MATH 5610/6860 HOMEWORK #4, DUE MON OCT 5

Notes: Problems denoted by **[EC]** are extra-credit for Math 5610 students, but **required** for Math 6860 students.

- 1. B&F 2.6.4 a,h (Müller's method)
- 2. B&F 3.1.2 a,b and 3.1.4 a,b (interpolation by hand using Lagrange interpolation polynomials)
- 3. K&C 6.2.23. The polynomial

$$p(x) = 2 - (x+1) + x(x+1) - 2x(x+1)(x-1)$$

interpolates the first four points in the table

By adding one additional term to p, find a polynomial that interpolates the whole table.

- B&F 3.1.6 a,b, additionally implement the divided differences algorithm 3.2 to obtain the same results. Then compare the actual interpolation error to a bound derived from Theorem 3.3 (i.e. B&F 3.1.10 a,b)
- 5. K&C 6.2.18 Prove that if f is a polynomial, then the divided differences f[x₀, x₁,..., x_n] is a polynomial in the variables x₀, x₁,..., x_n. (i.e. if we freeze all the x_j for j ≠ i, then q(x_i) ≡ f[x₀, x₁,..., x_n] is a polynomial in x_i). You may prove this by an induction argument:

 Prove that f[x₀] is a polynomial in x₀
 - ii. Prove that $f[x_0, x_1]$ is a polynomial in x_0 and x_1 (not needed for induction argument but it helps to see what is going on)
 - iii. Assuming *n*-th order divided differences are polynomials of their variables, prove the statement for (n + 1)-th order divided differences (Hint: use B&F eq. (3.9))
- 6. [EC] K&C 6.2.7 and 6.2.13. The divided difference $f[x_0, x_1]$ is analogous to the first derivative (see B&F, Theorem 3.6).
 - (a) Show that it has a property analogous to (fg)' = f'g + g'f (see the general form below for a hint on what to prove)
 - (b) Prove the Leibniz formula

$$(fg)[x_0, x_1, \dots, x_n] = \sum_{k=0}^n f[x_0, x_1, \dots, x_k]g[x_k, x_{k+1}, \dots, x_n].$$