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Abstract. These notes are a short introduction to the moduli problem for algebraic
varieties. Starting from the well known case of curves, we analyze the obstructions to
construct a fine moduli, and deduce what is the best we can hope for. Once expectations
are established, by means of examples we point out the right generalization to higher
dimensions in order to have a well behaved moduli problem.

1. The moduli problem

In mathematics, one of the main problems is the one of the classification. Given a class
of objects, one would like to find an optimal “set” of representatives, which hopefully has
some functorial properties.

In algebraic geometry, the above problem loosely translates into finding a nice parameter
space (hopefully something close to a variety) and a universal family (what would assure
the right functoriality) for a suitable family of varieties, sheaves, etc.. This concept is
better illustrated by means of example.

Example 1.1 (Hilbert scheme, I). Assume k is an algebraically closed field, and X is a
projective variety over k. A natural question is to find a parameter space for the set

Hilb(X) = {closed subschemes of X}.
One can show that there is a k-scheme Hilb(X), the Hilbert scheme of X, that serves this
purpose. For each Hilbert polynomial p1, there are an irreducible component Hilbp(X) ⊂
Hilb(X) and a universal family Univp(X) ⊂ Hilbp(X)×X such that:

◦ Hilbp(X) is projective;
◦ π : Univp(X)→ Hilbp(X) is flat;
◦ for any Y ⊂ X with Hilbert polynomial p, there exist a unique [Y ] ∈ Hilbp(X)

such that π−1([Y ]) = Y ;
◦ for every scheme T , and every closed subscheme Z ⊂ T × X flat over X with

Hilbert polynomial p, there exist a unique f : T → Hilbp(X) such that Z =
T ×Hilbp(X) Univp(X).

Therefore, the hope of an algebraic geometer is that for a given class of objects V (e.g.
isomorphism classes of curves of genus g, vector bundles on a projective variety X, etc.),
there exist a projective scheme ModuliV, and a flat and proper morphism u : UnivV →
ModuliV such that any flat family of objects in V is obtained from u by base change. In
this case, ModuliV is called fine moduli space, and UnivV is the corresponding universal

1This is a numerical invariant that captures dimension, and degree with respect to a previously fixed
ample class on X.
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family. It is worth pointing out that flatness of the families considered is a necessary (yet
not intuitive) condition to put in order to have a well behaved moduli problem. Therefore,
from now on, the families of varieties will assumed to be flat, unless otherwise stated.

On the other hand, this ideal program does not go through in most cases, and the Hilbert
scheme represents a very rare full success. In certain cases the scheme ModuliV may have
bad properties (e.g. not separated or proper, not of finite type). More importantly, in
most cases there is no universal family UnivV; in such case, ModuliV is called coarse
moduli space. Sometimes, there is even no parameter space. Thus, the perspective on the
problem should be shifted.

Example 1.2 (Hilbert scheme, II). We actually realize that we can rephrase the con-
struction in Example 1.1 in the language of functors. We will write

HilbX(−) : Schk → Sets

for the contravariant functor that to every k-scheme T associates the set

{subschemes Z ⊂ T ×X that are flat and proper over T}.

Morphisms f : S → T at level of schemes translate by base change to maps between sets
of flat and proper families as follows:

HilbX(f) : HilbX(T )→ HilbX(S)

Z 7→ Z ×T S

In this setting, the existence of a fine moduli space is equivalent to the representabil-
ity of the given functor. Indeed, Example 1.1 guarantees us that HilbX(−) is rep-
resented by HomSchk(−,Hilb(X)), where Hilb(X) = ∪p Hilbp(X). Under this natural
correspondence, the identity morphism idHilb(X) provides us with the universal family
Univ(X) = ∪p Univp(X).

For more details about the material of this section, see [HK10][Chapters 11, 12] and
[Kol17][Chapter 1].

2. Properties of moduli functors

As mentioned in the previous section, it is very rare for a moduli functor to be repre-
sentable. Since there may not even be a coarse moduli space ModuliV for our problem,
we should find a new way to characterize certain properties. For instance, we would
like to talk about separatedness, properness, and boundedness for our moduli problem.
Following what happens in the case we have a fine moduli space satisfying the property
P, we will make sense of what means for a functor to satisfy P. Following the notation
introduced for the Hilbert functor, we will denote by

ModuliV(−) : Schk → Sets

the contravariant functor that to every k-scheme T associates the set

{flat families X→ T such that every fiber is in V, modulo isomorphism over T}.
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2.1. Separatedness. Assume we have a moduli problem for a class of varieties V, and
assume we have a fine moduli space ModuliV. Also, consider a pointed curve (B, b). If
ModuliV is a separated scheme, then there exist at most one diagonal arrow completing
the following commutative diagram

B \ {b} ModuliV

B Spec k

Since we are assuming ModuliV is a fine moduli space, the above diagram is equivalent
to saying that any flat family X ∈ ModuliV(B \ {b}) has at most one flat extension
X′ ∈ModuliV(B) through b. This suggests what the right definition of separated (moduli)
functor should be.

Definition 2.1. A moduli functor ModuliV is separated if for every smooth curve B and
every open subset B0 ⊂ B, any flat family X ∈ ModuliV(B0) has at most one extension
X′ ∈ModuliV(B).

Remark 2.2. A more algebraic definition using DVRs could be given [HK10][Chapter
13.D], but the above one, taken from [Kol17][pp. 12-13], is equivalent for our purposes.

In the modern theory of moduli spaces, one of the main goals is to generalize the
successful construction of a coarse moduli space for curves of genus g ≥ 2 to higher
dimensions. The correct perspective on this is to consider smooth curves of genus g ≥ 2
as curves of general type. As hinted in the following of these notes, and nicely explained
in [Kol17] and [HK10], the presence of a preferred “polarization” (ωX is just big so far)
is a key point.

Example 2.3. Now, let V = {smooth projective surfaces of general type}. Following
[Kol17][pp. 15-16], we will show that ModuliV is not separated. Consider a smooth
family of projective surfaces f : X → B over a smooth affine curve B. Also assume
there are three sections C1, C2, C3 ⊂ X of f that meet pairwise transverally at a point xb
mapping to b ∈ B. A way to obtain such a kind of family is to start with an arbitrary
family, consider a curve C ⊂ X that deforms, and that dominate the base B; the base
change X ×B C → C should provide the desired configuration. Also, since B is affine, up
to shrinking the base, we may assume that xb is the only point of intersection among the
three sections.

Now, consider X1 = BlC1BlC2BlC3X and X2 = BlC1BlC3BlC2X, where we are abusing
notation for the strict transform of the Ci’s on the previous blow-up. Since X1 and X2 are
obtained blowing up sections of a smooth family, then X i → B are still smooth families.
Also, since over B \ {b} the three sections are disjoint, X1 and X2 are isomorphic over
B \ {b}.

As a general fact, we have an isomprhism between the central fibers of the first two
blow-ups (BlC2BlC3X)b ∼= (BlC3BlC2X)b, since both blow-ups keep track of how the
two curves “collide”. On the other hand, for a general choice of the three sections, the
final blow-ups correspond to the blow up of different points p 6= q in (BlC2BlC3X)b ∼=
(BlC3BlC2X)b. Now, in case the fibers are surfaces of general type (i.e. in the case
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of interest for us), (BlC2BlC3X)b ∼= (BlC3BlC2X)b has a finite automorhpism group.
Therefore, for a general choice of the sections, the points p, q are not conjugate under
any automorphism. Therefore, X1

b is not isomorphic to X2
b .

Since the two families agree on B\{b}, and they have different central fibers, this shows
that ModuliV is not separated. As we will see later, the way to overcome this issue is
both natural and beautiful.

2.2. Properness. In algebraic geometry, it is very common to consider a family of smooth
varieites that degenerates into some singular one. This should warn us from expecting a
moduli space (or functor, as we will see) to be separated on the nose.

It is well known that, for smooth curves of genus g, there is a separated coarse moduli
space Mg. On the other hand, Mg is not proper, as smooth curves can be deformed
into singular ones. For some time, it was a problem how to possibly compactify such a
space into a proper one. A choice was needed, since in general there is no unique way to
complete a flat family over an affine curve to a family over its projective closure.

The problem was solved by Deligne and Mumford, that introduced the concept of stable
curve, i.e. a connected curve C satisfying the following properties:

◦ the only singularities of C are ordinary nodes;
◦ the canonical sheaf ωC is ample.

It is worth pointing out that these conditions imply that Aut(C) is finite. Thus, in case
g ≥ 2, there is a proper (actually projective) closure of Mg, the so called Deligne-Mumford

compactification Mg. Such space is a coarse moduli space for curves of genus g [Kol17][pp.
8-9]. Now, we will investigate how properness of a coarse moduli space should translate
to an appropriate properness for moduli functors.

Example 2.4. The following example is about a family of elliptic curves. Smooth elliptic
curves are semistable curve (a weakened version of stable curves). Still, the following
example is explanatory for what happens in the stable case as well, and it has the advan-
tage of having pretty explicit equations. A more detailed discussion of it can be found in
[CM13].

Let k be an algebraically closed filed of characteristic different from 2 or 3. Then,
consider the algebraic set

{x2 + y3 + t = 0} ⊂ A2 × A1,

and let f : X → A1 be the family induced by the closure in P2×A1. This is a flat family
whose fibers are smooth elliptic curves for t 6= 0, and a cuspidal rational curve for t = 0.
Hence, this is not a family of semistable curves. Indeed, the central fibers has singularities
that are not simple nodes.

Thus, we would like to find a different extension of the family g : X ′ → A1 \ {0},
obtained forgetting the central fiber. One can see that the j invariant of each fiber is
0. Thus, our expectation is that the only way to fill the family would be with another
smooth elliptic curve with j invariant 0.

Although all the fibers of g are abstractly isomorphic, one can check that the family
given by g is not isotrivial [CM13][pp. 20-21]. Thus, we have an obstruction to complete
our family. A detailed analysis shows that the monodromy around {0} has order 6. Thus,
we hope that a branched cover of order 6 will kill the monodromy and the obstruction to
extending the family.
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We consider the base change

X ′′ X ′

Spec k[u, u−1] Spec k[t, t−1]

induced by t 7→ u6. Thus, in affine coordinates, the new family over the puncured base is
given by

{x2 + y3 + u6 = 0}.

Since u 6= 0, we can perform the change of coordinates z = xu3, w = yu2. In these
coordinates, the family is given by

{z2 + w3 + 1 = 0}.

Thus, we have an isotrivial family over Spec k[u, u−1], and we can now extend it over the
origin.

What showed in the example is consistent with the expectations of semistable reduction
for curves. In particular, it shows that when there is no fine moduli space, the best we
can do is to look for a valuative criterion of properness “up to finite base change”. Thus,
we are ready for the following definition.

Definition 2.5. Let B be a smooth curve and B0 ⊂ B an ope subset. Let π0 : V 0 → B0

be a flat proper family of varieties in V, i.e. X0 ∈ ModuliV(B0). We say that ModuliV
is proper if for any such piece of data there exists a finite surjection p : A→ B such taht
there is an extension

V 0 ×B A W

B0 ×B A A

πA

and W ∈ModuliV(A).

Remark 2.6. This definition corresponds to stable reduction for curves [Kol17][p. 10].

Remark 2.7. In case ModuliV is representable, i.e. there is a fine moduli space ModiliV,
we can take p = idB. In case we have a coarse moduli space, this criterion builds a
correspondence “up to finite base change” between maps to the coarse moduli space and
flat families.

Remark 2.8. We are aiming for functors that are both separated and proper. Thus, we are
in the case when the extension after base change is unique. In particular, in the separated
and proper case, the way to complete the family is essentially unique: the missing fibers

are uniquely determined, and any two families W1

πA1−−→ A1 and W2

πA2−−→ A2 as in definition
2.5 are dominated by a third one.
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2.3. Other properties. There are other desirable properties for a moduli functor. Some
of them, such as local closedness [Kol17][p. 12], [HK10][pp. 124-125], are important techni-
cal assumptions. Other ones, with the same perspective of separatedness and properness,
come from desired geometric properties of parameter spaces. It is worth mentioning one
more of those.

Definition 2.9. A moduli functor ModuliV is bounded if there exists a flat morphism
of schemes of finte type π : U → T such that, for every algebraically closed field K ⊃ k,
every K-scheme in V occurs as fiber of UK → TK .

Remark 2.10. The above definition 2.9 is taken from [Kol17][p. 13], and it captures the
more geometric meaning of boundedness. For certain purposes, a more technical definition
is needed [HK10][p. 117].

3. The case of varieties of general type

Now that we have developed an appropriate language for moduli functors, we would
like to discuss the correct approach to a moduli theory for varieties of general type.

3.1. The right choice of representatives. As showed in Example 2.3, the functor of
smooth surfaces of general type is not separated. In such an example, the central fibers of
the two families are birational, but not isomorphic. This is a problem that first appears
in dimension 2. Therefore, we need to find a new strategy, that was completely unneeded
in the case of curves.

First, we would like to discuss the case of surfaces, which already hints the correct strat-
egy, while avoiding certain technical complications. We will exploit the Enriques-Kodaira
classification of smooth surfaces [KM98][pp. 26-27]. Indeed, Castelnuovo’s contractibility
criterion tells us that for every birational class of smooth surfaces there is a preferable rep-
resentative obtained by blowing down all (−1)-curves. This choice would indeed prevent
the non-separatedness issue in Example 2.3.

The following fact shows that we are on the right track.

Proposition 3.1. Let fi : X i → B be two smooth families of projective varieites over a
smooth curve B. Assume that the generic fibers X1

k(B) and X1
k(B) are birational and the

pluricanonical system |mKX1
k(B)
| is nonempty for some m > 0. Then, for every b ∈ B,

the fibers X1
b and X2

b are birational.

Proof. See [Kol17][p. 17, Proposition 26]. �

Thus, Proposition 3.1 hints that working up to birational class is the right approach.
Also, if in addition we know that all the fibers are minimal surfaces of general type, then
we would conclude that all the fibers are isomorphic. On the other hand, surfaces of
general type may degenerate into surfaces of lower Kodaira dimension.

Example 3.2. We refer to [Kol17][p. 28] for a detailed discussion of this example. One
can construct two smooth families of smooth projective surfaces fi : X ii → A1, i = 1, 2,
such that:

◦ X i
t is of general type for t 6= 0, while X i

0 has just nef canonical class;
◦ X1 and X2 are isomorphic over A1 \ {0};
◦ X1

0 and X2
0 are isomorphic;
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◦ X1 and X2 are not isomorphic.

Thus, we see that as smooth minimal surfaces of general type degenerate to a smooth
minimal surface of smaller Kodaira dimension, we see that separatedness fails for the
functor of smooth minimal surfaces.

As showed in Example 3.2, there is some work to do in order to understand what are the
correct classes of varieties we can degenerate into in order to have a well behaved moduli
functor. Furthermore, as we raise the dimension to 3 or more, we realize that we do not
have a preferable smooth model within a birational class. The following proposition will
give some more insight about what to do.

Proposition 3.3. Let fi : X i → B be two smooth families over a smooth curve B.
Assume that the canonical classes KXi are fi-ample. Assume that the generic fibers X1

k(B)

and X1
k(B) are isomorphic. Then, such an isomorphism extends to an isomorphism between

X1 and X2.

Proof. See [Kol17][p. 19, Proposition 29]. �

The proof of Proposition 3.3 relies on showing that the two varieties have the same
relative canonical ring over the base, and that they both coincide with the relative Proj of
such sheaf of algebras. This suggests a direction that will take care both of separatedness
and of the generalization to higher dimension.

Indeed, thanks to the work of Birkar, Cascini, Hacon, and McKernan [HK10], we
know that for a smooth variety of general type X the canonical ring R(X,KX) =∑

m≥0H
0(X,OX(mKX)) is finitely generated. In particular, this guarantees the exis-

tence of a distinguished element Xcan = Proj(R(X,KX)), the canonical model of X, in
the birational class of X. Indeed, any other smooth variety X ′ birational to X is such
that R(X ′, KX′) = R(X,KX). The choice of the canonical model as representative of a
birational class makes so that we have a good choice in higher dimension. Also, in the
spirit of Proposition 3.3, it will guarantee that our functor is separated.

Thus, following [HK10][p. 106], we can finally make a choice of functor to work with.

Definition 3.4. Let k be an algebraically closed field of characteristic 0, and Schk the
category of k-schemes. Fix p ∈ Q[t], and let Msmooth

p : Schk → Sets be the following
functor:

◦ for a k-scheme B, we have

Msmooth
p (B) = {f : X → B|f is a smooth projective family, such that

∀b ∈ B ωXb
is ample, and χ(Xb, ω

⊗m
Xb

) = p(m)}/ ',
where ' denotes the relation of isomorphism over the base B;
◦ for a morphism α ∈ HomSchk(A,B), we have

Msmooth
p (α) = (−)×B α.

We notice that, as in the case of the Hilbert scheme, we fixed a Hilbert polynomial p
in Definition 3.4. The following shows that this is the right definition for our purposes.

Theorem 3.5. The moduli functor Msmooth
p defined in Definition 3.4 is bounded, locally

closed and separated. Furthermore, there is a quasi-projective coarse moduli scheme for
Msmooth

p .
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Proof. See [HK10][Chapter 13]. �

3.2. How to achieve properness. Theorem 3.5 partly solves our problem. Still, the
harder part of the work is still to come. First, we have that Msmooth

p is not proper. Thus,
we would like to find a family of varieties that plays the role of the stable curves introduced
by Deligne and Mumford. Second, there is an important subtlety to be pointed out.

In the previous subsection, we established that the right representative in the birational
class of a smooth variety of general type X is its canonical model Xcan. Unfortunately,
we omitted to recall that, in general, such canonical model Xcan is not smooth. On the
other hand, the functor of our choice Msmooth

p is so that

Msmooth
p (k) = {X|X is a smooth projective variety, such that

ωX is ample, and χ(X,ω⊗mX ) = p(m)}.
This makes so that all the smooth varieties such that X 6= Xcan are not taken into account
by Msmooth

p . Therefore, we need to extend our functor also in order to include all Xcan for
all X smooth of general type.

As the name might suggest, canonical models of smooth varieties of general type have
at worst canonical singularities [HK10][p. 34]. On the other hand, to make our moduli
functor proper, we need to admit a class of singularities that is a generalization of the so
called log canonical ones.

Definition 3.6. A scheme X has semi-log canonical singularities if

◦ X is reduced;
◦ X is S2;
◦ KX is Q-Cartier;
◦ there exists a good semi-resolution of singularities [HK10][p. 35] f : X ′ → X with

exceptional divisor E = ∪Ei, and we write KX′ ≡ f ∗KX +
∑
aiEi with ai ∈ Q,

then ai ≥ −1 for all i.

Definition 3.6 is pretty technical, and figuring out it was the right one had been the
main problem in this field for many years. Intuitively, semi-log canonical singularities can
be thought as appropriate gluing of log canonical ones, as stable curves are appropriate
gluing of smooth curves.

In this setting, the functor Msmooth
p has an extension that takes care of our concerns.

Since we are dealing with families of singular varieties, there are some subtleties to take
into account. These have to do with the fact that ωXb

is in general just a Q-line bundle,
and therefore its higher tensor power should be reflexified to get the right object to put
in the Euler characteristic. Thus, we will omit the details of the following, and refer to a
more detailed exposition.

Fact 3.7. There is an extension of the moduli functor Msmooth
p . Such functor is bounded,

separated, proper, and locally closed. Furthermore, there is a projective coarse moduli
scheme associated to it.

Proof. See [HK10][Chapter 14]. �
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