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These notes are supposed to be a handout for the student seminar in algebraic
geometry at the University of Utah. In this seminar, we will give a first introduction
to abelian varieties.

1 Introduction

There are many ways and many perspectives to introduce abelian varieties. One of
them is the analytic approach: how do complex, connected and compact Lie grous
look like? The answer turns out to be very satisfactory: they coincide exactly with
complex tori. Once this is established, the natural question an algebraic geometer
would ask is about the algebraicity of complex tori. As showed by Riemann, “most”
tori can not be embedded in a projective space, and there is a very beautiful and
explicit description of when we succeed in finding an embedding.

A second and more algebraic approach corresponds to the following question.
How do projective algebraic groups look like? In the case the ground field is C, the
answer coincides with the one found by Riemann about the algebraicity of complex
tori. This motivates the definition of abelian variety over any ground field K.

Abelian varieties are a very interesting class of varietes, subject of current re-
search study. On the other hand, they provide many good examples and interesting
results that can be discussed in an introduction to algebraic geometry. The goal of
these notes is to highlight a few of these. We will prefer the analytic approach, since
more intuitive and figurative.

The material for these notes is taken from [BLO04], [Mum74], [Cor| and [Spe].

2 Complex tori

Consider a complex vector space V' = CY, where g > 1, and let A be a lattice of
full rank. This means that A = Z29 as abstract group, and that R ®; A = V. The
subgroup A acts freely and properly discontinuously on V' by translation; therefore,
the quotient

X =V/A (1)



is a complex manifold of complex dimension ¢g. Any such is called complex torus.
Let (A1,...,Ayy) be a Z-basis for A. Then, the set

2g
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i=1
provides a fundamental domain for the action of A; therefore, X is compact.

Example 2.1. Consider V' = C, and let A = (A1, A2) be any R-basis for C. Then
X = V/A is a torus from the topological point of view. It can be seen that, as we
vary A, we obtain different complex structures.

Proposition 2.2. Any complex compact Lie group X is a complex torus.

Proof.  First, we show that X is abelian. Consider the map v (x,y) = zyx =y~

given by the commutator of two elements. Fix U C X an open neighborhood of
1 € X. Since ¢(z,1) = 1, by continuity there exist open sets z € V, and 1 € W,
such that ¢(V,, W,) C U. By compactness of X, we need finitely many V,,,..., V.
to cover X. Let W = N, W,,. Then, we have ¢ (X,W) C U. W.l.o.g. we may
assume that U is an open chart around 1 diffeomorphic to an open ball. Thus,
for any y € W, ¢,(z) = ¥(x,y) is a vector-valued holomorphic function on the
compact manifold X, hence constant. Since 1, (1) = 1 for any y € W, we have that
(X, W) = 1. Since ¥ : X x X — X is holomorphic and constant on the non-empy
open X x W, it is constant. This shows X is abelian.

Now, let 7 : V' — X be the universal cover. Since X is a Lie group, V is a Lie
group as well. Furthermore, V' has to be abelian too. Since V' is simply connected, a
classification result tells us that it has to be an affine space. Therefore, V & CdmX,
Now, we have A = ker(r). Since it is a discrete subgroup of CHmX it is a lattice.
Since X is compact, A is forced to have full rank, and therefore X is a complex
torus. U

3 Cohomology of complex tori

Proposition 2.2 tells us that complex tori are very concrete objects to work with.
Now, a natural question to ask is how the invariants of such a complex manifold
reflect this topological structure. It turns out that the cohomology groups of a
complex torus X = V/A have a very beautiful and explicit description.

Proposition 3.1. Let X = V/A be a complex torus. Then H;(X;Z) = A.

Proof. By construction, V' — X is the universal cover of X. Therefore A =
m1(X). Since A is abelian, it coincides with Hy(X;Z) as well. O

Corollary 3.2. We have that H'(X;Z) = Homgz(A,Z). In particular, H'(X;Z) is
a free group of rank 2dim X.



Proof.  Since Hy(X;Z) = 7Z, then Exty(Ho(X;Z),Z) = 0. Therefore the uni-
versal coefficient theorem guarantees us H'(X;Z) = Homgz(H(X;Z),Z), and the
claim follows. O

Now, we are ready to state the main theorem about the cohomology of complex
tori.

Theorem 3.3. Let X = V/A be a complex torus. Then, the canonical map
A"HY(X;Z) — H"(X;Z) induced by the cup product is an isomorphism for any
n > 1. In particular, the cohomology ring H*(X;Z) is isomorphic to the exterior
algebra AH'(X;Z).

Proof. First, we notice that from the topological point of view X = (Sh)™.
Therefore, it is enough to show that the statement holds true for products of copies
of S*.

We proceed by induction on m, the case m = 1 being obvious. Now, assume
m > 2. We regard (S1)™ as (S')™~! x S'. The inductive hypothesis gives us a
description of the cohomology of (S')™~! which is then torsion free. Therefore, the
Kiinnet decomposition tells us

H*((S")™Z) = P H'((S)" 5 2) © H(S"Z). (3)
ptq=n
Now, the inductive hypothesis guarantees that
P =Yz e HI(S Z) = @ ANH'((SY)" T Z) @ AMHY(SKZ). (4)
p+g=n p+q=n

On the other hand, the Kiinneth decomposition tells us

HY((SY™zZ) = H'((SY)Y" ' Z) @ H'(S'; Z), (5)
which leads to
APHN (S Z) = @ APHN (S Z) @ AHY(SY Z). (6)

Now, we just have to put these isomorphisms together. By the inductive hypothesis,
the isomorphism 4 is given by the cup product. Since the Kiinneth decomposition
respects cup product, the induced isomorphism

ATH((S')™ Z) = H™((S1)™ Z) (7)

is given by the cup product as well. This concludes the inductive step.
The second part of the statement is just a formal consequence of what just
proved. 0

Observation 3.4. If we consider the cohomology ring with coefficients in C, namely
H*(X;C), we can find a more explicit description via differential forms. Introduce
complex coordinates (z1,...,%,) on V. Then, the holomorphic differentials dz; are
A-invariant. Therefore, they descend to holomorphic (1,0)-forms on X. By the
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maximum modulus principle, any holomorphic function on X is constant. Therefore
the dz;’s are closed but not exact forms. Analogously, the (0, 1)-forms dz; are closed
but not exact.

The Dolbeault isomorphism tells us that (dz, ..., dz,,dz1, . ..,dZ,) is a basis for
H'(X;C). Now, it is well known that the cup product of cocycles corresponds to
the wedge product of forms under the de Rham isomorphism. Therefore, a basis for
H*(X;C) is given by

dziy N .. dzyy Ndz;, N .. NdE, (8)

where |I,| + |I,| < 2¢. In particular, this way of writing cohomology classes of X
provides the Hodge decomposition of H*(X,C).

4 Riemann bilinear relations

Now, we are ready to discuss whether complex tori are algebraic varieties or not. The
question we have to address is the following. Can we embed a complex torus X =
V/A into a suitable projective spave PY? First, we should point out a topological
property of projective varieties.

Proposition 4.1. Let Y be a smooth projective variety; then, Y has a complex
subvariety of (complex) codimension 1 whose homology class is nontrivial.

Proof. The idea is to detect that an homology class is non-zero via the intersec-
tion product on homology classes!. In particular, we will use the following useful
fact. If A and B are two subvarieties of complementary dimension, and they meet
properly (i.e. transversally), then AN B is a finite set of points. Furthermore, under
the same assumptions, [A] - [B] = (AN B).

Now, assume Y has dimension n and is embedded in PY. Our goal is to find a
subvariety A C Y of dimension n — 1 whose homology class is non-zero. Therefore,
we will try to find a curve B C Y such that [A] - [B] # 0. Pick a point P € Y, and
consider H C PV a hyperplane through P. If H is generic (e.g. it is not tangent to
Y), then A =Y NH is a smooth hypersurface (i.e. a subvariety of codimension 1) in
Y. Analogously, if we consider a generic (N —n + 1)-plane L through P, B=LNY
is a smooth curve in Y. For a suitable choice of H and L, A and B meet properly. In
particular, we have [A]-[B] # 0. This shows that the cohomology [A] € Hs, 2(Y;Z)
is non-zero. 0]

Now, a complex torus X = V/A is a smooth manifold. Our goal is to show
that, for a general choice of a lattice A, X is not algebraic. The strategy is to use
Proposition 4.1. For simplicity, we will consider the case V = C?

Now, let (z,w) be complex coordinates on C% As above mentioned, dz and
dw are holomorphic 1-forms on X. As remarked in Observation 3.4, w = dz A dw
is a non-zero holomorphic 2-form. Now, consider a complex curve Y C X. Thus,

Since Y is smooth, we can apply Poincaré duality P : H;(Y;Z) — H?d™Y~¥(Y; 7). Then, for
two subvarieties A and B of complementary dimension, we set [A] - [B] = [A] N P([B]).



Y] € Ho(X;Z). Since Y has complex dimension 1, there are no holomorphic 2-forms
on Y?2. This tells us that wyy = 0. In particular, we have

[Y]ﬂw:/ywz(). (9)

Now, let (a, b, c,d) be a basis for A. We can visualize it as a matrix
(A bi ¢ dy
P= (CLQ bQ Co dg) ' <10>
As explained in Theorem 2.2, (a A b,a A c,a ANd,bAc,bAd,cAd)is a basis for
H?(X;Z). If we pair w with such a basis, we extract the six maximal minors of P
(this is just the formula for the area of the parallelogram!).

If A is chosen generically, no Z-linear combination of the above minors is zero,
except the trivial one. In particular, this means that any non-zero element o €
Hy(X;Z) is such that « Nw # 0. By Proposition 4.1, we can conclude that, for a
generic choice of A, the complex torus X = C?/A is not projective.

Now, we are ready to provide the theorem that answers the question about
projectivity of complex tori.

Theorem 4.2 (Riemann Bilinear Relations). Let V' be a complex vector space of
dimension g, and A a lattice of full rank. Fix a basis (ej,...,¢e,) for V, and a basis
(A1,...,Agq) for A. Let P be the period matrix of A, i.e. the g x 2g matrix such
that X = C9/PZ?. Then, X is projective if and only if there is a non-degenerate
alternating matrix £ € My,(Z) such that

i PE7'PT = 0;
ii iPE-*PT > 0.

The two relations in Theorem 4.2 are called first and second Riemann bilinear
relations. A complex torus satisfying them is called Abelian variety. As we saw with
the previous example, most complex tori are not abelian varieties.

It is interesting to consider one extreme case, namely the case of complex dimen-
sion 1. We will see that, in this case, all complex tori are projective: they are called
elliptic curves. Now, we have V = C, and A is generated by two complex numbers
a and b. Then, we have

P={(a b). (11)

Since a and b are linearly independent over R, we have Im(ab) # 0. Then, for E we
have two candidates, namely

E, = (? _01) . By = (_01 é) : (12)

2Along Y, either one among z and w will be the independent complex variable. For instance,
say that locally the implicit function theorem tells us w = f(z). Then, along Y, dw = %dz. This

gives that, locally along Y, wyy = %dz ANdz = 0.



Also, we have that £, = E; . Now, the first Riemann relation is taken care by

(a b) (4?1 j([)l> (Z) —0. (13)

i(a b) (q& j(t)l) (%) — +2Tm(ab). (14)

Therefore, choosing the suitable E; so that +2Im(ab) > 0, we conclude that the
second Riemann bilinear relation is satisfied as well.

Now, we have

5 Line bundles on complex tori

There are many features of complex tori that can be understood in terms of their
universal cover. One of the most beautiful and relevant is related to the description
of line bundles. Before moving on, we recall what a line bundle it.

Definition 5.1. Given a complex manifold X, a holomorphic vector bundle E of
rank r on X is a complex manifold F together with a submersion p : £ — X such
that

e p(z) 2 C" for any z € X;

e for any x € X there is an open neighborhood U C X of x and an isomorphism
of complex manifolds 7 such that the diagram

p~H(U) UxCr

commutes, and 7,-1(, is an isomorphism of C-vector spaces for any y € U.
In case r = 1, we say F is a line bundle.

Observation 5.2. This definition works in any category: if we are interested in
topological (smooth) manifolds, replace holomorphic with continuous (smooth). In
the case we are interested in algebraic varieties, holomorphic will be replaced by
algebraic (i.e. qutients of polynomial functions). Furthermore, in the algebraic
setting, we have to consider the Zariski topology of X instead of the Euclidean one.

Now, we can try to understand line bundles on complex tori. Let X = V/A be
a complex torus, and p : L — X a line bundle. Then, a natural operation on vector
bundles is the pullback along a morphism. In this case, we have that 7*L sits in a
Cartesian square



™ L ——— L

q D

V" . x

Since V is a contractible space, any line bundle on it is topologically trivial, i.e.
homeomorphic to V' x C. Is it still true if we work in the analytic category, i.e. if
we allow just holomorphic maps?

On a line bundle, we know that the transition functions from one trivialization to
the other are non-vanishing holomorphic functions satisfying the cocycle condition.
Therefore, Cech cohomology tells us that H'(Y, 0%) parametrizes holomorphic line
bundles up to isomorphism on a complex manifold Y. The second Cousin’s problem
asks about the non-vanishing of the group O3 for a complex manifold Y. Here we
will use the following.

Fact 5.3. H(C", O¢n) = 0.

We will use Fact 5.3 to show the following.
Proposition 5.4. Any holomorphic line bundle on C" is trivial.
Proof.  We consider the exponential sequence

2m/—1-
exp(2m/

0—=7Z — Oc¢n ) Ocn — 1. (15)

This exact sequence of sheaves provides a long exact sequence in cohomology. In
particular, we get

... — HYC",Z) —» H(C",O¢n) — HY(C",Of,) — H*(C"Z) — ... (16)

The sheaf cohomology in the analytic topology of the locally constant sheaf Z agrees
with the usual topological cohomology with coefficients in Z. Therefore we have
H?*(C",Z) = H'(C",Oc¢n) = 0. Therefore, by exactness, we have H'(C", Of..), and

the claim follows. O

Now, we know that the above commutative diagram can be written, up to iso-
morphism, as

CIxC——1L
‘q P
cv " . x

3This is true more generally: here O3 denotes the sheaf of non-vanishing analytic functions
on Y. If Z is an algebraic variety, and we consider O7 as the sheaf of non-vanishing algebraic
functions on Z, then H'(Z, 0%) parametrizes algebraic line bundles on Z.



Therefore, we can regard L as a quotient of CY x C. In particular, we have

(2,6) = (= +u, fu(2)8), (17)

where z € CY9, ¢ € C and v € A. Furthermore, the functions f, are nowhere
vanishing holomorphic functions satisfying the cocylce condition

It can be showed that, up to choosing a different trivialization for 7* L, we can write
the functions f, as

fulz) = exp(2mv/=1(au(2) + bu)), (19)

where a, is a linear form, and b, is a constant. Then, the cocylce condition can be
guaranteed by setting

Quto(2) = au(z +v) + ay(2) (20)
burv = by + by, + ay(v) modZ. (21)

Condition (20) makes so that we can extend a,(z) to a bilinear form A(z, w) that is
C-linear in the first entry and R-linear in the second (remember that R ®z A = V).
Condition (21) is symmetric in u and v, and can be now interpreted as

E(u,v) := A(u,v) — A(v,u) € Z. (22)
Then, we set
1
Cy = by — EA(U, u). (23)
This makes so that ]
Cu+ Cy = Cupo + éE(u, v) mod Z. (24)

Then, we define p(u) = exp(2my/—1¢,); this, together with identities (22) and (24),
tells us

p(u) - pv) = £p(u +v). (25)

Furthermore, the transition functions f,(z) can now be expressed as

fu(2) = p(u) exp (zm/—_l (A(z,u) + M)) . (26)

With some more work, we can reduce to the case when |p(u)| = 1 (ie. pis a
quasi-character on A) and the cocylce functions are

fu(z) = p(u) exp (’/TH(Z, u) + gH(u, u)> , (27)

where H is an Hermitian form.
The astonishing result is that the Hermitian form H and the quasi-character p
carry all the information about the line bundle L.

Theorem 5.5 (Appell-Humbert). Let X = V/A be a complex torus of dimension
g. Then



e any line bundle L on X can be expressed as L(H, p), where H is an Hermitian
form on V and p is a quasi-character on A;

e L(Hi.p1) and L(H,, p2) are isomorphic if and only if H; = Hs and p; = po;

e F =1Im(H) is the Chern class of L(H, p).
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