1. (Integration) Consider a vehicle on a road. It starts at velocity of 25 miles per hour \(v_0 = 25 \). At \(t = 1/2 \), the car gets on a freeway, and travels at 65 miles per hour \(v_1 = 65 \). Then at \(t = 3/4 \), the car leaves the freeway and travels on a road at 45 miles per hour \(v_2 = 45 \) until \(t = 1 \). Suppose the car starts at position \(x = 0 \).

(a) How far has the car gone at \(t = 1 \)? \(2 \) pts

(b) When will the car have traveled 30 miles? \(2 \) pts

(c) Create the position function of the car, \(x(t) \), from the velocity function and graph the function \(x(t) \). \(3 \) pts
2. (Splitting and recombining)

Suppose f and g are two continuous functions

(a) If we know that

$$\int_0^2 (f + g)\,dx = 6, \quad \int_0^2 (3f + 3)\,dx = 12$$

Use linearity of the integral to find $\int_0^2 g\,dx$ (3 pts)

(b) If we know that

$$\int_0^3 (f + g)\,dx = 5, \quad \int_0^1 (f + g)\,dx = 2, \quad \text{AND } f(x) = 2 \text{ when } x \geq 1$$

Find $\int_1^3 g\,dx$

(Hint: Break up the integral using the property that $\int_a^c f\,dx = \int_a^b f\,dx + \int_b^c f\,dx$) (3 pts)
3. (Approximation)

If \(f \) is a continuous, decreasing function, the left-endpoint and right-endpoint Riemann sums \(L_n \) and \(R_n \) give upper and lower bounds for the integral;

\[
R_n \leq \int_a^b f \, dx \leq L_n
\]

There is a similar inequality if \(f \) is a continuous, increasing function.

(a) Compute the 5th left-endpoint and right-endpoint Riemann sums for the integral \(\int_2^1 x \, dx \). Use these to give bounds on the value of the integral. (3 pts)

(b) Compute the 5th left-endpoint and right-endpoint Riemann sums for the integral \(\int_1^0 t - t^2 \, dt \). Do these sums give bounds on the value of the integral? (3 pts)
4. (Antiderivatives..?) Recall that a function \(F \) is called an antiderivative for \(f \) if \(F' = f \).

Consider the function;

\[
f(t) = \begin{cases}
1 & \text{if } t \leq 1 \\
2 & \text{if } t > 1
\end{cases}
\]

(a) Sketch the graph of \(F(x) = \int_0^x f(t)dt \). Is \(F(x) \) an antiderivative for \(f \)? What is \(F'(1) \)? (3 pts)

(b) What if we instead consider the following function;

\[
g(t) = \begin{cases}
1 & \text{if } t \leq 1 \\
t & \text{if } t > 1
\end{cases}
\]

Sketch the graph of \(G(x) = \int_0^x g(t)dt \). Is this an antiderivative? What is \(G'(1) \)? (3 pts)