Math 5620 numerical analysis ii
Homework 3, due Friday February 20 2009

Problem 1 B&F 5.9.1 a and 5.9.3 a (Runge-Kutta 4 for systems).
Problem 2 B&F 11.1.2 a,b (Linear shooting method)
Problem 3 B&F 11.2.4 a,c (Nonlinear shooting method)
Problem 4 B&F 11.3.2 a,b (Linear finite differences)
Problem 5 B&F 11.4.4 a,c (Nonlinear finite differences)

Here are some implementation hints:

• Problems 1–3 are simpler to implement if you write first a “vectorized” version of the Runge-Kutta method of order 4 that can deal with first order systems of the kind

\[
\begin{cases}
 y' = f(t, y), \text{ for } t \in [a, b] \\
 y(a) = \alpha
\end{cases}
\]

where \(y(t) \in \mathbb{R}^n \) is the solution vector, \(\alpha \in \mathbb{R}^n \) is the initial condition and \(f : \mathbb{R} \times \mathbb{R}^n \rightarrow \mathbb{R}^n \).

• For 11.2.4 a,c (11.4.4 a,c) it is helpful to compare the results for same method/problem to those in 11.2.3 a,c (11.4.2 a,c).

• For Problems 2 and 3:
 – Instead of rewriting the algorithms in the book, use the vectorized version of Runge-Kutta of order 4 you wrote for Problem 1. Steps 2–4 in Algorithm 11.1 and Steps 4–6 in Algorithm 11.2 are simply a call to the routine from Problem 1.
 – Do not be alarmed if you obtain slightly different results from those in the book. This is because the Runge-Kutta method used in Algorithms 11.1 and 11.2 is modified to take advantage of the particular structure of the problem. I will post some reference numbers with the (simpler) approach I propose later during the week.
 – Notes errata: In p47 in the last bullet of the “linear shooting method” the correct expression should be \(y = \lambda y_1 + (1 - \lambda)y_2 \). The book takes a linear combination of two different solutions, but requires you to give the constant \(r(t) \) term separately. Both ways of deriving the solution give identical results (within machine precision).

• For Problems 4 and 5:
 – It is much simpler to use sparse matrices to construct the tridiagonal systems. For example the discretization \(L \) of \(y'' \) on a uniform grid can be obtained in Matlab by the command

\[
L = \left(\frac{1}{h^2} \right) \ast \text{spdiags} \left(\text{ones} \left(n, 1 \right) \ast \left[1, -2, 1 \right], -1:1, n, n \right);
\]
 – Replace the tridiagonal linear system solve steps by Matlab’s backslash in Algorithms 11.3 and 11.4. Such systems are relatively cheap to solve when you specify them as sparse matrices.