The Conjugate Gradient method

Iterative solver for symm pos def systems

\[Ax = b \quad A \in \mathbb{R}^{n \times n} \text{ symm pos def} \]

\[\min_{x \in \mathbb{R}^n} \frac{1}{2} x^T A x - x^T b = f(x) \]

\[\begin{align*}
0 f(x) &= A x - b \\
0 \nabla f(x) &= A
\end{align*} \]

Gradient method:

\[x_{k+1} = x_k - \alpha_k \nabla f_k \]

where \(\alpha_k \) solves \(\min_{\alpha} f(\alpha) = f(x_k - \alpha \nabla f_k) \), i.e.:

\[f'(\alpha) = - \nabla f (x_k - \alpha \nabla f_k)^T \nabla f_k \]
\[= - \nabla f_k^T A (x_k - \alpha \nabla f_k) + \nabla f_k^T b \]
\[= - \nabla f_k^T \alpha + \alpha \nabla f_k^T A \nabla f_k \]

\[f''(\alpha) > 0 \quad \Rightarrow \quad \alpha_k = \frac{\nabla f_k^T b}{\nabla f_k^T A \nabla f_k} \]

Possible to show \(\nabla f_k^T \nabla f_{k+1} = 0 \). Method can take long to converge.

"Zig-zagging" 2D:

The linear conjugate gradient method

\[x_{k+1} = x_k + \alpha_k p_k \; \text{, where } \alpha_k p_k \text{ is determined st.} \]

\[x_k \text{ solves} \]

\[\min_{x \in \mathbb{R}^n + \text{span}\{p_0, \ldots, p_{k-1}, r_k\}} \frac{1}{2} x^T A x - b^T x \] \hspace{1cm} (1)

where \(r_k = - \nabla f_k = b - A x_k \)
\[\min \frac{1}{2} x^T Ax - x^T r_0 \]
\[\hat{x} \in \text{span} \{ p_0, \ldots, p_{k-1}, r_k \} \]
where \(\hat{x} = x - x_0 \)

It can be shown that \(\hat{x}_{k+1} \) solves (2) iff
\[(A \hat{x}_{k+1} - r_0)^T v = 0 \quad \forall v \in \text{span} \{ p_0, \ldots, p_{k-1}, r_k \} \]

\[(A \hat{x}_{k+1} - b)^T v = 0 \]
\[-\nabla f_{k+1} \]

\[(\sim \text{Galerkin}) \]

Intuitively:
- Optimal \(x_{k+1} \):
 - No descent direction
 - \(x \in \text{span} \{ p_0, \ldots, p_{k-1}, r_k \} \)

- Non-optimal \(x \):
 - One can find a descent direction (and better points)

In previous step: \(\hat{x}_k \) solves:
\[\min \frac{1}{2} \hat{x}_k^T A \hat{x}_k - \hat{x}_k^T r_0 \]
\[\hat{x}_k \in \text{span} \{ p_0, \ldots, p_{k-1} \} \]

Since \(x_{k+1} = x_k + r_k p_k \):
\[0 = (A x_{k+1} - b)^T p_j = (A x_k - b)^T p_j + r_k p_k^T A p_j \]
\[\Rightarrow p_k \perp A \text{-orthogonal} \quad \text{inner prod} \quad (u, v)_A = u^T A v \]

to previous \(k \) directions

\(\Rightarrow \) get \(p_k \) using Gram - Schmidt orthogonalization, which will greatly simplify.

\[\begin{cases} 0 & p_0 = b \\ p_k^2 = 1 - \sum_{j=0}^{k-1} \frac{r_k^T A p_j}{p_j^T A p_j} \end{cases} \]
(65)
Now that we know in which direction to go, we can use gradient method to find
\[
\alpha_k = \arg\min_{\alpha} \phi(x) = f(x_k + \alpha p_k)
\]
\[
= \begin{bmatrix} \alpha_k \\ p_k \end{bmatrix} = \begin{bmatrix} p_k^T p_k \\ p_k^T A p_k \end{bmatrix}.
\]

A closer look to the subspace used gives:
\[
\text{span}\{p_0, \ldots, p_{k-1}, r_k\} = \text{span}\{p_0, \ldots, p_k\} = \text{span}\{r_0, \ldots, r_k\} = \mathbb{K}_{k+1}(A, r_0) = \text{span}\{r_0, A r_0, A^2 r_0, \ldots, A^k r_0\} = \text{Krylov subspace}
\]
\[
eq \mathbb{K}_2(A, r_0)
\]
\[
\text{why?} \quad r_0 = b - Ax_0 \\
\quad r_1 = b - Ax_1 = b - A(x_0 + \alpha(b - Ax_0)) \in \mathbb{K}_2(A, r_0) \\
\text{etc...}
\]

\text{Why is this useful?}

\text{optimality conditions:} \quad r_{k+1}^T v = 0 \quad \forall v \in \mathbb{K}_{k+1}(A, r_0) \\
\quad r_k^T v = 0 \quad \forall v \in \mathbb{K}_k(A, r_0) \\
\quad \text{take} \quad p_i \in \mathbb{K}_{k-1}(A, r_0) \Rightarrow A p_i \in \mathbb{K}_k(A, r_0) \\
\Rightarrow r_k^T A p_i = 0 \quad i = 0, \ldots, k-2
\]

Thus (65) reduces to:
\[
p_k = r_k - \begin{bmatrix} p_k^T A p_k & 0 \\ 0 & 1 \end{bmatrix} p_k - 1
\]
Can show:
\[
\alpha_k = \frac{n_k \| h_k \|^2}{p_k^T A p_k} \\
\beta_k = \frac{n_k \| h_k + p_k \|^2}{n_k \| h_k \|^2}
\]

\(A \) is indefinite \(\Rightarrow \) \(\text{min} \{ \lambda \} \neq 0 \)
\(\Rightarrow \) \(A \) has no solution

What happens if \(A \) is indefinite?

\(\Rightarrow \) \(\exists k \) for which \(p_k^T A p_k < 0 \)

\(\Rightarrow \) "negative curvature" direction \(\Rightarrow \) stop iterations

Convergence results:

Convergence properties determined by eigenvalues of \(A \).

- The fewer "eigen" the better.
- Many iterations
- Few (\(\sim 3 \)) iterations.

Preconditioning:

\(A x = b \) \(\Rightarrow \) \(M A x = M b \)

\(M = \) preconditioner

- Easy to compute
- And somehow transforms spectrum of \(A \) from

\((S1) \) to \((S2) \)