
MATH 5620 – NUMERICAL ANALYSIS II

PRACTICE MIDTERM EXAM

Note: This exam is longer than the actual midterm (maybe 60-75min).

Problem 1. Show that if A is invertible

‖Ax‖ ≥ ‖x‖‖A−1‖−1.

Problem 2. Let A ∈ Rn×n be a symmetric positive definite matrix and v ∈ Rn be a non-zero
vector. Consider

y = x+ t∗v,

where

t∗ =
vT (b−Ax)

vTAv
.

Show that

vT (b−Ay) = 0.

Problem 3. The goal of this problem is to design a non-linear shooting method for solving a
non-linear BVP with mixed type boundary conditions:

y′′ = f(t, y, y′), for t ∈ [a, b],

y′(a) = α,

y(b) = β.

(1)

Let y = y(t; z) be the solution to the IVP
y′′ = f(t, y, y′), for t ∈ [a, b],

y(a) = z,

y′(a) = α.

(2)

and let φ(z) = y(b; z)− β.

(a) Let u(t) = ∂y(t;z)
∂z . By differentiating (2) with respect to z, show that u solves

u′′ = ufy(t, y, y′) + u′fy′(t, y, y′), for t ∈ [a, b],

u(a) = 1

u′(a) = 0.

(3)

(b) Show that φ′(z) = u(b).
(c) Write (2) and (3) as a system of four first-order equations (do not forget initial conditions).
(d) Assuming the availability of a routine for solving systems of first order equations, write

pseudocode for solving (1), based on Newton’s method for finding z such that φ(z) = 0.

Problem 4. Consider the linear BVP{
y′′ = py′ + qy + r

y(0) = α, y(1) = β

where p, q and r are smooth functions defined on [a, b]. Let ti = ih, where i = 0, . . . , n + 1 and
h = 1/(n+ 1).
(a) Use the Taylor expansions of y(ti+1) and y(ti−1) around t = ti to show that

y′′(ti) =
1

h2
(y(ti+1)− 2y(ti) + y(ti−1)) +O(h2).
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(b) Recall the centered differences approximation

y′(ti) =
1

2h
(y(ti+1)− y(ti−1)) +O(h2).

Write the finite difference approximation to the problem, using the notation yi ≈ y(ti). Since
the boundary conditions are y0 = α and yn+1 = β, there are only n equations.

(c) Write the finite differences approximation as a system AY = B with n unknowns.

Problem 5. Consider the following parabolic problem (e.g. heat equation):
ut = uxx, t > 0, 0 < x < 1,

u(0, t) = u(1, t) = 0, t > 0,

u(x, 0) = η(x), 0 < x < 1.

(a) The interval [0, 1] is discretized with the points xi = ih, i = 0, . . . ,m + 1, where h =
1/(m+ 1) = ∆x. Let Ui(t) ≈ u(xi, t). Use the method of lines to approximate the PDE by a
system of ODEs {

U ′(t) = AU(t), t > 0

U(0) = V,
(SYS)

where U = [U1, U2, . . . , Um]T and A comes from the usual three point stencil finite differences
approximation to uxx.

(b) Discretize (SYS) in time using Euler’s method. Please use the notation Un
i ≈ u(xi, tn) (or

Un = [Un
1 , U

n
2 , . . . , U

n
m]T in vector form), where tn = nk and k ≡ ∆t is the time step.

(c) Show that the iterates in Euler’s method satisfy

Un = (I + kA)nV.

(d) The absolute stability region for Euler’s method is the disk {z | |z + 1| ≤ 1} in the complex
plane. Recall that eigenvalues of A are:

λp(A) =
2

h2
(cos(pπh)− 1), p = 1, . . . ,m.

For a given h, find a condition on k for the stability of Euler’s method applied to (SYS).


