klt if and only if
multE(∆Y ) < 1 for any prime divisor E on Y . Similarly, (X,∆) is lc if and only if
multE(∆Y ) ≤ 1 for any such E [KM98, cf. Lemma 2.30 and Corollary 2.31].
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As our main focus is adjunction, we are interested in pairs (X,∆) with ∆ = S+B,
and S normal prime divisor. Clearly, (X,∆) is not klt, as multS(∆) = 1. Still, we
can ask for it to be almost klt. If a pair (X,∆) is log canonical, and, in addition,
multE(∆Y ) < 1 for all Y and E exceptional over X, we say that (X,∆) is purely
log terminal, in short plt. Thus, a pair (X,∆) is plt if the multiplicities of the
exceptional divisors behave as in the klt case, while ∆ is allowed to have components
with coefficient 1.

4. Adjunction and singularities

In the previous sections we introduced the notion of different, and discussed a way
of measuring the singularities of a pair. Given a pair (X,∆ = S+B), the adjunction
formula provides a new pair (S,Diff(B)). Therefore, it is natural to investigate how
the singularities of these two relate.

Let π : Y → X be a log resolution of the pair (X,S+B), and denote by πS̃ : S̃ → S
the induced morphism from the strict transform of S to S itself. As S is part of the
boundary, S̃ is smooth, and Ex(πS̃) = Ex(π) ∩ S̃. Thus, as S̃ + Ex(π) is a simple
normal crossing divisor, πS̃ is a log resolution of (S,Diff(B)).

Now, we want to rephrase what it means for (X,S+B) and (S,Diff(B)) to have a
certain kind of singularities in terms of the coefficients of the π-exceptional divisors.
By further blow-ups, we may assume that every π-exceptional divisor intersecting
S̃ has center contained in S. Then, write

∆Y =
∑
i

aiDi,

and define divisors

A :=
∑
i|ai<1

aiDi, F :=
∑
i|ai≥1

aiDi.

First, we notice that (X,S +B) is log canonical if and only if F = bF c, and it is
plt if and only if it is log canonical, F is not exceptional, and it is the disjoint union
of its irreducible components [KM98, cf. Corollary 2.31 and Proposition 5.51].

Now, define F̃ := F − S̃. Then, (S,Diff(B)) is klt if and only if S̃ ∩ F̃ = ∅.
Similarly, (S,Diff(B)) is log canonical if and only if F̃ = bF̃ c holds in a neighborhood
of S̃.

Our goal is to relate the singularities of (X,S + B) and the ones of (S,Diff(B)).
Clearly, we can not infer anything about the geometry of (X,S+B) away from S just
looking at (S,Diff(B)). Therefore, we will more precisely be interested into relating
the singularities of (X,S +B) in a neighborhood of S and the ones of (S,Diff(B)).

Therefore, we have to refine the above observations in order to talk about the
singularities of (X,S + B) in a neighborhood of S. The divisors contributing to
the singularities in a neighborhood of S are the divisors on Y that map to S.
Equivalently, they are the divisors on Y that intersect π−1(S). Hence, (X,S+B) is
plt in a neighborhood of S if and only if π−1(S) ∩ F = ∅. Analogously, (X,S + B)
is log canonical near S if and only if F = bF c in a neighborhood of π−1(S).

These observations lead to the following statement, also known as adjunction
[KM98, cf. Proposition 5.46].
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Theorem 4.1. Let (X,S + B) be a pair, where S is a normal prime divisor. If
(X,S + B) is plt near S, then (S,Diff(B)) is klt. Analogously, if (X,S + B) is log
canonical near S, then (S,Diff(B)) is log canonical.

From the above discussion, it is not clear whether there is any way to reverse
the implications in Theorem 4.1. Indeed, imagine there are two exceptional divisors
E1 and E2 that are both mapped into S by π, and assume that E1 ∩ S̃ 6= ∅ and
E2 ∩ S̃ = ∅. As E1 ∪ E2 ⊂ π−1(S), we need to control the coefficients of both of
them to infer anything about the singularities of (X,S + B) near S. On the other
hand, only E1 contributes to the singularities of (S,Diff(B)), while E2 is apparently
irrelevant.

Surprisingly, we have the following very powerful result.

Theorem 4.2 ([KM98, Corollary 5.49]). Let g : Y → X be a proper and birational
morphism and D =

∑
diDi a Q-divisor such that g∗D is effective and −(KY + D)

is g-nef.
Let Z ⊂ Y be the subset of points where (Y,D) is not sub-klt. Then Z is connected

in a neighborhood of any fiber of g.

Theorem 4.2 is a direct consequence of the connectedness principle [KM98, The-
orem 5.48]. As in the statement D is not necessarily effective, we say it is a sub-
boundary. Thus, what is called klt in the case of pairs, is named sub-klt in such a
setup.

Now, we apply Theorem 4.2 to the above situation. The sub-boundary D will
be ∆Y . Thus, π∗∆Y = ∆ ≥ 0 is a boundary, and, as KY + ∆Y = π∗(KX + ∆),
−(KY + ∆Y ) is π-trivial. Hence, the hypotheses of Theorem 4.2 are satisfied. Then,
assume (S,Diff(B)) is klt. For every x ∈ S there is an open neighborhood Ux such
that π−1(Ux)∩(S̃∪F̃ ) is connected. As S̃∩F̃ = ∅, we conclude that π−1(Ux)∩F̃ = ∅.
As x varies in S, this implies that (X,S +B) is plt.

Thus, we get a first formualtion of inversion of adjunction [KM98, cf. Theorem
5.50].

Theorem 4.3. Let (X,S+B) be a pair, where S is a normal prime divisor. Then,
(X,S +B) is plt near S if and only if (S,Diff(B)) is klt.

Unfortunately, a pair (X,∆) may or may not be log canonical along the locus
where it fails to be Kawamata log terminal. Therefore, Theorem 4.2 can not be
applied to get a full statement for inversion of adjunction in the log canonical case.
On the other hand, it can still be exploited to get some partial result in this direction
[KM98, cf. Theorem 5.50].

5. Log canonical inversion of adjunction

As discussed in the previous section, it is natural to expect inversion of adjunction
to hold also in the log canonical case. Unfortunately, the techniques illustrated so
far are not powerful enough to perform such extension. Using more modern tech-
niques, Kawakita proved inversion of adjunction in the log canonical case [Kaw07].
A few years later, using the techniques developed in [BCHM10], Hacon extended
Kawakita’s result to higher codimensional log canonical centers [Hac14]. The pur-
pose of this section is to give a rough sketch of Hacon’s approach, limiting ourselves
to the divisorial case. We will adopt the notation introduced in the previous section.
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Assume by contradiction that (S,Diff(B)) is log canonical, and (X,S +B) is not
log canonical along S. Using the minimal model program [KK10, Theorem 3.1], we
can find a birational model π : Y → X satisfying the following:

• Y is Q-factorial, i.e. every Weil divisor is Q-Cartier;
• ∆Y =

∑
i aiDi ≥ 0;

• (Y,∆′Y :=
∑

ai≤1 aiDi +
∑

ai>1Di), is dlt;
• every π-exceptional divisor appears in ∆Y with coefficients at least 1.

We recall that a pair (Y,∆′Y ) is called dlt if it is log canonical, and it is simple
normal crossing along the locus where it is not plt [KM98, cf. Definition 2.37]. Such
a model is called dlt model of (X,∆). Note that Y is not smooth in general.

Let Γ := ∆′Y − S̃, and define Σ := ∆Y − S̃ − Γ. As (S,Diff(B)) is log canonical,

Σ ∩ S̃ = ∅.
Now, fix an ample divisor H such that KY + S̃ + Γ +H is nef over X. Then, we

can run a relative (KY + S̃+Γ)-MMP over X with scaling of H [BCHM10, cf. 3.10].
This produces a sequence of birational maps φi : Yi 99K Yi+1, which are flips or
divisorial contractions, and induced morphisms πi : Yi → X. For any divisor G on
Y , we denote by Gi its strict transform on Yi. In addition, there is a non-increasing
sequence of rational numbers {si}i≥0 such that:

• either sN+1 = 0 for some N ∈ N, or limi→∞ si = 0;
• KYi + S̃i + Γi + sHi is πi-nef for all si ≥ s ≥ si+1.

First, assume that S̃i ∩ Σi 6= ∅ for some i ≥ 0. Then, we can write

(π∗i (KX + ∆))|S̃i
= KS̃i

+ Diff(Γi + Σi).

As S̃i ∩ Σi 6= ∅, (S̃i,Diff(Γi + Σi)) is not log canonical. On the other hand, as S̃i is
normal and

KS̃i
+ Diff(Γi + Σi) = π∗

S̃i
(KS + Diff(B)),

(S̃i,Diff(Γi + Σi)) is log canonical. Thus, we get the required contradiction.
Therefore, we may assume S̃i ∩ Σi = ∅ for all i ≥ 0. One can show that there

exists i0 ∈ N such that, for any i ≥ i0, S̃i 99K S̃i+1 is an isomoprhism in codimension
1. Then, fix m � 0 such that mΣ is an integral divisor. By the properties of the
sequence {si}i≥0, we can find i ≥ i0 such that si >

1
m
≥ si+1 and a divisor Θi, 1

m
such

that (Yi,Θi, 1
m

) is klt and

Hi −mΣi − S̃i ∼Q,X KYi + Θi, 1
m

+ (m− 1)

(
KYi + S̃i + Γi +

1

m
Hi

)
.

As KYi + S̃i + Γi + 1
m
Hi is nef over X, we can apply Kawamata-Viehweg vanishing

[KM98, cf. proof of Corollary 2.68 and Theorem 2.70]. It follows that

R1πi,∗OYi(Hi −mΣi − S̃i) = 0.

As a consequence, the morphism of sheaves

πi,∗OYi(Hi −mΣi)→ πS̃i,∗OSi
(Hi −mΣi) = πS̃i,∗OSi

(Hi)

is surjective.
On the other hand, for m� 0 the subsheaves

πi,∗OYi(Hi −mΣi) = πi0,∗OYi0 (Hi0 −mΣi0) ⊂ πi0,∗OYi0 (Hi0)
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are contained in Iπi0 (Σi0
) · πi0,∗OYi0 (Hi0). Since we are assuming that (X,S + B) is

not log canonical near S, we have S ∩πi0(Σi0) 6= ∅. As S̃i0 99K S̃i is an isomorphism
in codimension 1, the induced homomorphism

πi,∗OYi(Hi −mΣi)→ πS̃i,∗OS̃i
(Hi) = πS̃i0

,∗OS̃i0
(Hi0)

is not surjective. Thus, we get the required contradiction.
This leads to a version of inversion of adjuction for log canonical pairs.

Theorem 5.1 (cf. Theorem 1.2). Let (X,S + B) be a pair, where S is a normal
prime divisor. Then, (X,S + B) is log canonical near S if and only if (S,Diff(B))
is log canonical.
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