
MATH 5620 NUMERICAL ANALYSIS II
HOMEWORK 3, DUE FRIDAY FEBRUARY 20 2009

Problem 1 B&F 5.9.1 a and 5.9.3 a (Runge-Kutta 4 for systems).
Problem 2 B&F 11.1.2 a,b (Linear shooting method)
Problem 3 B&F 11.2.4 a,c (Nonlinear shooting method)
Problem 4 B&F 11.3.2 a,b (Linear finite differences)
Problem 5 B&F 11.4.4 a,c (Nonlinear finite differences)

Here are some implementation hints:
• Problems 1–3 are simpler to implement if you write first a “vectorized”

version of the Runge-Kutta method of order 4 that can deal with first
order systems of the kind{

y′ = f(t,y), for t ∈ [a, b]

y(a) = α

where y(t) ∈ Rn is the solution vector, α ∈ Rn is the initial condition and
f : R× Rn → Rn.
• For 11.2.4 a,c (11.4.4 a,c) it is helpful to compare the results for same

method/problem to those in 11.2.3 a,c (11.4.2 a,c).
• For Problems 2 and 3:

– Instead of rewriting the algorithms in the book, use the vectorized
version of Runge-Kutta of order 4 you wrote for Problem 1. Steps 2–4
in Algorithm 11.1 and Steps 4–6 in Algorithm 11.2 are simply a call
to the routine from Problem 1.

– Do not be alarmed if you obtain slightly different results from those in
the book. This is because the Runge-Kutta method used in Algorithms
11.1 and 11.2 is modified to take advantage of the particular structure
of the problem. I will post some reference numbers with the (simpler)
approach I propose later during the week.

– Notes errata: In p47 in the last bullet of the “linear shooting method”
the correct expression should be y = λy1 + (1−λ)y2. The book takes
a linear combination of two different solutions, but requires you to give
the constant r(t) term separately. Both ways of deriving the solution
give identical results (within machine precision).

• For Problems 4 and 5:
– It is much simpler to use sparse matrices to construct the tridiagonal

systems. For example the discretization L of y′′ on a uniform grid can
be obtained in Matlab by the command

L = (1/hˆ2) ∗spdiags ( ones (n , 1 ) ∗ [1 ,−2 ,1 ] ,−1:1 ,n , n) ;

– Replace the tridiagonal linear system solve steps by Matlab’s backslash
in Algorithms 11.3 and 11.4. Such systems are relatively cheap to solve
when you specify them as sparse matrices.
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