
MATH 5620 NUMERICAL ANALYSIS II
HOMEWORK 6, DUE WED APRIL 29 2009

The goal of this assignment is to use the finite element method with triangular piecewise linear (P1) finite
elements to solve the 2D BVP

(1)

{
−∆u = f(x, y) in Ω

u = 0 on ∂Ω

Here the domain is the unit square Ω = [0, 1]2.

1. Solve the problem with f(x, y) = 2(x(1 − x) + y(1 − y)) with true solution being utrue(x, y) = x(1 −
x)y(1− y), using P1 triangular finite elements. Include plots with N ≡ Nx = Ny = 10 and N = 30 (see
below for construction of the grid)

2. Do a convergence study by plotting the error in L2(Ω) and H1(Ω) norms versus h in a log-log scale (you
can take for example N ∈ {10, 20, 30, 40, 50} and h = 1/N). Estimate the order of convergence. You
have to convince me that your numerics agree with the theory i.e. that ‖u−uh‖H1(Ω) = O(h) (first order
accurate) and ‖u−uh‖L2(Ω) = O(h2) (second order accurate). See below for how to estimate these norms.
For comparison when N = 10 I get: ‖u− uh‖L2(Ω) = 5.294373 · 10−4 and ‖u− uh‖H1(Ω) = 0.005981.

1. Implementation details

• The easiest way to obtain the grid and triangulation of Ω is as follows:

x=linspace (0 , 1 ,Nx+1) ; % crea t e s d i s c r e t i z a t i o n in x d i r e c t i o n

y=linspace (0 , 1 ,Ny+1) ; % crea t e s d i s c r e t i z a t i o n in y d i r e c t i o n

[X,Y]=meshgrid (x , y ) ; % crea t e s (Nx+1)∗(Ny+1) e q u a l l y spaced po in t s

px=X( : ) ; py=Y( : ) ; % conver t X and Y in to v e c t o r s

t r i = delaunay (px , py ) ; % do ac tua l t r i a n g u l a t i o n

Nnodes = length ( px ) ; % number o f nodes ( degrees o f freedom )

Nelt = s ize ( t r i , 1 ) ; % number o f e lements ( t r i a n g l e s )

• To assemble the stiffness matrix A and the right hand side F , see p106-108 in http://www.math.
utah.edu/~fguevara/math5620_s09/na014.pdf. Do this without worrying about the boundary
conditions (for now). Use sparse matrices otherwise solving the system will take a long time. You
only need to initialize A=sparse(Nnodes,Nnodes);

• In order to deal with the boundary conditions we first need to find all nodes that are on the boundary.
The array ib below contains the indices of such nodes (of course this could be done directly, but this
method would work even if the grid were unstructured)

% f ind the nodes t ha t are on the boundary

ib=find ( abs (px−0)<1e−10 | abs (px−1)<1e−10 . . .

| abs (py−0)<1e−10 | abs (py−1)<1e−10 ) ;

• Now to enforce that U is zero at the boundary nodes we can hardwire the Dirichlet boundary
conditions in the linear system by modifying the matrix and right hand side as follows:

for i =1: length ( ib ) , A( ib ( i ) , : ) = 0 ; A( ib ( i ) , ib ( i ) )=1; end ;

F( ib ) = 0 ;

• Solve the system AU = F using Matlab’s backslash.
• In order to plot your solution vector U you can use the following command: trimesh(tri,px,py,U).
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• A good approximation of ‖u − uh‖L2(Ω) is to look at the L2 error between the interpolant of utrue

on the grid and the computed uh. Thus we need a way of computing the L2 norm of some function
vh ∈ Vh (piecewise P1) and then we will let vh = u− uh. If the elements cover Ω we have:

‖vh‖2L2(Ω) =
∫

Ω

(vh(x))2dx =
∑

e

∫
Ke

(vh(x))2dx.

Then on each element we know that vh ∈ P1 therefore vh(x) =
∑3

i=1 vh(xtri(e,i))φe
i (x), where the

φe
i are the local basis functions. Thus the contribution of element e to the L2(Ω) norm is:∫

Ke

v2
h(x)dx =

∫
Ke

(
3∑

i=1

vh(xtri(e,i))φe
i (x)

)2

dx = vT
locMlocvloc,

where Mloc is the same matrix given in p107 of the notes and vloc = [vh(xtri(e,1)), vh(xtri(e,2)), vh(xtri(e,3))]T .
Do not forget to take square root after having summed the contributions of all elements.

• Use a similar approximation for ‖vh‖H1(Ω):

‖vh‖2H1(Ω) =
∫

Ω

(vh(x))2 + ‖∇vh(x)‖2dx =
∑

e

∫
Ke

(vh(x))2 + ‖∇vh(x)‖2dx.

It is clear that the first term in the integrand has been computed already by the L2 norm procedure
above. To compute the derivative term we do a similar procedure:

|vh|2H1(Ke) =
∫

Ke

‖∇vh(x)‖2dx = vT
locAlocvloc,

where Aloc is the same local stiffness matrix that is used in p106 of the notes to construct the stiffness
matrix. Again: do not forget to take square root after having summed the contributions of
all elements. This shows that FEM gives solutions that are meaningful even after differentiation (of
course this depends on the polynomial space that is used)
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