
COMMON PROJECT FOR MATH 5750/6880 OPTIMIZATION
FALL 2008

Changes

• In §3, item 2, the regularization term used the wrong matrix.
• Added section on how to compute the derivative of the forward map.
• Added section on the Newton-CG method
• Added section on other regularization terms.
• New files are: cg.m, tvfun.m, tvfun_hess.m, tvfun_hessmult.m, test_tvfun.m,
tvfun_init.m, fobj_GNHessian.m.
• Modified files: fobj.m
• Fixed typo in §4. In the description of the adjoint state method, the com-

putation of the residual (b) should be: r(σ) = Cu− V .
• Fixed typos in §5. In the description of the Gauss-Newton Hessian ap-

proximation computation (3) should be AT (σ)ψ = −QCTCδu and (4):
w = diag (|T1| , |T2| , · · · , |Tnt|)(∇ψ · ∇u).

1. Introduction

In this project you will use electrical tomography problem (EIT) to image the
(electrical) conductivity σ(x) for x in some domain Ω (say the human body), based
only on measurements at the boundary ∂Ω (i.e. the skin). The equation describing
electric conduction is

(1)
∇ · [σ∇u] = 0,for x ∈ Ω

n · ∇u = I,for x ∈ ∂Ω.

This problem only makes sense if the compatibility condition

(2)
∫
∂Ω

I(x)dS(x) = 0

holds, and the solution u is defined up to an additive constant (or grounding po-
tential). We chose this constant so that,

(3)
∫
∂Ω

u(x)dS(x) = 0.

Data is acquired in Nexp experiments, where in each experiment a different cur-
rent pattern is applied to the boundary ∂Ω (the skin of the patient). Thus the data
consists of several currents I(1) . . . I(Nexp) and the resulting voltages V (1) . . . V (Nexp)

recorded at the boundary only (since we only have access to the skin of the patient).
The EIT problem can then be formulated as a non-linear least squares problem:

(4) min
σ

1
2

Nexp∑
k=1

∫
∂Ω

∣∣∣u(x;σ, I(k))− V (k)(x)
∣∣∣2 dS(x) + Jreg(σ)

here u(x;σ, I(k)) solves (1) with conductivity σ and boundary current I(k), and Jreg
is a regularization term that makes the problem well-posed (we discuss this later).

1

2 COMMON PROJECT FOR MATH 5750/6880 OPTIMIZATION FALL 2008

Figure 1. Triangulation of the unit disk.
.

The first term in the functional measures how close the data for the conductivity
σ is to the measured data. Some good references for EIT are [3] and [2] (for the
adjoint state method for EIT).

2. Finite element discretization

Matlab code implementing a finite element discretization of this problem with
piecewise linear (P1) triangular elements is provided in http://www.math.utah.
edu/math5750_f08/eit.tgz.

The domain we take is the unit disk (think of it as a slice of the human body)
and we first need to generate a mesh:

% Generate the g r i d

grid = gengr id (3 2 , 0 . 1) ;

The grid is generated by the distmesh package (see [4] and http://www-math.mit.
edu/~persson/mesh/) which is included in eit.tgz (addpath distmesh makes
sure Matlab knows how to find the grid generator). The output of gengrid is a
struct describing the grid with members

• p: a np × 2 matrix where p(i,1) and p(i,2) are the x and y coordinates
of the i−th vertex in the grid. Here np is the number of vertices (a.k.a.
nodes) in the grid.
• t: a nt × 3 matrix where t(i,:) contains the indices (in p) of the vertices

of the i−th triangle in the discretization.
• be: a nbe × 2 matrix where be(i,:) contains the indices (in p) of the

endpoints of the i−th boundary edge.
For this particular grid see Figure 1.

Then we take the conductivity function phantom1, which is supposed to model
lungs and heart conductivity and evaluate it at the centers of the triangles of the
discretization.

c=t r i a n g l e c e n t e r s (grid) ;

truecond = phantom1 (c (: , 1) , c (: , 2)) ;

The vector truecond (size: nt × 1) is the approximation to the conductivity that
is needed for the finite element method.

The system for the finite element is setup and solved in the following lines:

% assemble system

A = s t i f fma t (truecond , grid) ;

http://www.math.utah.edu/math5750_f08/eit.tgz
http://www.math.utah.edu/math5750_f08/eit.tgz
http://www-math.mit.edu/~persson/mesh/
http://www-math.mit.edu/~persson/mesh/

COMMON PROJECT FOR MATH 5750/6880 OPTIMIZATION FALL 2008 3

% change l a s t equat ion to impose grounding cond i t i on : t h a t the

i n t e g r a l over

% the boundary o f the p o t e n t i a l shou ld be 0

A(end , :) = 0 ; A(end , 1 : nbe) = boundary int (grid) ;

% assemble r i g h t hand s i d e (the curren t pa t t e rn s are p rede f ined)

I = cur r en t s (grid) ;

I (end , :) = 0 ; % to go wi th l a s t equa t ion above

% so l v e the system

u=A\ I ;

We used the “short finite element implementations” described in [1] (http://www.
math.hu-berlin.de/~cc/english/software/shortFE.html).

• The matrix I has nbe columns, each one corresponding to a different current
pattern applied to the boundary. Thus we can solve all nbe systems with the
expression u=A\I. Then u(:,i) is the potential resulting from the current
pattern I(:,i).
• The expression g = boundary_int(grid) generates a vector that comes

handy when we want to approximate the integral of a function over the
boundary and we know only the values at the boundary nodes. Here it
is used to impose the grounding condition (3), and make the matrix A
invertible, but in general if vector v contains values at the boundary nodes
of some function v(x), then g’*v ≈

∫
∂Ω
v(x)dS(x).

Discrete gradients can be obtained with [Gx,Gy]=gradmat(grid);. Given some
vector v of node values (length np), Gx*v gives the partial derivative with respect
to x of the piecewise linear interpolation of v:

v(x) =
np∑
i=1

viφi(x),

where the φi(x) are functions linear on each triangle such that φi(xj) = δij . Thus
∂v/∂x is constant on each triangle, and Gx is a nt × np matrix. Likewise, Gy
approximates ∂/∂y.

The stiffness matrix A (as generated by A = stiffmat(truecond,grid);) can
also be obtained using the discrete gradient matrices Gx and Gy. If we let:

S = spdiags(truecond.*triangle_area(grid),0,nt,nt);
then A == Gx’*S*Gx + Gy’*S*Gy.

3. Project plan

1. Compute the gradient of the objective function using the adjoint state method.
Check numerically that your gradient is indeed the gradient of the objective
function (with your check_gradient function). For this purpose, you can use
any matrix for the data, for example pars.V = randn(nbe,nbe);

2. Use BFGS to solve the EIT problem.
• Try first to do this with data pars.V = obsop(grid)*u, where u has been

obtained from the true conductivity as described above. This is not very
realistic data, but makes the problem easier to solve.

http://www.math.hu-berlin.de/~cc/english/software/shortFE.html
http://www.math.hu-berlin.de/~cc/english/software/shortFE.html

4 COMMON PROJECT FOR MATH 5750/6880 OPTIMIZATION FALL 2008

• For the regularization term, take for the moment L2 regularization: Jreg(σ) =
alpha*sigma’*(ta.*sigma) where alpha is a regularization parameter
that you have to adjust (trial and error!) to get acceptable images, and
ta is the vector of areas of each triangle in the discretization that can be
obtained with: ta = triangle_areas(grid). (note: multiplying element
by element a vector by ta is the same as multiplying by the diagonal matrix
with diagonal ta)

• note: It should be possible to avoid using limited memory BFGS, since the
number of parameters is relatively small.

3. Compute the Fréchet derivative of the forward map (conductivity to measure-
ments at the boundary map) and use it to compute the action of the Gauss-
Newton approximation of the Hessian on some vector. We do not need to store
the full Hessian to solve the Newton systems with conjugate gradient.

4. Use the Newton-CG approach to solve the EIT problem.
5. Try other regularization methods: H1 and TV regularization.

4. Code and instructions for the adjoint state method

Please see the files fobj.m and test_fobj.m. The first file defines the objective
function which is a discrete version of the objective function in (4):

(5)

J(σ) = Jmisfit(σ) + αJreg(σ)

=
1
2

nbe∑
i=1

(r(i)(σ))TQbdryr(i)(σ) + ασTDσ,

where:
• σ is a vector of length nt, giving the value of the conductivity at the center

of each triangle.
• r(i)(σ) = Cu(i)(σ)− V (i), i = 1, . . . , nbe is the residual for the i−th exper-

iment.
• The observation matrix C restricts a vector defined on all the nodes to the

nodes at the boundary (essentially taking measurements on the skin of the
patient, file: obsop.m).
• The matrixD is a nt× nt diagonal matrix withD = diag (|T1|, |T2|, . . . , |Tnt|).

Here |Ti| is the area of the i−th triangle in the triangulation. The diagonal
ta of this matrix can be obtained by ta=triangle_area(grid);
• The matrix Q is a symmetric positive semi-definite matrix of size np × np

with entries (file: bmassmat.m):

Qi,j =
∫
∂Ω

φi(x)φj(x)dS(x).

Since the entries Qi,j are boundary integrals, the only nonzero entries are
when i and j are boundary nodes. The restriction of Q to the boundary is
the symmetric positive definite matrix Qbdry = CQCT . If we are given a
vector v with values of some function v(x) at the boundary nodes, then∫

∂Ω

|v(x)|2dS(x) ≈ vTQbdryv.

Follow these steps to compute the gradient with the adjoint state method. We
assume for simplicity a single experiment where current I is applied to the boundary

COMMON PROJECT FOR MATH 5750/6880 OPTIMIZATION FALL 2008 5

∂Ω (skin of patient) and V is the voltage measured on ∂Ω. The matrix A(σ) is the
stiffness matrix for σ where the last row has been adjusted to make it invertible
(enforcing grounding condition), and for simplicity we compute the gradient of the
misfit part of (5), that is ∇Jmisfit(σ).
(a) Solve the Forward Problem

A(σ)u = I

(b) Compute residual r(σ) = Cu− V
(c) Solve the Adjoint Problem

AT (σ)ψ = −QCT r(σ)

(d) Compute the gradient (using “discrete gradients” [Bx,By]=gradmat(grid);).

∇J(σ) = diag (|T1|, . . . , |Tnt|)(∇ψ · ∇u),

where |Ti| is the area of the i−th triangle. The reason why we multiply by the
triangle areas is that in this way:

∇J(σ)T δσ =
∫

Ω

∇J(σ)(x)δσ(x)dx.

where the functions in the integrand are piecewise constant interpolations on
the triangulation of the vectors δσ and ∇J(σ).

5. Computing the Gauss-Newton approximation to the Hessian

For simplicity we consider one single experiment where current I is applied to the
boundary ∂Ω and V is measured voltage. The multiple experiment case is left to
you. Let F : Rnt → Rnbe be the forward map, that is the map taking a conductivity
σ (vector of size nt) and giving the voltage resulting from the experiment setting
the current at the boundary to I. With the forward map the misfit part of the
objective function in (5) can be written as:

Jmisfit(σ) = FT (σ)QbdryF (σ)

The Gauss-Newton approximation to the Hessian of Jmisfit is:

∇2Jmisfit(σ) ≈ DF [σ]TQbdryDF [σ].

All we need for the CG Newton method is to know how to compute the action of
the G-N approximation on some vector v, that is w = DF [σ]TQbdryDF [σ]v. Here
are the steps to follow, using the same notation as in §4.

(1) Solve the Forward Problem (already done in §4)

A(σ)u = I

(2) Solve the Linearized Problem (computes δu = DF [σ]v)

A(σ)δu = −A(v)u

(3) Solve the Adjoint Problem

AT (σ)ψ = −QCTCδu.

(4) Compute w = DF [σ]TQbdryδu

w = diag (|T1|, |T2|, . . . , |Tnt|)(∇ψ · ∇u).

6 COMMON PROJECT FOR MATH 5750/6880 OPTIMIZATION FALL 2008

5.1. Implementation notes.

• The forward problem solution u and A(σ) have already been computed in
§4. So if Hessian information is needed, your function fobj should return
a struct Hinfo that contains these precomputed quantities. Then another
function uses this information to compute the matrix vector products if
needed.
• To compute A(v), you only need to call Av=stiffmat(v,grid);.
• The two last steps very similar to those in §4.
• In order to make sure you are computing the action of DF [σ]TQbdryDF [σ]

right, the file fobj_GNHessian.m does the computation of the whole Gauss-
Newton approximation to the Hessian. This is not feasible/recommended
when the problem is large, but it is possible to do here because of the
relatively small size.

6. Newton-CG method

The idea of this method is to replace the linear system solve that is used in
Newton’s method to find the step by a few steps of the conjugate gradient algorithm.
The file cg.m implements the conjugate gradient algorithm in a way suitable for
optimization methods.

There are a few parameters to play with: the number of iterations and the
tolerance for the steps solutions. An accuracy of say 10−3 and 50 iterations max-
imum can give good results, but you may want to experiment with the tolerance
min(0.5,

√
‖∇fk‖) ‖∇fk‖ which guarantees super linear convergence (see Algorithm

7.1 p169).
If CG is not converging or backtracking fails to find a descent direction, you

can add a small (positive) multiple of the identity to the diagonal of the Hessian.
Please document as well as possible the choices of parameters you make.

7. Computing regularization terms

7.1. L2 regularization. The regularization term is a multiple of the L2 norm of
the solution. This favors solutions that have a small norm, here

J (L2)
reg (σ) =

∫
Ω

|σ(x)|2dx = σTdiag (|T1|, . . . , |Tnt|)σ,

where σ(x) is the interpolation of the vector σ ∈ Rnt which is piecewise constant
on the elements (triangles) of the discretization. The gradient and Hessian of this
regularization term are trivial to compute.

7.2. Total Variation regularization. The regularization term is a multiple of
the Total Variation (TV) of the solution. This favors solutions that are piecewise
constant (or blocky):

J (TV)
reg (σ) =

∫
Ω

|∇σ(x)|dx.

Recall that our ansatz for the conductivity is a piecewise constant function, so the
gradient is not defined. To compute a “gradient” for such functions, we find a
“dual” grid by triangulating the centers of the triangles of the original grid, and
then using gradmat.m.

COMMON PROJECT FOR MATH 5750/6880 OPTIMIZATION FALL 2008 7

Unfortunately the TV function is not smooth because |x| is not smooth. Since
we need derivatives, we replace the TV functional by a smooth approximation:

J (TV)
reg (σ) =

∫
Ω

√
‖∇σ(x)‖22 + β2dx,

where β > 0 is yet another parameter to adjust.
The files related to the (approximate) TV function are:
• tvfun.m computes smoothed TV functional, its gradient and additional

information needed to computed the Hessian.
• tvfun_hess.m computes Hessian of the TV functional
• tvfun_hessmult.m applies the Hessian of TV functional to a vector
• test_tvfun.m tests gradient and Hessian computation on a randomly gen-

erated unstructured grid.
• tvfun_init.m initializes data structure for TV functional

7.3. H1 regularization (optional). This regularization favors smooth solutions:

J (H1)
reg (σ) =

∫
Ω

‖∇σ(x)‖22 dx.

For the discrete version of this function, we use the same trick as for TV regular-
ization. We define a “gradient” by using gradmat.m to build a “dual” grid out of
the centers of the triangles:
c = t r i a n g l e c e n t e r s (grid) ; nc=s ize (c , 1) ;

t = delaunay (c (: , 1) , c (: , 2)) ; ndt=s ize (t , 1) ;

dgr id . p=c ; dgr id . t=t ;

[Gx,Gy]=gradmat (dgr id) ;

Then for some vector s the H1 functional is: s’*Gx’*D*Gx*s + s’*Gy’*D*Gy*s,
where D = spdiags(triangle_area(dgrid),0,ndt,ndt);. A simpler expression
for the H1 functional is: s’*L*s where L = stiffmat(ones(ndt,1),dgrid) is the
Laplacian on the “dual” grid.

References

[1] J. Alberty, C. Carstensen, and S. A. Funken. Remarks around 50 lines of Matlab:
short finite element implementation. Numer. Algorithms, 20(2-3):117–137, 1999.
ISSN 1017-1398. doi:10.1023/A:1019155918070.

[2] L. Borcea. Electrical impedance tomography. Inverse Problems, 18:R99–R136,
2002. doi:10.1088/0266-5611/18/6/201. Topical Review.

[3] M. Cheney, D. Isaacson, and J. C. Newell. Electrical impedance to-
mography. SIAM Rev., 41(1):85–101 (electronic), 1999. ISSN 1095-7200.
doi:10.1137/S0036144598333613.

[4] P.-O. Persson and G. Strang. A simple mesh generator in Mat-
lab. SIAM Rev., 46(2):329–345 (electronic), 2004. ISSN 0036-1445.
doi:10.1137/S0036144503429121.

http://dx.doi.org/10.1023/A:1019155918070
http://dx.doi.org/10.1088/0266-5611/18/6/201
http://dx.doi.org/10.1137/S0036144598333613
http://dx.doi.org/10.1137/S0036144503429121

	Changes
	1. Introduction
	2. Finite element discretization
	3. Project plan
	4. Code and instructions for the adjoint state method
	5. Computing the Gauss-Newton approximation to the Hessian
	5.1. Implementation notes

	6. Newton-CG method
	7. Computing regularization terms
	7.1. L2 regularization
	7.2. Total Variation regularization
	7.3. H1 regularization (optional)

	References

