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1. Disclaimer

These notes are work in progress and may be incomplete and contain
errors. These notes are based on the following sources:

• Burden and Faires, Numerical Analysis, ninth ed.
• Kincaid and Cheney, Numerical Analysis: Mathematics of scien-

tific computing
• Stoer and Burlisch, Introduction to Numerical Analysis, Springer

1992
• Golub and Van Loan, Matrix Computations, John Hopkins 1996
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CHAPTER 1

Iterative methods for solving linear systems

1. Preliminaries

1.1. Convergence in Rn . Let ‖ · ‖ be a norm defined on Rn , i.e. it sat-
isfies the properties:

i. ∀x ∈Rn ‖x‖ ≥ 0 (non-negativity)
ii. ‖x‖ = 0 ⇔ x = 0 (definiteness)

iii. ∀λ ∈R, x ∈Rn ‖λx‖ = |λ|‖x‖ (multiplication by a scalar)
iv. ∀x,y ∈Rn ‖x+y‖ ≤ ‖x‖+‖y‖ (triangle inequality)

Some important examples of norms in Rn are:

(1) ‖x‖2 =
(∑n

i=1 |xi |2
)1/2

(Euclidean or `2 norm)
(2) ‖x‖1 =∑n

i=1 |xi | (`1 norm)
(3) ‖x‖∞ = maxi=1,...,n |xi | (`∞ or max norm)

(4) ‖x‖p = (∑n
i=1 |xi |p

)1/p (for p ≥ 1, `p norm)

A sequence {v(k)}∞k=1 in Rn converges to v ∈Rn if and only if

(1) lim
k→∞

‖v(k) −v‖.

Since Rn is a finite dimensional vector space the notion of conver-
gence is independent of the norm. This follows from the fact that in a
finite dimensional vector space all norms are equivalent. Two norms ‖·‖
and ‖| · |‖ are equivalent if there are constants α,β> 0 such that

(2) ∀x α‖|x|‖ ≤ ‖x‖ ≤β‖|x|‖.

Another property of Rn is that it is complete, meaning that all Cauchy
sequences converge in Rn . A sequence {v(k)}∞k=1 is said to be a Cauchy
sequence when

(3) ∀ε> 0 ∃N ∀i , j ≥ N ‖v(i ) −v( j )‖ < ε.

In English: A Cauchy sequence is a sequence for which any two iterates
can be made as close as we want provided that we are far enough in the
sequence.
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6 CHAPTER 1. ITERATIVE METHODS FOR SOLVING LINEAR SYSTEMS

1.2. Induced matrix norms. Let A ∈ Rn×n be a matrix (this notation
means that the matrix has n rows and n columns) and let ‖· · ·‖ be a norm
on Rn . The operator or induced matrix norm of A is defined by:

(4) ‖A‖ = sup
x∈Rn ,x6=0

‖Ax‖
‖x‖ = sup

‖x‖=1
‖Ax‖.

The induced matrix norm measures what is the maximum dilation of the
image of a vector through the matrix A. It is a good exercise to show that
it satisfies the axiom of a norm.

Some important examples of induced matrix norms:

(1) ‖A‖1 = max j=1,...,n ‖c j‖1, where c j is the j−th column of A.
(2) ‖A‖∞ = maxi=1,...,n ‖ri‖1, where ri is the i−th row of A.
(3) ‖A‖2 = square root of largest eigenvalue of AT A. When A is sym-

metric we have ‖A‖2 = |λmax |, with λmax being the largest eigen-
value of A in magnitude.

A matrix norm that is not an induced matrix norm is the Frobenius
norm:

(5) ‖A‖F =
(

n∑
i , j=1

|ai j |2
)1/2

.

Some properties of induced matrix norms:

(1) ‖Ax‖ ≤ ‖A‖‖x‖.
(2) ‖AB‖ ≤ ‖A‖‖B‖.
(3) ‖Ak‖ ≤ ‖A‖k .

1.3. Eigenvalues. The eigenvalues of a n×n matrix A are the roots of
the characteristic polynomial

(6) p(λ) = det(λI−A).

This is a polynomial of degree n, so it has at most n complex roots. An
eigenvector v associated with an eigenvalue λ is a nonzero vector such
that Av = λv. Sometimes it is convenient to refer to an eigenvalue λ and
corresponding eigenvector v 6= 0 as an eigenpair of A.

The spectral radius ρ(A) is defined as the magnitude of the largest
eigenvalue in magnitude of a matrix A i.e.

(7) ρ(A) = max{|λ| | det(λI−A) = 0}.

The spectral radius is the radius of the smallest circle in C containing all
eigenvalues of A.

Two matrices A and B are said to be similar if there is an invertible
matrix X such that

(8) AX = XB.

Rev: 1990, January 17, 2012 6 na.tex



CHAPTER 1. ITERATIVE METHODS FOR SOLVING LINEAR SYSTEMS 7

Similar matrices have the same characteristic polynomial and thus
the same eigenvalues. This follows from the properties of the determi-
nant since
(9)
det(λI−A) = det(X−1)det(λI−A)det(X) = det(λI−X−1AX) = det(λI−B).

2. Neumann series based methods

2.1. Neumann series. We start by a fundamental theorem that is the
theoretical basis for several methods for solving the linear system Ax = b.
This theorem can be seen as a generalization to matrices of the geometric
series identity (1−x)−1 = 1+x +x2 + . . . for |x| < 1.

THEOREM 1. Let A ∈ Rn×n be such that ‖A‖ < 1 for some induced ma-
trix norm ‖ ·‖, then:

i. I−A is invertible
ii. (I−A)−1 = I+A+A2 +·· · =∑∞

k=0 Ak .

PROOF. Assume for contradiction that I−A is singular. This means
there is a x 6= 0 such that (I−A)x = 0. Taking x such that ‖x‖ = 1, we have

(10) 1 = ‖x‖ = ‖Ax‖ ≤ ‖A‖‖x‖ = ‖A‖,

which contradicts the hypothesis ‖A‖ < 1.
We now need to show convergence to (I−A)−1 of the partial series

(11)
m∑

k=0
Ak .

Observe that:

(12) (I−A)
m∑

k=0
Ak =

m∑
k=0

Ak −Ak+1 = A0 −Am+1.

Therefore

(13) ‖(I−A)
m∑

k=0
Ak − I‖ = ‖Am+1‖ ≤ ‖A‖m+1 → 0 as m →∞.

�

Here is an application of this theorem to estimate the norm

(14) ‖(I−A)−1‖ ≤
∞∑

k=0
‖Ak‖ ≤

∞∑
k=0

‖A‖k = 1

1−‖A‖ .

Here is a generalization of the Neumann series theorem.

THEOREM 2. If A and B are n ×n matrices such that ‖I−AB‖ < 1 for
some induced matrix norm then

i. A and B are invertible.
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8 CHAPTER 1. ITERATIVE METHODS FOR SOLVING LINEAR SYSTEMS

ii. The inverses are:

(15)

A−1 = B
∞∑

k=0
(I−AB)k ,

B−1 =
[ ∞∑

k=0
(I−AB)k

]
A.

PROOF. By using the Neumann series theorem, AB = I− (I−AB) is in-
vertible and

(16) (AB)−1 =
∞∑

k=0
(I−AB)k .

Therefore

(17)

A−1 = B(AB)−1 = B
∞∑

k=0
(I−AB)k ,

B−1 = (AB)−1A =
[ ∞∑

k=0
(I−AB)k

]
A.

�

2.2. Iterative refinement. Let A be an invertible matrix. The itera-
tive refinement method is a method for generating successively better
approximations to the solution of the linear system Ax = b. Assume we
have an invertible matrix B such that x = Bb ≈ A−1b and applying B is
much cheaper than applying solving a system with the matrix A (we shall
see how good the approximation needs to be later). This approximate in-
verse B may come for example from an incomplete LU factorization or
from running a few steps of an iterative method to solve Ax = b. Can we
use successively refine the approximations given by this method? The
idea is to look at the iteration

(18)
x(0) = Bb

x(k) = x(k−1) +B(b−Ax(k−1)).

If this iteration converges, then the limit must satisfy

(19) x = x+B(b−Ax),

i.e. if the method converges it converges to a solution of Ax = b.

THEOREM 3. The iterative refinement method (18) generates iterates of
the form

(20) x(m) = B
m∑

k=0
(I−AB)k b, m ≥ 0.
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CHAPTER 1. ITERATIVE METHODS FOR SOLVING LINEAR SYSTEMS 9

Thus by the generalized Neumann series theorem, the method converges to
the solution of Ax = b provided ‖I−AB‖ < 1 for some induced matrix norm
(i.e. provided B is sufficiently close to being an inverse of A).

PROOF. We show the form of the iterates in the iterative refinement
method by induction on m. First the case m = 0 is trivial since x(0) = Bb.
Assuming the m−th case holds:

(21)

x(m+1) = x(m) +B(b−Ax(m))

= B
m∑

k=0
(I−AB)k b+Bb−AB

m∑
k=0

(I−AB)k b

= B

[
b+ (I−AB)

m∑
k=0

(I−AB)k b

]

= B
m+1∑
k=0

(I−AB)k b.

�

2.3. Matrix splitting methods. In order to solve the linear system
Ax = b, we introduce a splitting matrix Q and use it to define the iter-
ation:

(22)
x(0) = given,

Qx(k) = (Q−A)x(k−1) +b, k ≥ 1.

Since we need to solve for x(k) the matrix Q needs to be invertible and
solving systems with Q needs to be a cheap operation (for example Q
could be diagonal or triangular). If the iteration converges, the limit x
must satisfy

(23) Qx = (Q−A)x+b.

In other words: if the iteration (22) converges, the limit solves the linear
system Ax = b. The next theorem gives a sufficient condition for conver-
gence.

THEOREM 4. If ‖I − Q−1A‖ < 1 for some matrix induced norm, then
the iterates (22) converge to the solution to Ax = b regardless of the initial
iterate x(0).

PROOF. Subtracting the equations

(24)
x(k) = (I−Q−1A)x(k−1) +Q−1b

x = (I−QA)x+Q−1b,
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10CHAPTER 1. ITERATIVE METHODS FOR SOLVING LINEAR SYSTEMS

we obtain a relation between the error at step k and the error at step k−1:

(25) x(k) −x = (I−Q−1A)(x(k−1) −x).

Taking norms we get:

(26) ‖x(k) −x‖ ≤ ‖I−Q−1A‖‖x(k−1) −x‖ ≤ . . . ≤ ‖I−Q−1A‖k‖x(0) −x‖.

Thus if ‖I−Q−1A‖ < 1 we have x(k) → x as k →∞. �

As a stopping criterion we can look at the difference between two con-
secutive iterates ‖x(k−1)−x(k)‖. To see this, let δ= ‖I−Q−1A‖ < 1. Then by
the proof of the previous theorem we must have

(27) ‖x(k) −x‖ ≤ δ‖x(k−1) −x‖ ≤ δ(‖x(k−1) −x(k)‖+‖x(k) −x‖).

Hence by isolating ‖x(k) − x‖ we can bound the error by the difference
between two consecutive iterates:

(28) ‖x(k) −x‖ ≤ δ

1−δ‖x(k−1) −x(k)‖.

Of course there can be issues if δ is very close to 1.
We now look at examples of matrix splitting methods. Let us first in-

troduce a standard notation for partitioning the matrix A into its diagonal
elements D, strictly lower triangular part −E and strictly upper triangular
part −F so that

(29) A = D−E−F.

2.3.1. Richardson method. Here the splitting matrix is Q = I, so the
iteration is

(30) x(k) = (I−A)x(k−1) +b = x(k−1) + r(k−1),

where the residual vector is r = b−Ax. Using the theorem on convergence
of splitting methods, we can expect convergence when ‖I−A‖ < 1 in some
matrix induced norm, or in other words if the matrix A is sufficiently close
to the identity.

2.3.2. Jacobi method. Here the splitting matrix is Q = D, so the itera-
tion is

(31) Dx(k) = (E+F)x(k−1) +B.

We can expect convergence when ‖I−D−1A‖ < 1 for some matrix induced
norm. If we choose the ‖·‖∞ norm, we can get an easy to check sufficient
condition for convergence of the Jacobi method. Indeed:

(32) D−1A =


1 a12/a11 a13/a11 . . . a1n/a11

a21/a22 1 a23/a22 . . . a2n/a22
...

...
an1/ann an2/ann . . . ann−1/ann 1

 .
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CHAPTER 1. ITERATIVE METHODS FOR SOLVING LINEAR SYSTEMS11

Hence

(33) ‖I−Q−1A‖∞ = max
i=1,...,n

n∑
j=1, j 6=i

|ai j |
|ai i |

.

A matrix satisfying the condition ‖I−Q−1A‖∞ < 1 is said to be diagonally
dominant since it is equivalent to saying that in every row the diagonal
element is larger than the sum of all the other ones (in magnitude)

(34) |ai i | >
n∑

j=1, j 6=i
|ai j |, for i = 1, . . . ,n.

This result can be summarized as a theorem:

THEOREM 5. If A is diagonally dominant, then the Jacobi method con-
verges regardless of the initial iterate to the solution of Ax = b.

We emphasize that this is only a sufficient condition for convergence.
The Jacobi method may converge for matrices that are not diagonally
dominant.

The pseudocode for the Jacobi algorithm is

for k = 1 , 2 , . . .
x = x + (b−A* x ) . / diag ( diag (A ) )

end

Each iteration involves a multiplication by A and division by the diagonal
elements of A.

2.3.3. Gauss-Seidel method. Here Q = D−E, i.e. the lower triangular
part of A. The iterates are:

(35) (D−E)x(k) = Fx(k−1) +b.

Each iteration involves multiplication by the strictly upper triangular part
of A and solving a lower triangular system (forward substitution). Here is
an easy to check sufficient condition for convergence.

THEOREM 6. If A is diagonally dominant, then the Gauss-Seidel method
converges regardless of the initial iterate to the solution of Ax = b.

The proof of this theorem is deferred to later, when we will find a nec-
essary and sufficient condition for convergence of matrix splitting meth-
ods. Gauss-Seidel usually outperforms the Jacobi method.

2.3.4. Successive Over Relaxation (SOR) method. Here Q = ω−1(D −
ωE) andω is a parameter that needs to be chosen ahead of time. For sym-
metric positive definite matrices choosing ω ∈ (0,2) gives convergence.
The iterates are:

(36) (D−ωE)x(k) =ω(Fx(k−1) +b)+ (1−ω)Dx(k−1).
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12CHAPTER 1. ITERATIVE METHODS FOR SOLVING LINEAR SYSTEMS

The cost of an iteration is similar to that of Gauss-Seidel and with a good
choice of the relaxation parameter ω, SOR can outperform Gauss-Seidel.

2.4. Convergence of iterative methods. The goal of this section is to
give a sufficient and necessary condition for the convergence of the iter-
ation

(37) x(k) = Gx(k−1) +c.

The matrix splitting methods with iteration Qx(k) = (Q−A)x(k−1)+b from
previous section can be written in the form (37) with G = (I−Q−1A) and
c = Q−1b.

If the iteration (37) converges its limit satisfies

(38) x = Gx+c,

that is x = (I−G)−1c, assuming the matrix I−G is invertible. We will show
the following theorem.

THEOREM 7. The iteration x(k) = Gx(k−1) + c converges to (I−G)−1c if
and only if ρ(G) < 1.

To prove theorem 7 we need the following result.

THEOREM 8. The spectral radius satisfies:

(39) ρ(A) = inf
‖·‖

‖A‖,

where the inf is taken over all induced matrix norms.

This theorem means that the smallest possible induced matrix norm
is the 2−norm, if the matrix A is symmetric. The proof of this theorem is
deferred to the end of this section. Let us first prove theorem 7.

PROOF OF THEOREM 7. We first show that ρ(G) < 1 is sufficient for
convergence. Indeed if ρ(G) < 1, then there is an induced matrix norm
‖ ·‖ for which ‖G‖ < 1. The iterates (37) are:

(40)

x(1) = Gx(0) +c

x(2) = G2x(0) +Gc+c

x(3) = G3x(0) +G2c+Gc+c

...

x(k) = Gk x(0) +
k−1∑
j=0

G j c.

The term involving the initial guess goes to zero as k →∞ because

(41) ‖Gk x(0)‖ ≤ ‖G‖k‖x(0)‖.
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Thus by the Neumann series theorem:

(42)
k−1∑
j=0

G j c → (I−G)−1c as k →∞.

Now we need to show that ρ(G) < 1 is necessary for convergence. As-
sume ρ(G) ≥ 1 and let λ,u be an eigenpair of G for which |λ| ≥ 1. Taking
x(0) = 0 and c = u we get:

(43) x(k) =
k−1∑
j=0

G j u =
k−1∑
j=0

λ j u =
{

ku if λ= 1
1−λk

1−λ u if λ 6= 1.

This is an example of an iteration of the form (37) that does not converge
when ρ(G) ≥ 1. �

Theorem 8 applied to splitting matrix methods gives:

COROLLARY 1. The iteration Qx(k) = (Q−A)x(k−1)+b converges to Ax =
b for any initial guess x(0) if and only if ρ(I−Q−1A) < 1.

In order to show theorem 8 we need the following result:

THEOREM 9. Let A be a n×n matrix. There is a similarity transforma-
tion X such that

(44) AX = XB

where B is an upper triangular matrix with off-diagonal components that
can be made arbitrarily small.

PROOF. By the Schur factorization any matrix A is similar through an
unitary transformation Q to an upper triangular matrix T

(45) A = QTQT , with QT Q = I.

Let D = diag(ε,ε2, . . . ,εn). Then

(46) (D−1TD)i j = ti j ε
j−i .

The elements below the diagonal ( j < i ) are zero. Those above the diago-
nal ( j > i ) satisfy

(47) |ti j ε
j−i | ≤ ε|ti j |.

With X = QD, the matrix A is similar to B = D−1TD, and B is upper trian-
gular with off-diagonal elements that can be made arbitrarily small. �

PROOF OF THEOREM 8. We start by proving that ρ(A) ≤ inf‖·‖ ‖A‖. Pick
a vector norm ‖ ·‖ and let λ,x be an eigenpair of A with ‖x‖ = 1. Then

(48) ‖A‖ ≥ ‖Ax‖ = ‖λx‖ = |λ|‖x‖.
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Since this is true for all eigenvalues λ of A we must have ρ(A) ≤ ‖A‖. Since
this is true for all induced matrix norms, it must also be true for their inf,
i.e. ρ(A) ≤ inf‖·‖ ‖A‖.

We now show the reverse inequality ρ(A) ≤ inf‖·‖ ‖A‖. By theorem 9,
for any ε > 0, there is a non-singular matrix X such that X−1AX = D+T,
where D is diagonal and T is strictly upper triangular with ‖T‖∞ ≤ ε (why
does the component by component result from 9 imply this inequality
with the induced matrix norm?). Therefore:

(49) ‖X−1AX‖∞ = ‖D+T‖∞ ≤ ‖D‖∞+‖T‖∞ ≤ ρ(A)+ε.

It is possible to show that the norm ‖A‖′∞ ≡ ‖X−1AX‖∞ is an induced ma-
trix norm. Hence

(50) inf
‖·‖

‖A‖ ≤ ‖A‖′∞ ≤ ρ(A)+ε.

Since ε> 0 is arbitrary, we have ρ(A) ≤ inf‖·‖ ‖A‖. �

2.4.1. Convergence of Gauss-Seidel method. As an application of the
general theory above, we will determine that the Gauss-Seidel method
converges when the matrix is diagonally dominant. Again, this is only a
sufficient condition for convergence, the Gauss-Seidel method may con-
verge for other matrices that are not diagonally dominant.

THEOREM 10. If A is diagonally dominant then the Gauss-Seidel method
converges for any initial guess x(0).

PROOF. We need to show that when A is diagonally dominant we have
ρ(I−Q−1A) < 1. Let λ,x be an eigenpair of I−Q−1A with ‖x‖∞ = 1. Then
(I−Q−1A)x =λx, or equivalently (Q−A)x =λQx. Written componentwise
this becomes:

(51) −
n∑

j=i+1
ai j x j =λ

i∑
j=1

ai j x j , 1 ≤ i ≤ n.

Isolating the diagonal component:

(52) λai i xi =−λ
i−1∑
j=1

−
n∑

j=i+1
ai j x j , 1 ≤ i ≤ n.

Now pick the index i such that |xi | = 1 and write

(53) |λ||ai i | ≤ |λ|
i−1∑
j=1

|ai j |+
n∑

j=i+1
|ai j |.

Isolating for λ and using the diagonal dominance of A we obtain

(54) |λ| ≤
∑n

j=i+1 |ai j |
|ai i |−∑i−1

j=1 |ai j |
< 1.
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We conclude by noticing that this holds for all eigenvalues λ of I−Q−1A,
and therefore must also hold for ρ(I−Q−1A). �

2.5. Extrapolation.

3. Conjugate gradient and other Krylov subspace methods
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