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4 CHAPTER 0. CONTENTS

1. Disclaimer

These notes are work in progress and may be incomplete and contain
errors. These notes are based on the following sources:
¢ Burden and Faires, Numerical Analysis, ninth ed.
¢ Kincaid and Cheney, Numerical Analysis: Mathematics of scien-
tific computing
 Stoer and Burlisch, Introduction to Numerical Analysis, Springer
1992

¢ Golub and Van Loan, Matrix Computations, John Hopkins 1996
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CHAPTER 1

Iterative methods for solving linear systems

1. Preliminaries

1.1. Convergence in R”. Let || - | be a norm defined on R", i.e. it sat-
isfies the properties:

i. VxeR" |x|| = 0 (non-negativity)

ii. |x|| =0 < x =0 (definiteness)
iii. VAeR, xeR" |Ax| = |A]||x]| (multiplication by a scalar)
iv. Vx,yeR"” |x+yl < [Ix|| + lyll (triangle inequality)

Some important examples of norms in R” are:

@ Ixlz = (X7, Ixilz)”2 (Euclidean or ¢, norm)
) Ixlly =X, |x;| (¢1 norm)

3) lIXlloo = max;=1,.,n |%il (/oo Or max norm)

@ Ixll, = (X7, 1x:17)"? (for p=1, £, norm)

A sequence {v(¥}° in R"” converges to ve R" if and only if

1) lim v —v].
k—o0
Since R” is a finite dimensional vector space the notion of conver-
gence is independent of the norm. This follows from the fact that in a
finite dimensional vector space all norms are equivalent. Two norms || - ||
and ||| - ||| are equivalent if there are constants a, f > 0 such that

(2) vx alllxlll < IxIl < BllIxIll.

Another property of R” is that it is complete, meaning that all Cauchy
sequences converge in R”. A sequence {v(k)}»zo=1 is said to be a Cauchy
sequence when

3) Ve>03INVi,j=NIvD —v| <e.

In English: A Cauchy sequence is a sequence for which any two iterates
can be made as close as we want provided that we are far enough in the
sequence.
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6 CHAPTER 1. ITERATIVE METHODS FOR SOLVING LINEAR SYSTEMS

1.2. Induced matrix norms. Let A € R”*" be a matrix (this notation
means that the matrix has n rows and 7 columns) and let || --- || be anorm
on R". The operator or induced matrix norm of A is defined by:

B | Ax]
) |Al= sup —— = sup [|Ax].

xeRrxz0 Xl jxj=1
The induced matrix norm measures what is the maximum dilation of the
image of a vector through the matrix A. It is a good exercise to show that
it satisfies the axiom of a norm.
Some important examples of induced matrix norms:

(1) IAlly =max;=;, nllcjlly, where c; is the j—th column of A.

2) IAlloo = max;=1, nlr;ll1, where r; is the i—th row of A.

(3) llAll2 = square root of largest eigenvalue of ATA. When A is sym-
metric we have [|[All2 = [Aqx|, With 1,4, being the largest eigen-
value of A in magnitude.

A matrix norm that is not an induced matrix norm is the Frobenius
norm;

(5) IAllF =

. ) 1/2
Y laijl .

ij=1

Some properties of induced matrix norms:
(D) lAx] < Al
(2) |IAB] < [|AlIBII.
(3) IA*] < IAJ%.

1.3. Eigenvalues. The eigenvalues of a 7 x n matrix A are the roots of
the characteristic polynomial

(6) p(A) = det(AI-A).

This is a polynomial of degree n, so it has at most n complex roots. An
eigenvector v associated with an eigenvalue A is a nonzero vector such
that Av = Av. Sometimes it is convenient to refer to an eigenvalue A and
corresponding eigenvector v # 0 as an eigenpair of A.

The spectral radius p(A) is defined as the magnitude of the largest
eigenvalue in magnitude of a matrix A i.e.

(7) p(A) = max{|A| | det(AI—-A) =0}.

The spectral radius is the radius of the smallest circle in C containing all
eigenvalues of A.

Two matrices A and B are said to be similar if there is an invertible
matrix X such that

(8) AX =XB.
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CHAPTER 1. ITERATIVE METHODS FOR SOLVING LINEAR SYSTEMS 7

Similar matrices have the same characteristic polynomial and thus
the same eigenvalues. This follows from the properties of the determi-
nant since
9)

det(AI-A) = det(X ") det(Al - A) det(X) = det(AI - X 'AX) = det(AI - B).

2. Neumann series based methods

2.1. Neumann series. We start by a fundamental theorem that is the
theoretical basis for several methods for solving the linear system Ax = b.
This theorem can be seen as a generalization to matrices of the geometric
series identity (1—-x)"' =1+x+x?+...for |x| < L.

THEOREM 1. Let A € R™" be such that |A| < 1 for some induced ma-
trix norm | - |, then:

i. I-Aisinvertible
ii. I-A)'=I+A+A*+--- =Y AF.

PROOFE. Assume for contradiction that I — A is singular. This means
there is a x # 0 such that (I- A)x = 0. Taking x such that ||x|| = 1, we have
(10) I =x] = |Ax]| < |AlllIxIl = [|All,

which contradicts the hypothesis ||A]| < 1.
We now need to show convergence to (I—A)~! of the partial series

m
(11 Y A~
k=0
Observe that:
m m
(12) I-A) ) AF=) AF- AR =A0_AmHL,
k=0 k=0
Therefore
m
(13) IX-A) Y A* 1)1 = |A™*!] < |AI"™*! — 0 as m — co.
k=0
O
Here is an application of this theorem to estimate the norm
o0 o0
(14) Ia-a"= Y 1A% < Y IAl* = :
k=0 k=0 1-[A]l

Here is a generalization of the Neumann series theorem.

THEOREM 2. IfA and B are n x n matrices such that |1 -AB| < 1 for
some induced matrix norm then

i. A andB are invertible.
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8 CHAPTER 1. ITERATIVE METHODS FOR SOLVING LINEAR SYSTEMS

ii. Theinverses are:

[e.°]
A'=B) (1-AB),
k=0

Y (a-AB)F
k=0

(15)

B l= A.

PROOF. By using the Neumann series theorem, AB =1— (I-AB) is in-
vertible and

[e.°]

(16) AB)' = ) (1-AB)*.
k=0
Therefore
A'=B@AB)'=B i (I-AB),
17) .
B'=(@AB)'A=|) 1-AB)|A
k=0

U

2.2. Iterative refinement. Let A be an invertible matrix. The itera-
tive refinement method is a method for generating successively better
approximations to the solution of the linear system Ax = b. Assume we
have an invertible matrix B such that x = Bb = A~'b and applying B is
much cheaper than applying solving a system with the matrix A (we shall
see how good the approximation needs to be later). This approximate in-
verse B may come for example from an incomplete LU factorization or
from running a few steps of an iterative method to solve Ax =b. Can we
use successively refine the approximations given by this method? The
idea is to look at the iteration

x? = Bb
1o x® =x*D + B(b - Ax* V).
If this iteration converges, then the limit must satisfy
(19) x=x+B(b—-Ax),
i.e. if the method converges it converges to a solution of Ax = b.

THEOREM 3. The iterative refinement method (18) generates iterates of
the form

m
(20) x™ =B Y (1-AB)b, m=>o0.
k=0
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CHAPTER 1. ITERATIVE METHODS FOR SOLVING LINEAR SYSTEMS 9

Thus by the generalized Neumann series theorem, the method converges to
the solution of Ax = b provided |I-AB|| < 1 for some induced matrix norm
(i.e. provided B is sufficiently close to being an inverse of A).

PROOE. We show the form of the iterates in the iterative refinement
method by induction on m. First the case m = 0 is trivial since x(0) = Bb.
Assuming the m—th case holds:

x"+ D =x" 1 B(b - Ax")

=B) (I-AB)b+Bb-AB ) (I-AB)"b

k=0 k=0
21 m
&b =B |b+(I-AB) ) (I-AB)*Db
k=0
m+1
=B )_ (I-AB)*b.
k=0

O

2.3. Matrix splitting methods. In order to solve the linear system
Ax = b, we introduce a splitting matrix Q and use it to define the iter-
ation:

x = given,

(22)
Qx® = (Q-A)x*V+b, k>1.

Since we need to solve for x'¥) the matrix Q needs to be invertible and
solving systems with Q needs to be a cheap operation (for example Q
could be diagonal or triangular). If the iteration converges, the limit x
must satisfy

(23) Qx=(Q-A)x+b.

In other words: if the iteration (22) converges, the limit solves the linear
system Ax = b. The next theorem gives a sufficient condition for conver-
gence.

THEOREM 4. If I - QA <1 for some matrix induced norm, then
the iterates (22) converge to the solution to Ax = b regardless of the initial
iteratex©.

PROOE Subtracting the equations
x®=1-Q'ax*V+Q7'b
x=(I-QA)x+Q b,

na.tex 9 Rev: 1990, January 17, 2012
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10CHAPTER 1. ITERATIVE METHODS FOR SOLVING LINEAR SYSTEMS

we obtain arelation between the error at step k and the error at step k—1:
(25) xP —x=1-Q'Ax*V —x).

Taking norms we get:

26)  Ix® —xl < 1-Q'AIIX* " —xl <. < [1-Q"AI*Ix® —x].
Thus if |[I- Q7 'A|| < 1 we have x® - x as k — co. O

As astopping criterion we can look at the difference between two con-
secutive iterates |[x*~1 —x®||. To see this, let 5 = |[I-Q'A| < 1. Then by
the proof of the previous theorem we must have

@7 Y —xl = 8Ix Y —xl < 6 (Ix* Y —x P+ 1x P —x).

Hence by isolating Ix%®) — x|| we can bound the error by the difference
between two consecutive iterates:
(28) Ix® —x) = 2 kD _x®
1-6
Of course there can be issues if § is very close to 1.

We now look at examples of matrix splitting methods. Let us first in-
troduce a standard notation for partitioning the matrix A into its diagonal
elements D, strictly lower triangular part —E and strictly upper triangular
part —F so that

(29) A=D-E-F.

2.3.1. Richardson method. Here the splitting matrix is Q = I, so the
iteration is

(30) x® = - )x* D +p=x*D 4 k1)

where the residual vector is r = b—Ax. Using the theorem on convergence
of splitting methods, we can expect convergence when | I-A|| < 1in some
matrix induced norm, or in other words if the matrix A is sufficiently close
to the identity.

2.3.2. Jacobi method. Here the splitting matrix is Q = D, so the itera-
tion is
(31) Dx¥ = (E+Px*~V +B.

We can expect convergence when II-D~'A|| < 1 for some matrix induced
norm. If we choose the |- .o norm, we can get an easy to check sufficient
condition for convergence of the Jacobi method. Indeed:

1 6112/6111 (113/6111 aln/all
(32) D_lA a21/a22 1 (123/6122 agn/agz
an1/ Gnn  An2! Gnn .- Ann-1/Ann 1
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CHAPTER 1. ITERATIVE METHODS FOR SOLVING LINEAR SYSTEMS11

Hence

(33) IT-Q ' Alloo = max 3

A matrix satisfying the condition [|[I— Q 'All < 1 is said to be diagonally
dominant since it is equivalent to saying that in every row the diagonal
element is larger than the sum of all the other ones (in magnitude)

n
(34) la;il> ) laijl, fori=1,...,n.
j=1j#i
This result can be summarized as a theorem:

THEOREM 5. IfA is diagonally dominant, then the Jacobi method con-
verges regardless of the initial iterate to the solution of Ax = b.

We emphasize that this is only a sufficient condition for convergence.
The Jacobi method may converge for matrices that are not diagonally
dominant.

The pseudocode for the Jacobi algorithm is

for k =1,2,...
X = X + (b-Axx)./diag(diag(A))
end

Each iteration involves a multiplication by A and division by the diagonal
elements of A.

2.3.3. Gauss-Seidel method. Here Q = D —E, i.e. the lower triangular
part of A. The iterates are:

(35) D -Bx® =px* +b.

Each iteration involves multiplication by the strictly upper triangular part
of A and solving a lower triangular system (forward substitution). Here is
an easy to check sufficient condition for convergence.

THEOREM 6. IfA isdiagonally dominant, then the Gauss-Seidel method
converges regardless of the initial iterate to the solution of Ax = b.

The proof of this theorem is deferred to later, when we will find a nec-
essary and sufficient condition for convergence of matrix splitting meth-
ods. Gauss-Seidel usually outperforms the Jacobi method.

2.3.4. Successive Over Relaxation (SOR) method. Here Q = w1 (D —
wE) and w is a parameter that needs to be chosen ahead of time. For sym-
metric positive definite matrices choosing w € (0,2) gives convergence.
The iterates are:

(36) (D - wE)x® = w@x* " +b) + (1 - w)Dx*V.
na.tex 11 Rev: 1990, January 17, 2012




12CHAPTER 1. ITERATIVE METHODS FOR SOLVING LINEAR SYSTEMS

The cost of an iteration is similar to that of Gauss-Seidel and with a good
choice of the relaxation parameter w, SOR can outperform Gauss-Seidel.

2.4. Convergence of iterative methods. The goal of this section is to
give a sufficient and necessary condition for the convergence of the iter-
ation

37 x® = gx*-D ¢,

The matrix splitting methods with iteration Qx'® = (Q —A)x*~V + b from
previous section can be written in the form (37) with G = I- Q'A) and
c=Q 'b.

If the iteration (37) converges its limit satisfies
(38) x=Gx+c,
thatisx= (I-G) !¢, assuming the matrix I - G is invertible. We will show
the following theorem.

THEOREM 7. The iteration x'® = Gx'*=V + ¢ converges to (1 - G) ‘¢ if
and only if p(G) < 1.

To prove theorem 7 we need the following result.

THEOREM 8. The spectral radius satisfies:
(39) pA) = ilﬂlfIIAII,

where theinf is taken over all induced matrix norms.

This theorem means that the smallest possible induced matrix norm
is the 2—norm, if the matrix A is symmetric. The proof of this theorem is
deferred to the end of this section. Let us first prove theorem 7.

PROOF OF THEOREM 7. We first show that p(G) < 1 is sufficient for
convergence. Indeed if p(G) < 1, then there is an induced matrix norm
|l - || for which ||G|| < 1. The iterates (37) are:

xP =6x? +¢
x? =G> + Ge+c

x® =G3%@ + G%c+Ge+c
(40)

k-1
x® = Gkx© 4 Z G’c.
j=0

The term involving the initial guess goes to zero as k — oo because
(41) IG* <1 < 1G] *1x1.
Rev: 1990, January 17, 2012 12 na.tex




CHAPTER 1. ITERATIVE METHODS FOR SOLVING LINEAR SYSTEMS13

Thus by the Neumann series theorem:
k-1
(42) G/c—(I-G)'cas k— co.
j=0
Now we need to show that p(G) < 1 is necessary for convergence. As-
sume p(G) = 1 and let A,u be an eigenpair of G for which |A1| = 1. Taking
x©@ =0 and ¢ = u we get:

kel okl [ka o ifA=1
j=0 j=0 -1 u ifA ?5 1.

This is an example of an iteration of the form (37) that does not converge
when p(G) = 1. U

Theorem 8 applied to splitting matrix methods gives:

COROLLARY 1. The iteration Qx®) = (Q—A)x*~D + b converges to Ax =
b for any initial guessx'? ifand only if pd— Q7 'A) < 1.

In order to show theorem 8 we need the following result:

THEOREM 9. LetA be a n x n matrix. There is a similarity transforma-
tion X such that

(44) AX=XB

where B is an upper triangular matrix with off-diagonal components that
can be made arbitrarily small.

PROOFE. By the Schur factorization any matrix A is similar through an
unitary transformation Q to an upper triangular matrix T

(45) A=QTQ”, withQ'Q=1.
Let D = diag(e,€?,...,€"). Then
(46) (D'TD);; = t;;¢/ 7.

The elements below the diagonal (j < i) are zero. Those above the diago-
nal (j > i) satisfy

(47) |1l < €ltyj.

With X = QD, the matrix A is similar to B=D~!TD, and B is upper trian-
gular with off-diagonal elements that can be made arbitrarily small. [

PROOF OF THEOREM 8. We start by proving that p(A) < infj.; [|A]l. Pick
avector norm | - || and let A,x be an eigenpair of A with ||x|| = 1. Then

(48) Al = A = [IAX]| = [A]IIX].
na.tex 13 Rev: 1990, January 17, 2012




14CHAPTER 1. ITERATIVE METHODS FOR SOLVING LINEAR SYSTEMS

Since this is true for all eigenvalues A of A we must have p(A) < ||A||. Since
this is true for all induced matrix norms, it must also be true for their inf,
i.e. p(A) < inf||.|| IA]l.

We now show the reverse inequality p(A) < infj. [|A]l. By theorem 9,
for any € > 0, there is a non-singular matrix X such that X" !AX = D +T,
where D is diagonal and T is strictly upper triangular with || Tl < € (Why
does the component by component result from 9 imply this inequality
with the induced matrix norm?). Therefore:

(49) IX™'AXlloo = D+ Tlloo < Dllow + [ Tlloo < p(A) +e.

It is possible to show that the norm ||A|/ = IX~'AX]lo is an induced ma-
trix norm. Hence

(50) i”n”fIIAII < Al < p(A) +e.

Since € > 0 is arbitrary, we have p(A) < infj |A]l. [l

2.4.1. Convergence of Gauss-Seidel method. As an application of the
general theory above, we will determine that the Gauss-Seidel method
converges when the matrix is diagonally dominant. Again, this is only a
sufficient condition for convergence, the Gauss-Seidel method may con-
verge for other matrices that are not diagonally dominant.

THEOREM 10. IfA isdiagonally dominant then the Gauss-Seidel method
converges for any initial guessx\?.

PROOE. We need to show that when A is diagonally dominant we have
p(I-Q'A) < 1. Let A,x be an eigenpair of I - Q"!A with ||x|o, = 1. Then
I-Q'A)x=Ax, or equivalently (Q —A)x = AQx. Written componentwise
this becomes:

n i
(51) — Z aijxj:AZaijxj,lsisn.
j=i+l j=1
Isolating the diagonal component:
i-1 n
(52) /laiixi:—AZ— Z ajjxj, 1<si<n.
j=1  j=i+l
Now pick the index i such that |x;| = 1 and write
i—-1 n
(53) Allaiil < IM Y laijl+ Y laijl.
j=1 j=i+1
Isolating for A and using the diagonal dominance of A we obtain

n ..
(54) A < Zf=i+;_|“u| <1.
laiil =X 1aijl
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CHAPTER 1. ITERATIVE METHODS FOR SOLVING LINEAR SYSTEMS15

We conclude by noticing that this holds for all eigenvalues A of I - Q!A,
and therefore must also hold for p(I— Q™ !A). U

2.5. Extrapolation.

3. Conjugate gradient and other Krylov subspace methods
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