Other Krylov subspace methods

Idea: Find "best" updates inside Krylov subspaces for A (or sometimes AT). Some methods work even with
unsymmetric problems. Here are some examples:

GMRES (Generalized minimal residual)

- Works for general systems, residual guaranteed
to decrease but iterations become more costly
 (in computations, storage)

Restarted GMRES: Run k steps of GMRES, throw
away "memory" and start k steps of GMRES again
from where we left over.

CGN: Conjugate Gradient for normal eq. specially designed
to solve $ATAx = ATb$.

BCG: Bi-Conjugate gradient (for general problems)
(no optimality and unstable)

Bi-CGSTAB: Stabilized version

QMR: quasi-minimal residual (another stabilization
of BCG)

etc...

- Krylov subspace methods are also used for finding
eigenvalues (we shall discuss this later)

- Matlab has a good collection of methods for solving
linear systems:

 help sparfum
Chap 5 Initial value problems for Ordinary Diff Eq (ODE)

Objective: develop methods to solve numerically problems of the kind

\[
\begin{align*}
\frac{dy}{dt} &= f(t, y), & \text{for } t \in [a, b] \quad \text{often an exact solution to (1)} \\text{ is too complicated or even cannot be found.}
\end{align*}
\]

\[y(a) = \alpha\]

Extension to systems:

\[
\begin{align*}
\frac{dy_1}{dt} &= f_1(t, y_1, y_2, \ldots, y_n) \\
\frac{dy_2}{dt} &= f_2(t, y_1, y_2, \ldots, y_n) \\
\vdots \\
\frac{dy_n}{dt} &= f_n(t, y_1, y_2, \ldots, y_n)
\end{align*}
\]

\[\begin{align*}
\begin{cases}
\frac{dy}{dt} = f(t, y) \\
\text{and to } m\text{-th order IVP:}
\end{cases}
\end{align*}
\]

\[y^{(n)}(a) = \alpha_1, \quad y^{(n-1)}(a) = \alpha_2, \quad \ldots, \quad y^{(1)}(a) = \alpha_n, \quad y(a) = \alpha_0
\]

Fundamental questions to answer about the IVP (1):

- \text{existence: does (1) admit a sol?}
- \text{uniqueness: is the sol to (1) unique?}
- \text{"stability": Do small changes in the statement of the problem introduce small changes in the solution?}

A problem satisfying all 3 properties is said to be \textbf{well posed} (in the sense of Hadamard)
The IVP (1) is well posed under mild assumptions on f. We need some terminology (maybe you've seen this many times before!)

Def (Lipchitz condition)

A function $f(t, y)$ satisfies a Lipchitz condition in the variable y on a set $D \subseteq \mathbb{R}^2$ if

$$|f(t, y_1) - f(t, y_2)| \leq L |y_1 - y_2| \quad \forall (t, y_1) \in D, \quad (t, y_2) \in D,$$

$L = $ Lipchitz constant for f.

(means $f(t, \cdot)$ is Lipchitz continuous for all t).

Example:

$$D = \{(t, y) : 0 < t < 1, -1 < y < 1\}$$

$$f(t, y) = ty.$$

$$|f(t, y) - f(b, y_2)| = |t(y) - t(y_2)| = |t| |y_1 - y_2| \leq |t| |y_1 - y_2| \leq |y_1 - y_2|$$

$L = 1$

Def (Convex set)

A set D is a convex set iff:

$$\lambda(x, y) \in D \Rightarrow \lambda x + (1-\lambda)y \in D \quad \forall \lambda \in [0, 1]$$

In our case:

$$(t, y_1) \in D, (t, y_2) \in D \Rightarrow (\lambda t, +(1-\lambda)ty_1 + (1-\lambda)ty_2)$$

$\forall \lambda \in [0, 1].$

For IVP we usually have:

$$D = \{f(t, y) | a \leq t \leq b, \ y \in \mathbb{R} \}.$$
Here is a sufficient (but not necessary) condition for Lipechity at t.

Theorem. Let $f(t,y)$ be defined on some convex set $D \subset \mathbb{R}^2$.

If $\exists L > 0$ s.t.

$$\left| \frac{\partial f}{\partial y}(t,y) \right| \leq L \quad \forall (t,y) \in D$$

then f satisfies a Lipschitz condition on D in y with Lips. cont. L.

Note: $f(t,y) = t |y|$ satisfies the Lipschitz condition and yet $\frac{\partial f}{\partial y}$ does not exist at $y=0$.

Existence and uniqueness for IVP (1) are taken care of by:

Theorem. Let $D = \{(t,y) \mid a \leq t \leq b \land y \in \mathbb{R}\}$ and that

1. $f(t,y)$ is continuous on D
2. f satisfies Lips. cont\to on D in Variable y, then the IVP (1) admits a unique solution.

"Stability": can be formulated as follows:

Let $y(t)$ solve

$$\begin{cases}
\frac{dy}{dt} = f(t,y), \quad a \leq t \leq b \\
y(a) = \alpha
\end{cases}$$

If $\epsilon_0 > 0, \delta_0 > 0 \\forall \\exists t \\delta > \epsilon > 0$

1. $\delta(t)$ continuous s.t. $|\delta(t)| \leq \epsilon$
2. $\delta_0 \in \mathbb{R}$ s.t. $|\delta_0| \leq \epsilon$

$$\begin{cases}
\frac{d\delta}{dt} = f(t,y) + \delta(t), \quad a \leq t \leq b, \\
y(a) = \alpha + \delta_0
\end{cases}$$

(perturbed problem)
has a unique solution \(y(t) \) and:
\[
|y(t) - y(t)| < k \epsilon
\]

(essentially the mapping data \((\alpha, f(t, y)) \) to solution \(y \) is continuous).

This "stability" property is crucial to trust solutions given by a numerical method (sources of error can be from the method itself or from numerical roundoff).

\(\Rightarrow \) All numerical methods assume IVPs well-posed.

Example: \(D = \{(y, \xi) \mid t \in [0, 2], \xi \in \mathbb{R}\} \)

\[
\begin{cases}
\frac{dy}{dt} = (y - t^2 + 1), & 0 \leq t \leq 2 \\
y(0) = \frac{1}{2}
\end{cases} \quad (IVP)
\]

\[
|\frac{\partial f}{\partial y}| = |1| = 1 \Rightarrow f(t, y) \text{ is Lipschitz on } D \text{ with variable } y,
\]

\& if constant \(\Rightarrow \) problem is stable to perturbations in init data.

We can verify this directly:

\[
\begin{cases}
\frac{dy}{dt} = 3 - t^2 + 1 + \delta \\
y(0) = \frac{1}{2} + \delta_0
\end{cases} \quad \text{(perturbed problem)}
\]

IVP has sol: \(y(t) = \frac{1}{2} e^t + (t + 1)^2 \quad \text{and } y(t) = \frac{(1 + \delta_0) e^t + (t + 1)^2 + (e^t - 1) \delta}{2} \)

\[
|y(t) - \hat{y}(t)| = |(\delta_0 + \delta) e^t - \delta| \leq |\delta_0 + \delta| e^t + |\delta| \leq 2e^2 \epsilon + \epsilon \leq (2e^2 + 1) \epsilon
\]
§5.2 Euler’s method

A simple numerical method to solve IVP:

\[\begin{align*}
\frac{dy}{dt} &= f(t, y), \quad a \leq t \leq b \quad \text{assuming well-posedness} \\
y(a) &= y_0
\end{align*} \]

Euler’s method gives approximations at mesh points:

\[t_j = a + jh, \quad \text{where} \quad h = \frac{b-a}{N}, \quad j = 0, 1, \ldots, N \]

\[t_0 = a, \quad t_1, \ldots, t_{N-1}, \quad t_N = b \]

\((N+1) \) equally spaced points

Idea for Euler’s method: Taylor’s theorem:

\[y(t_{i+1}) = y(t_i) + y'(t_i) (t_{i+1} - t_i) + \frac{y''(\xi_i)}{2} (t_{i+1} - t_i)^2 \]

for some \(\xi_i \in (t_i, t_{i+1}) \).

\[= y(t_i) + h y'(t_i) + \frac{h^2}{2} y''(\xi_i) \]

\[= y(t_i) + h f(t_i, y(t_i)) + \frac{h^2}{2} y''(\xi_i) \]

\(y \) satisfies DE: IVP

Neglect for

Euler’s method

\[y_0 = y(a), \quad \text{for} \quad i = 0, \ldots, N-1 \]

\[y_{i+1} = y_i + h f(t_i, y_i) \]

Geometrical interpretation

Assume \(y_i = y(t_i) \)

\[y(t_i) = y_i \]

\[y'(t_i) = f(t_i, y_i) \]

Next approx.

Systematic error is introduced at every step.
Several types of errors in numerical methods for DE:

- **Local truncation error**: error made in one step.
 - For example in Euler's method: \(O(h^2) \) since:
 \[
 y(t + h) = y(t) + hf(t, y(t)) + O(h^2)
 \]
 - Backdef: this is \(\Delta \)

- **Local roundoff error**: precision used for computation. \(10^{-16} \) double \(10^{-8} \) single

- **Global truncation error**: accumulation of all the local truncation errors. If local truncation error is \(O(h^n) \) then the global truncation error must be \(O(h^n) \) because the number of steps is \(O(h) \).

- **Global roundoff error**: accumulation of local roundoff errors of previous steps.

- **Total error** = global truncation error + global roundoff error

 If the global truncation error is \(O(h^n) \) then the method is of order \(n \)

 Example: Euler's method is of order 1, and it is relatively simple to derive more precise bounds on the global truncation error.

 If \(f \) is continuous and satisfy the Lipschitz condition with \(L \)-constant \(L \) on \(\mathbb{D} = \{ (t, y) \mid t \in [a, b] \}, y \in \mathbb{R} \} \) and that

 \[|y''(t)| \leq M \quad \forall t \in [a, b] \]

 for some \(M > 0 \).

 Let \(y(t) \) be the solution to IVP

 \[
 \begin{align*}
 \frac{dy}{dt} &= f(t, y) \\
 y(a) &= \alpha
 \end{align*}
 \]

 and \(y_0, y_1, \ldots, y_n \) the approximations given by Euler's method.
then:
\[|y(t_i) - y(t_i+1)| < \frac{M}{2L} \left[e^{L(t_i-a)} - 1 \right], \quad i = 0, 1, \ldots, N. \]

Proof (sketch)

\[y(t_{i+1}) = y(t_i) + hf(t_i, y(t_i)) + \frac{h^2}{2} y''(\xi_i) \]
\[y_{i+1} = y_i + hf(t_i, y_i) \]

\[\Rightarrow |y(t_{i+1}) - y_{i+1}| \leq |y(t_i) - y_i| + h |f(t_i, y(t_i)) - f(t_i, y_i)| \]
\[+ \frac{h^2}{2} |y''(\xi_i)| \]
\[\leq (1+hl) |y(t_i) - y_i| + \frac{h^2 M}{2} \]

Using Lemma 5.8 in book: (geometric series bounding exp)

\[|y_{i+1} - w_{i+1}| \leq e^{(i+1)hL} \left(\frac{|y_0 - w_0| + \frac{h^2 M}{2hL}}{2} \right) - \frac{h^2 M}{2hL} \]
\[\leq \frac{h^2 M}{2hL} \left(e^{(i+1)hL} - 1 \right) \]
\[t_{i+1} - t_i = t_{i+1} - a_i \]

Lemma 5.8

\(\{ a_i \}_{i=0}^{k} \) is a seq with \(a_0 \geq -\frac{b}{4} \) and

\(a_{i+1} \leq a_i (1+b) + t \) for \(i = 0, \ldots, k-1 \)

\[a_{i+1} \leq e^{(i+1)s} (a_0 + \frac{b}{4}) - \frac{b}{4} \]

Proof:

\[a_{i+1} \leq a_i (1+b) + t \leq ((1+b)a_{i-1} + t) (1+b) + t \]
\[\leq \left((1+b)(a_{i-1} + t) + t \right) (1+b) + t \]
\[\vdots \]
\[\leq (1+b)^{i+1} a_0 + t \sum_{j=0}^{i} (1+b)^j \]
\[a_{i+1} \leq (1+a) a_{i} + t \left[\frac{1 - (1+a)^{i+1}}{1 - (1+a)} \right] \]

\[= (1+a)^{i+1} (a_{0} + \frac{b_{0}}{a}) - \frac{b_{0}}{a} \]

\[\leq e \left(a_{0} + \frac{b_{0}}{a} \right) - \frac{b_{0}}{a} \]

since \((1+x)^{n} = e \alpha \ln (1+x) \alpha x \)

\[\leq e \]

can be shown using Taylor's

Thus.

For Euler's method it's even possible to incorporate the round-off
errors in the analysis.

Instead of having:

\[y_{0} = x \]

\[f_{i} = 0 \ldots N-1 \]

\[y_{i+1} = y_{i} + h f(t_{i}, y_{i}) \]

we cannot a make take at each step

\[y_{0} = x + \delta_{0} \]

\[f_{i} = 0 \ldots N-1 \]

\[y_{i+1} = y_{i} + h f(t_{i}, y_{i}) + \delta_{i+1} \]

If \(|\delta_{i}| < \delta \) it is possible to show:

\[|y(t_{i}) - y_{i}| \leq \frac{1}{2} \left(\frac{hM}{2} + \frac{\delta}{h} \right) \left[e^{L(t_{i} - a)} - 1 \right] \]

\[+ |\delta_{i}| e^{L(t_{i} - a)} \]

performance degrades as \(h \to 0 \)!!

(similar to problem with numerical differentiation)

The \(h \) giving smallest error is

\[h = \sqrt{\frac{2 \delta}{M}} \] (simple calculation)
High order Taylor methods:

Some derivation as Euler method but any Taylor series further:

\[
y(t_{i+1}) = y(t_i) + h \cdot y'(t_i) + \frac{h^2}{2} y''(t_i) + \cdots + \frac{h^n}{n!} y^{(n)}(t_i) + \frac{h^{n+1}}{(n+1)!} y^{(n+1)}(\xi)
\]

for some \(\xi \in (t_i, t_{i+1}) \).

\[
y'(t) = f(t, y(t))
\]
\[
y''(t) = \frac{d}{dt} \left[f(t, y(t)) \right]
\]
\[
y^{(k)}(t) = \frac{d^{k-1}}{dt^{k-1}} \left[f(t, y(t)) \right]
\]

Taylor method of order \(n \):

\[
y_0 = y(0), \quad n = 1, 2, \ldots, N-1,
\]
\[
y_{i+1} = y_i + h \cdot f(t_i, y(t)) + \frac{h^2}{2} \cdot \frac{d}{dt} f(t_i, y(t)) + \cdots + \frac{h^n}{n!} \cdot \frac{d^{n-1}}{dt^{n-1}} f(t_i, y(t))
\]

Local truncation error is \(O(h^{n+1}) \).

In general evaluating \(\frac{d^k}{dt^k} [f(t, y(t))] \) can be quite involved because of the repeated application of the chain rule.

For example:

\[
\begin{align*}
y' &= \cos t - \sin y + t^2 = f(t, y) \\
y(-1) &= 3
\end{align*}
\]

\[
y'' = \frac{d}{dt} \left[f(t, y(t)) \right] = -\sin t - y' \cos y + 2t
\]

\[
y''' = \frac{d^2}{dt^2} \left[f(t, y(t)) \right] = -\cos t - y'' \cos y + (y')^2 \sin y + 2
\]

\[
y^{(4)} = \frac{d^3}{dt^3} \left[f(t, y(t)) \right] = \sin t - y^{(3)} \cos y + 3y' y'' \sin y + (y')^3 \cos y
\]

etc...
§5.4 Runge-Kutta methods

Taylor series method for
\[
\begin{align*}
\frac{dy}{dt} &= f(t, y), \quad t \in [a, b] \\
y(a) &= y_0
\end{align*}
\]
require us to compute formulas for
\[
\begin{align*}
y'' &= \frac{df}{dt} \\
y''' &= \frac{d^2f}{dt^2} \\
\end{align*}
\]

which can be quite involved.

Runge-Kutta methods avoid this difficulty by carefully chosen combinations of values of \(f(t, y) \).

Second order Runge-Kutta methods:

Start with Taylor series:
\[
y(t+h) = y(t) + \frac{h}{2} y'(t) + \frac{h^2}{2} y''(t) + \frac{h^3}{6} y'''(t) + \ldots.
\]

From the DE we get:
\[
\begin{align*}
y'(t) &= f(t, y) = \frac{\partial f}{\partial t} \\
y''(t) &= \frac{\partial f}{\partial t} + \frac{\partial^2 f}{\partial t \partial y} y' = f_t + f_{ty} \\
y'''(t) &= \frac{\partial^2 f}{\partial t^2} + \frac{\partial^2 f}{\partial t \partial y} y'' + \frac{\partial^3 f}{\partial t^3} + \frac{\partial^2 f}{\partial t \partial y^2} y' + \frac{\partial^3 f}{\partial t^2 \partial y} y + \frac{\partial^3 f}{\partial t \partial y^2} y + \frac{\partial^3 f}{\partial y^3} y + O(h^3)
\end{align*}
\]

\[
y(t+h) = y(t) + \frac{hf}{2} + \frac{h^2}{2} (f_t + f_{ty}) + O(h^3)
\]
The idea is to eliminate the partial drift of \(f \) by using the first few terms of the two variable Taylor series for \(f(t, y) \):

\[
f(t+h, y+hf) = f + \frac{\partial f}{\partial x}(t, y) h + O(h^2)
= f + hf_t + hff_y + O(h^2)
\]

Rewriting the Taylor series of \(y \):

\[
y(t+h) = y(t) + \frac{1}{2} hf + \frac{1}{6} h^2 \left[f(t+h, y+hf) + O(h^3) \right]
= y(t) + \frac{1}{2} hf + \frac{1}{6} h \left[f(t+h, y+hf) + O(h^3) \right]
+ O(h^3)
\]

Thus it is possible to construct an update which has the same \(O(h^3) \) local truncation error as 2nd order Taylor method:

Modified Euler method

\[
y_i = A
\]

for \(i = 0, 1, \ldots, N-1 \)

\[
F_1 = hf(t_i, y_i)
F_2 = hf(t_i+h, y_i+F_1)
\]

\[
y_{i+1} = y_i + \frac{1}{2} F_1 + \frac{1}{2} F_2
\]

The general form for second order Runge-Kutta update is:

\[
y(t+h) = y + w_1 hf + w_2 h \left[f(t+\alpha h, y+\beta hf) \right]
\]

where \(w_1, w_2, \alpha, \beta \) are parameters that we can adjust. Using two variable Taylor expansion:

\[
y(t+h) = y + w_1 hf + w_2 h \left[f + h f_t + \beta hff_y \right]
\]
Matching comparable terms with (4) we get:

\[
\begin{align*}
\omega_1 + \omega_2 &= 1 \\
\omega_2 \alpha &= \frac{1}{2} \\
\omega \beta &= \frac{1}{2}
\end{align*}
\]

→ so there is a family of RK order 2 methods

Modified Euler: \(\omega_1 = \omega_2 = \frac{1}{2}, \alpha = \beta = 1 \)

Midpoint method: \(\omega_1 = 0, \omega_2 = 1, \alpha = \beta = \frac{1}{2} \)

\(y_0 = A \)

for \(i = 0, 1, \ldots, N-1 \)

\[
\begin{align*}
F_1 &= h f(t_i, y_i) \\
F_2 &= h f(t_i + \frac{h}{2}, y_i + \frac{1}{2} F_1) \\
y_{i+1} &= y_i + F_2
\end{align*}
\]

(also \(O(h^3) \) LTE)

Heun's method: \(\omega_1 = \frac{1}{4}, \omega_2 = \frac{3}{4}, \alpha = \beta = \frac{2}{3} \)

\(y_0 = A \)

for \(i = 0, 1, \ldots, N-1 \)

\[
\begin{align*}
F_1 &= h f(t_i, y_i) \\
F_2 &= h f(t_i + \frac{h}{3}, y_i + \frac{2}{3} F_1) \\
y_{i+1} &= y_i + \frac{1}{4} F_1 + \frac{3}{4} F_2
\end{align*}
\]
Runge Kutta methods of order 3 are obtained by matching terms between Taylor expansion of order 3 of \(y(t) \) and
\[f(t + h, y + hf(t, y)) \]

The derivation is quite tedious, but here is one possible RK order 3 method:

\[y_0 = A \]
for \(i = 0, \ldots, N-1 \)
\[
F_1 = h f(t_i, y_i) \\
F_2 = h f(t_i + \frac{1}{2} h, y_i + \frac{1}{2} F_1) \\
F_3 = h f(t_i + \frac{3}{4} h, y_i + \frac{3}{4} F_2) \\
y_{i+1} = y_i + \frac{1}{3} (2F_1 + 3F_2 + 4F_3)
\]

However, it is not commonly used in practice.

The most popular RK method is that of order 4; again, the derivation is tedious but the implementation straightforward:

Runge Kutta method of order 4 (LTE O(h^5))

\[y_0 = A \]
for \(i = 0, \ldots, N-1 \)
\[
F_1 = h f(t_i, y_i) \\
F_2 = h f(t_i + \frac{1}{2} h, y_i + \frac{1}{2} F_1) \\
F_3 = h f(t_i + \frac{3}{4} h, y_i + \frac{3}{4} F_2) \\
F_4 = h f(t_i + h, y_i + F_3) \\
y_{i+1} = y_i + \frac{1}{6} (F_1 + 2F_2 + 2F_3 + F_4)
\]
So # of function eval increases more rapidly than the max order of RK method. => higher order RK method are less attractive than the classical RK4. (it makes more sense to use smaller time steps for RK4 than using a higher order method with bigger steps).

§5.5 Adaptive Runge-Kutta Fehlberg method

Idea: Estimate local truncation error and adjust the step length accordingly.

Local truncation error estimation
Assume we are given two update formulas for solving

\[
\begin{cases}
\frac{y'}{y(t)} = f(t, y) , \text{te} [a, b] \\
y(a) = \alpha
\end{cases}
\]
with local truncation errors differing by \(\pm \epsilon \).

1. \(\tilde{y}(t_{i+1}) = y(t_i) + h \tilde{\phi}(t_i, y(t_i), \tilde{y}(t_i)) + O(h^{n+1}) \) (order \(n \))

\(y_0 = \alpha \)
for \(i = 0, \ldots, N-1 \)

\(\tilde{y}_{i+1} = \tilde{y}_i + h \tilde{\phi}(t_i, y(t_i), \tilde{y}(t_i)) \)

2. \(y(t_{i+1}) = y(t_i) + h \phi(t_i, y(t_i), R) + O(h^{n+1}) \) (order \(n+1 \))

\(\tilde{y}_0 = \alpha \)
for \(i = 0, \ldots, N-1 \)

\(\tilde{y}_{i+1} = \tilde{y}_i + h \phi(t_i, y(t_i), R) \)