MATH 5620 - NUMERICAL ANALYSIS II PRACTICE FINAL EXAM (SPRING 2011)

Problem 1. Consider the multistep method:

$$y_n - 2y_{n-1} + y_{n-2} = h(f_n - f_{n-1}).$$

- (a) Is this method implicit or explicit?
- (b) Is this method convergent, stable and/or consistent? Justify your answer.

Problem 2. Let A be a $n \times n$ matrix and $Q = \text{diag}(a_{11}, \dots, a_{nn})$.

- (a) Compute $Q^{-1}A$ and $I Q^{-1}A$.
- (b) Show that

$$||I - Q^{-1}A||_{\infty} = \max_{1 \le i \le n} \sum_{j=1, j \ne i}^{n} \frac{|a_{ij}|}{|a_{ii}|}.$$

(recall the induced matrix norm $||B||_{\infty}$ is the largest 1-norm of the rows of B)

(c) Recall the Jacobi method for solving the linear system Ax = b,

$$Qx^{(k+1)} = (Q - A)x^{(k)} + b,$$

with Q given as above. Based on part (b), give a condition on relative size of the diagonal and off-diagonal elements of A that guarantees convergence of Jacobi method.

Problem 3.

- (a) Write pseudocode for the Power Method and the (unshifted) QR algorithms for symmetric matrices. Please do not worry about stopping criteria. You may assume the availability of a routine for reduction to tridiagonal form.
- (b) Explain in your own words the differences, advantages and disadvantages of these two methods.

Problem 4. Assume the non-linear BVP

$$\begin{cases} y'' = f(t, y, y'), & \text{for } t \in [0, 1], \\ y(0) = \alpha \\ y(1) = \beta, \end{cases}$$

has a unique solution. Here $f: \mathbb{R}^3 \to \mathbb{R}$ is a smooth function. Let $t_i = ih$, $i = 0, \dots, n+1$, h = 1/(n+1). Recall the finite difference approximations

$$y'(t_i) = \frac{1}{2h}(y(t_{i+1}) - y(t_{i-1})) + \mathcal{O}(h^2)$$

$$y''(t_i) = \frac{1}{h^2}(y(t_{i+1}) - 2y(t_i) + y(t_{i-1})) + \mathcal{O}(h^2).$$

(a) Let $y_i \approx y(t_i)$. Use the finite difference method to write the approximation to the non-linear BVP in the form

$$F(y) = 0$$
,

with $\mathbf{F}: \mathbb{R}^n \to \mathbb{R}^n$, $\mathbf{F}(\mathbf{y}) = (F_1(\mathbf{y}), \dots, F_n(\mathbf{y}))^T$ and $\mathbf{y} = (y_1, \dots, y_n)^T$. Please be particularly careful with the equations corresponding to the end of the interval.

(b) Recall Newton's method for solving $\mathbf{F}(\mathbf{y}) = \mathbf{0}$:

Let
$$\mathbf{y}^{(0)}$$
 be an initial guess for $k=1,\ldots$
 $\mathbf{y}^{(k+1)}=\mathbf{y}^{(k)}-(D\mathbf{F}[\mathbf{y}^{(k)}])^{-1}\mathbf{F}(\mathbf{y}^{(k)})$

Find the Jacobian $D\mathbf{F}[\mathbf{y}^{(k)}] = (\nabla F_1(\mathbf{y}^{(k)}), \dots, \nabla F_n(\mathbf{y}^{(k)}))^T \in \mathbb{R}^{n \times n}$ of \mathbf{F} .

- (c) How does the computational cost of one Newton's method step compares to solving a linear BVP on the same grid?
- (d) What can be used as initial guess $\mathbf{y}^{(0)}$?

Problem 5. Consider the BVP

$$\begin{cases} -u'' = f(x), \ 0 < x < 1 \\ u(0) = u(1) = 0. \end{cases}$$

(a) Let $V = \{v \mid ||v||_{L^2}^2 + ||v'||_{L^2}^2 < \infty \text{ and } v(0) = v(1) = 0\}$. Derive the weak formulation of the problem, that is

Find $u \in V$ such that a(u, v) = (f, v) for all $v \in V$,

explicitly writing a(u, v) and (f, v).

(b) Write pseudocode for solving the problem with piecewise linear (P_1) elements.

Problem 6. Consider the following advection equation (a hyperbolic problem) with periodic boundary conditions,

$$\begin{cases} u_t + au_x = 0, \ t > 0, \ 0 < x < 1, \\ u(0,t) = u(1,t), \ t > 0, \\ u(x,0) = \eta(x), \ 0 < x < 1. \end{cases}$$

- (a) The interval [0,1] is discretized with the points $x_i = ih$, i = 0, ..., m+1, where h = $1/(m+1) = \Delta x$. Let $U_i(t) \approx u(x_i,t)$. Use the method of lines to approximate the PDE by a system of ODEs U'(t) = AU(t), where $U = [U_1, U_2, \dots, U_{m+1}]^T$ and A comes from the usual centered differences approximation to u_x .
- (b) Discretize in time using the Midpoint method. For a one dimensional IVP u' = f(u,t), the Midpoint method is

$$\frac{u_{n+1} - u_{n-1}}{2k} = f(u_n, t_n)$$

 $\frac{u_{n+1}-u_{n-1}}{2k}=f(u_n,t_n).$ Please use the notation $U_i^n\approx u(x_i,t_n)$ (or $U^n=[U_1^n,U_2^n,\ldots,U_m^n]^T$ in vector form), where $t_n = nk$ and $k = \Delta t$ is the time step.

(c) The absolute stability region for the Midpoint method is the segment between -i and i in the complex plane (here $j = \sqrt{-1}$). Recall that eigenvalues of A are:

$$\lambda_p(A) = -\frac{aj}{h}\sin(2\pi ph), \ p = 1,\dots, m+1.$$

For a given h, find a condition on k for the system of ODEs to be stable.