
MATH 5620 NUMERICAL ANALYSIS II

HOMEWORK 3, DUE FRIDAY FEBRUARY 19 2010

Problem 1 B&F 5.9.1 a and 5.9.3 a (Runge-Kutta 4 for systems).
Problem 2 B&F 11.1.2 a,b (Linear shooting method)
Problem 3 B&F 11.2.4 a,c (Nonlinear shooting method)
Problem 4 B&F 11.3.2 a,b (Linear finite differences)
Problem 5 B&F 11.4.4 a,c (Nonlinear finite differences)

Implementation tips (Please read!)

• Problems 1–3 are simpler to implement if you write first a “vectorized”
version of the Runge-Kutta method of order 4 that can deal with first
order systems of the kind{

y′ = f(t,y), for t ∈ [a, b]

y(a) = α

where y(t) ∈ Rn is the solution vector, α ∈ Rn is the initial condition and
f : R× Rn → Rn. Such a function would have the interface:

% func t i on y = rk4 (a , b , n , y0 , f)

%

% Runge−Kutta method f o r systems

%

% y ’ = f (t , y) , t in [a , b]

% y (a) = y0

%

% Inputs

% a , b time i n t e r v a l

% n number o f s u b i n t e r v a l s

% y0 i n i t i a l cond i t i on (vec t o r o f l e n g t h m)

% f func t i on handle d e f i n i n g the problem

% f = @(t , y)

% where t = time , y = vec to r o f l e n g t h m

% and output i s a v ec t o r o f l e n g t h m

%

% Outputs :

% y i t e r a t e h i s t o r y (m by n+1 matrix)

• For 11.2.4 a,c (11.4.4 a,c) it is helpful to compare the results for same
method/problem to those in 11.2.3 a,c (11.4.2 a,c).
• For Problems 2 and 3:

– Instead of rewriting the algorithms in the book, use the vectorized
version of Runge-Kutta of order 4 you wrote for Problem 1. Steps 2–4
in Algorithm 11.1 and Steps 4–6 in Algorithm 11.2 are simply a call
to the routine from Problem 1.

1

2 MATH 5620 NUMERICAL ANALYSIS II HOMEWORK 3, DUE FRIDAY FEBRUARY 19 2010

– Do not be alarmed if you obtain slightly different results from those in
the book. This is because the Runge-Kutta method used in Algorithms
11.1 and 11.2 is modified to take advantage of the particular structure
of the problem. Some reference numbers with the (simpler) approach
I propose are posted in the class website.

– Note For the linear shooting method, the class textbook takes a lin-
ear combination of two different solutions, but requires you to give
the constant r(t) term separately. Both ways of deriving the solution
should give identical results (within machine precision).

• For Problems 4 and 5:
– It is much simpler to use sparse matrices to construct the tridiagonal

systems. For example the discretization L of y′′ on a uniform grid can
be obtained in Matlab by the command

L = (1/hˆ2) ∗spdiags (ones (n , 1) ∗ [1 ,−2 ,1] ,−1:1 ,n , n) ;

– Replace the tridiagonal linear system solve steps by Matlab’s backslash
in Algorithms 11.3 and 11.4. Such systems are relatively cheap to solve
when you specify them as sparse matrices.

– The behavior of spdiags can be tricky if your sub/super diagonals
vary. This matlab code:

Q = [1 3 0

2 3 −1

3 3 −2

0 3 −3] ;

A = spdiags (Q, −1 :1 ,4 ,4) ;

constructs the matrix with entries:

A =


3 −1
1 3 −2

2 3 −3
3 3


So spdiags uses only the upper part of subdiagonals and the lower
part of superdiagonals.

– If you dont want to use spdiags you can create an n by n all zeros
sparse matrix with A=sparse(n,n); and then fill it entry by entry.

