
Math 3150-4 – Final – review sheet

• §1.1-1.2 (preliminaries): What is a partial differential equation? Is a differ-
ential equation linear or non-linear? Homogeneous or non-homogeneous?
What is the order of a differential equation?

• §2.1 (periodic functions) you should be able to sketch them, find their pe-
riod, tell whether they are continuous, piecewise continuous and/or piece-
wise smooth and know how to integrate periodic functions. You should
know at least the cosine and sine addition formulae and how to use them
to derive the orthogonality relations of p21-22 (class notes: p18-20).

• §2.2 (Fourier series of a 2π-periodic function): What is the Fourier se-
ries of a 2π−periodic function? What are its Fourier coefficients? How
can the Fourier coefficients be expressed with the orthogonality relations
(i.e. formulas in p27 of book or p20-21 in class notes)? How can we ex-
press the integrals involved over some other period? What happens at the
discontinuities of a piecewise smooth function?

• §2.3 (Fourier series of a function with arbitrary period). What is an or-
thogonal family of 2p−periodic functions? How do the orthogonality re-
lations over [−π, π] translate to functions on [−p, p]? What is the Fourier
series of a 2p−periodic function? How to find the coefficients? What sim-
plifications occur if the function is even or odd? What is the Fourier series
of a sum of two functions?

• §2.4 (Half-range expansions) What happens if we extend a function from
[0, p] to a 2p−periodic odd (or even) function? What are the sine and
cosine series of a function defined on [0, p]? How can we find the Fourier
coefficients?

• §3.3 (1DWEQ with separation of variables) Know how to solve the 1D
wave equation describing the vibrations of a string that is pinned down
at its endpoints (x = 0 and x = L) (p119 in book or p38 in notes), with
given initial position and velocity. How do the sine series coefficients of
the initial position and initial velocity show up in the actual solution?
What are the fundamental solutions of the 1DWEQ we obtained through
separation of variables?

• §3.4 (D’Alembert’s method) You should know the form of D’Alembert’s
solution to the 1D Wave Equation in the general case (both initial con-
dition and initial velocity are given). You also should be able to verify
that solutions to the wave equation given by separation of variables can
be written in D’Alembert’s form (see Example 3.4.1). Characteristics and
Interval of dependence are not included.

• §3.5 (1D Heat equation) You should know how to solve the 1D Heat equa-
tion with homogeneous Dirichlet boundary conditions with separation of
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variables. When the boundary conditions are Dirichlet non-homogeneous,
the solution can be found by first finding the steady state heat distribution
and subtracting it from the original problem to get a homogeneous one.
Can you compare the rate of decay of two temperature distributions (say
when they are made of pure modes, which decays faster, higher or lower
frequencies?)

• §3.6 (1D Heat equation with other boundary conditions) You should be
familiar with the case of homogeneous Neumann boundary conditions at
both ends (Example 3.6.1). The key is to use cosine series instead of sine
series, and the reason is that cosines satisfy the boundary conditions and
sines do not! The case of one radiating end (Example 3.6.2) will not be
included in the exam. However you are expected to know how to do the
following mixed boundary cases for a bar [0, L]

– Insulated at x = 0 and ice bath at x = L

– Ice bath at x = 0 and insulated at x = L (see Problem 3.6.5)

• §3.7 (2D WEQ and HEQ in rectangular domains with homogeneous Dirich-
let boundary conditions) You should know how to do example 3.7.1 (and
also the non-zero velocity case too). Since the double sine series coeffi-
cients calculation can be lengthy, it is very likely that either the coefficients
will be given or the initial position or velocity of the membrane are given
already in double sine series form (as in problem 3.7.1 for example). The
solution to the 2D heat equation on a rectangular domain uses exactly the
same double sine series tool and you should also be familiar with it (see
example 3.7.2).

• §3.8 (2D Laplace equation in rectangular coordinates) Here the trick is
to reduce the problem with boundary conditions on all four sides of the
rectangle to 4 problems, each with a non-zero boundary condition on one
side only. You only need to know how to do one of these problems (say
the one in Example 3.8.1). The other 3 problems can be obtained by
symmetries.

• §4.1: Here you should know what are polar coordinates and what is the
Laplacian in polar coordinates. The derivation is not included in the exam
(it is too long). You may be asked to compute ∂r/∂x, ∂r/∂y, ∂θ/∂x,
∂θ/∂y using the chain rule or a problem similar to problem 4.1.1 (i.e.
check whether an expression which is much simpler in polar coordinates
is a solution to Laplace equation).

• §4.2 (Vibrations of circular membrane in the case where the initial con-
ditions are independent of θ) You should know Theorem 4.2.1 and exam-
ple 4.2.1 (without the numerical calculations of the actual coefficients of
course). Since the calculations of the coefficients in a Bessel series expan-
sion are hard to do by hand, you will likely be given the initial condition
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and/or initial velocity in Bessel series expansion form already or be pro-
vided with Bessel function identities such as those used in Example 4.2.2.
You may also be asked to consider the heat equation on a disk with ra-
dial symmetry (i.e. with initial condition independent of θ), see Problem
4.3.10.

• §4.3 (Vibrations of a circular membrane in the general case) The key here is
that the product solutions (equations (5) and (6) in this chapter) depend
on the angle too. The dependence on the radius involves higher order
Bessel functions of the first kind (Jm) for which there are orthogonality
relations (which will be provided in a formula sheet, they are given in p252
of your book). The dependence on angle is by the usual cosmθ and sinmθ
because the membrane position should be 2π periodic in angle. Once you
know the form of the product solutions and the orthogonality relations it
should be doable to get the expressions (12)–(14) in your book (and you
may be asked to do this and to evaluate the integrals in a case where it is
easy to do by hand).

• §4.4 (Laplace equation in circular regions) You will be reminded at least
of the equation that is satisfied by the radial part of the solution and its
solution (this is Euler’s equation, equation (3) in this chapter). You should
know how to solve Examples 1 and 4. The boundary conditions may be
varied (see Homework 9 solutions, which will be posted on the last day of
classes). Isotherms were not covered so they are not included in the exam.

• §4.5 (Laplace equation in a cylinder) We considered the following cases:

– a non-zero radially symmetric Dirichlet boundary condition on the
top and zero elsewhere. This is essentially like the Laplace equation
on a rectangular domain. The difference here is that z dependence
is a sinh and the radial dependence is a Bessel function J0 (instead
of a sine in the rectangular case).

– a non-zero Dirichlet boundary condition depending only on the height
z on the lateral side and zero on the top and bottom. Here the
z dependence is a sin and the radial dependence involves modified
Bessel functions which are purely decaying (or increasing) instead
of being oscillatory. Think of them as being to the usual Bessel
functions the same as hyperbolic trigonometric functions are to the
regular trigonometric functions. (this analogy goes even further: the
modified Bessel functions can be obtained by looking at what happens
to the usual Bessel functions on the imaginary axis).

Since we did not do examples in class, any exam problem on this topic
will be heavily guided (i.e. you do not need to memorize formulas in this
chapter or write them on your cheat sheet).
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