Math 3150-4, Practice Final
Spring 2012

Total points: 130/120.
Notes: Problems are independent of each other. This practice exam is longer and more difficult than the actual exam.

Problem 1 (10 pts) Consider a bar of length L. The position on the bar is given by $x \in [0, L]$. Find the steady state temperature distribution $u(x)$ in the following situations:
(a) $u(0) = 0$ and $u(L) = 2$.
(b) $u'(0) = 1$ and $u(L) = 3$.
(c) $u(0) = 2$ and $u(L) + u'(L) = 0$.

Problem 2 (10 pts) Check whether $f(r, \theta) = r^4 \cos(4\theta)$ (in polar coordinates) satisfies the Laplace equation $\Delta u = 0$.

Problem 3 (10 pts) Consider a string of length L with position $x \in [0, L]$. Give d’Alembert’s solution to the wave equation
\[
\begin{cases}
 u_{tt} = c^2 u_{xx}, & x \in [0, L], \ t > 0 \\
 u(0, t) = u(L, t) = 0, & t > 0 \\
 u(x, 0) = \sin(\frac{2\pi}{L}x), & x \in [0, L] \\
 u_t(x, 0) = 0, & x \in [0, L].
\end{cases}
\]

Problem 4 (20 pts) Consider the Dirichlet problem on the unit disk,
\[
\begin{cases}
 \Delta u = 0, & 0 < r < 1, 0 < \theta < 2\pi \\
 u(1, \theta) = f(\theta), & 0 < \theta < 2\pi.
\end{cases}
\]
Recall that
- The Laplacian in polar coordinates is $\Delta u = u_{rr} + \frac{1}{r} u_r + \frac{1}{r^2} u_{\theta\theta}$.
- A general form of the solution to the ODE $x^2 y'' + xy' + \rho^2 y = 0$ is
 \[
 y(x) = c_1 x^\rho + c_2 x^{-\rho}, \quad \text{if } \rho \neq 0,
 \]
 \[
 y(x) = c_1 x + c_2 \ln x, \quad \text{if } \rho = 0.
 \]
(a) Use separation of variables with $u(r, \theta) = R(r)\Theta(\theta)$ to show that the separated equations are of the form
\[
\begin{align*}
 r^2 R'' + r R' - \lambda R &= 0, \\
 \Theta'' + \lambda \Theta &= 0.
\end{align*}
\]
(b) Since Θ needs to be 2π-periodic, $\lambda = n^2$, $n = 0, 1, 2, \ldots$.
Solve equations (2) and (3).
(c) Show that the general form of the solution to the Dirichlet problem (1) is
\[
u(r, \theta) = a_0 + \sum_{n=1}^{\infty} r^n (a_n \cos n\theta + b_n \sin n\theta).
\]
Specify what are the coefficients a_n and b_n in terms of $f(\theta)$.
(d) Solve the Dirichlet problem (1) with $f(\theta) = \sin(2\theta)$.
(e) [Extra credit] Write the solution to (d) in Cartesian coordinates.
Problem 5 (20 pts) Consider the 1D heat equation with homogeneous Neumann boundary conditions modeling a bar with insulated ends:

\[
\begin{cases}
 u_t = u_{xx} & \text{for } 0 < x < 1 \text{ and } t > 0, \\
 u_x(0, t) = u_x(1, t) = 0 & \text{for } t > 0, \\
 u(x, 0) = f(x), & \text{for } 0 < x < 1.
\end{cases}
\]

(a) Use separation of variables with \(u(x, t) = X(x)T(t) \) to show that a general solution to (4) is

\[u(x, t) = a_0 + \sum_{n=1}^{\infty} a_n \cos(n\pi x) \exp[-(n\pi)^2 t]. \]

Specify what the coefficients \(a_n, n = 0, 1, 2, \ldots \) are in terms of \(f(x) \).

(b) Solve (4) with \(f(x) = 100x \).

(c) Now consider the following 1D heat equation with inhomogeneous Neumann boundary conditions:

\[
\begin{cases}
 v_t = v_{xx} & \text{for } 0 < x < 1 \text{ and } t > 0, \\
 v_x(0, t) = v_x(1, t) = 1 & \text{for } t > 0, \\
 v(x, 0) = g(x), & \text{for } 0 < x < 1
\end{cases}
\]

Show that \(v(x, t) = u(x, t) + x \) solves (5) with \(g(x) = f(x) + x \) and \(u(x, t) \) as in (b).

Problem 6 (20 pts) Consider the 2D wave equation below which models the vibrations of square membrane with fixed edges, initial position \(f(x, y) \) and zero initial velocity.

\[
\begin{cases}
 u_{tt} = u_{xx} + u_{yy}, & \text{for } 0 < x < 1, 0 < y < 1 \text{ and } t > 0, \\
 u(0, y, t) = u(1, y, t) = 0, & \text{for } 0 < y < 1 \text{ and } t > 0 \\
 u(x, 0, t) = u(x, 1, t) = 0, & \text{for } 0 < x < 1 \text{ and } t > 0 \\
 u(x, y, 0) = f(x, y), & \text{for } 0 < x < 1, 0 < y < 1 \\
 u_t(x, y, 0) = 0, & \text{for } 0 < x < 1, 0 < y < 1.
\end{cases}
\]

Separation of variables with \(u(x, y, t) = X(x)Y(y)T(t) \) gives the ODEs:

\[X'' + \mu^2 X = 0, \quad X(0) = 0, \quad X(1) = 0 \]
\[Y'' + \nu^2 Y = 0, \quad Y(0) = 0, \quad Y(1) = 0 \]
\[T'' + (\mu^2 + \nu^2) T = 0, \quad T'(0) = 0. \]

(a) Obtain the product solutions

\[u_{m,n}(x, y, t) = B_{m,n} \cos(\lambda_{m,n} t) \sin(m\pi x) \sin(n\pi y). \]

where \(\lambda_{m,n} = \sqrt{(m\pi)^2 + (n\pi)^2} \). **Note:** The ODE’s for \(X \) and \(Y \) are very similar. Solving one of them in detail and stating the result for the other one should be enough.

(b) Write down the general form of a solution \(u(x, y, t) \) to (6). Use initial conditions and orthogonality of double sine series to express \(B_{m,n} \) in terms of \(f(x, y) \).

(c) Using that

\[\int_0^1 x(1-x) \sin(m\pi x)dx = \frac{2((-1)^m - 1)}{\pi^3 m^3}, \]
find the coefficients $B_{m,n}$ in the double sine series,

$$x(1-x)y(1-y) = \sum_{n=1}^{\infty} \sum_{m=1}^{\infty} B_{m,n} \sin(m\pi x) \sin(n\pi y).$$

(d) Solve 2D wave equation (6) with $f(x, y) = x(1-x)y(1-y)$.

Problem 7 (20 pts) Consider a circular plate of radius 1 with initial temperature distribution of the form $f(r, \theta) = g(r) \cos 2\theta$ and where the outer rim of the plate is kept in an ice bath. The temperature distribution $u(r, \theta, t)$ satisfies the 2D Heat equation

$$u_t = \Delta u \quad \text{for } 0 < r < 1, \ 0 \leq \theta \leq 2\pi \text{ and } t > 0$$

$$\begin{cases}
 u(r, \theta, 0) = f(r, \theta) & \text{for } 0 < r < 1 \text{ and } 0 \leq \theta \leq 2\pi \\
 u(1, \theta, t) = 0 & \text{for } 0 \leq \theta \leq 2\pi \text{ and } t > 0
\end{cases}$$

Because the initial temperature distribution is a multiple of $\cos 2\theta$, the solution can be shown to be

$$u(r, \theta, t) = \sum_{n=1}^{\infty} a_{2n} J_2(\alpha_{2n} r) \cos 2\theta \exp[-\alpha_{2n}^2 t].$$

where α_{2n} denotes the $n-$th zero of the Bessel function of the first kind of order 2, and

$$a_{2n} = \frac{2}{\pi J_{2+1}(\alpha_{2n})} \int_0^1 \int_0^{2\pi} f(r, \theta) J_2(\alpha_{2n} r) \cos 2\theta \ d\theta \ dr \quad \text{for } n = 1, 2, \ldots$$

(a) Solve (7) with the initial temperatures

$$f_1(r, \theta) = J_2(\alpha_{2,1} r) \cos 2\theta \quad \text{and} \quad f_2(r, \theta) = J_2(\alpha_{2,2} r) \cos 2\theta.$$

(b) The steady state temperature distribution is $u = 0$. Of the initial temperatures $f_1(r, \theta)$ and $f_2(r, \theta)$, which decays faster to the steady state? Justify your answer.

Problem 8 (20 pts) Consider the function

$$f(x) = \begin{cases}
 x & \text{if } 0 < x < \frac{1}{2} \\
 1-x & \text{if } \frac{1}{2} < x < 1
\end{cases}$$

(a) Plot the function on the interval $[0, 1]$.

(b) Calculate the sine series of $f(x)$.

(c) Calculate the cosine series of $f(x)$.

(d) Calculate the Fourier series of $f(x)$.

3
Some useful formulas

0.1. Orthogonality relations for double sine series. With the inner product

\[(u, v) = \int_0^a \int_0^b u(x, y)v(x, y)dxdy, \]

we have for all \(m, n, m' \) and \(n' \) non-zero integers,

\[
\left(\sin \left(\frac{m\pi}{a} x \right) \sin \left(\frac{n\pi}{b} y \right), \sin \left(\frac{m'\pi}{a} x \right) \sin \left(\frac{n'\pi}{b} y \right) \right) = \begin{cases} \frac{ab}{4} & \text{if } m = m' \text{ and } n = n' \\ 0 & \text{if } m \neq m' \text{ or } n \neq n' \end{cases}
\]

0.2. Orthogonality relations for sine series. With the inner product

\[(u, v) = \int_0^a u(x)v(x)dx, \]

we have for all \(m, n \) non-zero integers,

\[
\left(\sin \left(\frac{m\pi}{a} x \right), \sin \left(\frac{n\pi}{a} x \right) \right) = \begin{cases} \frac{a}{2} & \text{if } m = n \\ 0 & \text{if } m \neq n \end{cases}
\]

0.3. Fourier series. For a \(2p \)-periodic piecewise smooth function \(f \),

\[f(x) = a_0 + \sum_{n=1}^{\infty} a_n \cos \omega_n x + b_n \sin \omega_n x, \]

where \(\omega_n = n\pi/p \) and

\[a_0 = \frac{(f, 1)}{(1, 1)}, \quad a_n = \frac{(f, \cos \omega_n x)}{(\cos \omega_n x, \cos \omega_n x)}, \quad \text{and} \quad b_n = \frac{(f, \sin \omega_n x)}{(\sin \omega_n x, \sin \omega_n x)}. \]

The inner product is \((u, v) = \int_{-p}^p u(x)v(x)dx\). The orthogonality relations are

\[
(\cos \omega_n x, \cos \omega_m x) = \begin{cases} 2p & \text{if } n = m = 0 \\ p & \text{if } n = m > 0 \\ 0 & \text{if } n \neq m \end{cases},
\]

\[
(\cos \omega_n x, \sin \omega_m x) = 0,
\]

\[
(\sin \omega_n x, \sin \omega_m x) = \begin{cases} p & \text{if } n = m > 0 \\ 0 & \text{if } n \neq m \end{cases}.
\]

0.4. Bessel functions. The following identities are valid for \(p \geq 0 \) and \(n = 0, 1, \ldots \)

\[\int J_1(r)dr = -J_0(r) + C \quad \text{and} \quad \int r^{p+1}J_p(r)dr = r^{p+1}J_{p+1}(r) + C \]

For \(k \geq 0, a > 0 \) and \(\alpha > 0 \), we have

\[\int_0^a \left(a^2 - r^2 \right) r^{k+1}J_k \left(\frac{\alpha}{a} r \right) dr = \frac{a^{k+4}}{\alpha^2} J_{k+2}(\alpha). \]
0.5. **Orthogonality relations for Bessel functions.** Let $a > 0$ and $m \geq 0$ be fixed. Denote with α_{mn} the n–th positive zero of the Bessel function of the first kind of order m. With the inner product

$$(u, v) = \int_0^a u(r)v(r)r \, dr$$

we have for all j, k non-zero integers,

$$(J_m(\frac{\alpha_{mj}}{a} r), J_m(\frac{\alpha_{mk}}{a} r)) = \begin{cases} \frac{a^2}{2}J_{m+1}(\alpha_{mj}) & \text{if } j = k \\ 0 & \text{if } j \neq k. \end{cases}$$