
MATH 3150-4, PRACTICE MIDTERM EXAM 2
SPRING 2012

Total points: 100/100.
Problem 1 (30 pts) The goal of this problem is to solve the Heat Equation with mixed
boundary conditions

(1)


ut = 3uxx for 0 < x < 1 and t > 0

ux(0, t) = 0 for t > 0

u(1, t) = 0 for t > 0

u(x, 0) = f(x) for 0 < x < 1

(a) Use separation of variables to show that a general solution to (1) is

u(x, t) =
∞∑
n=0

an cos (λnx) exp[−3λ2nt], where λn =
2n+ 1

2
π.

(b) Consider the inner product (u, v) =
∫ 1

0
u(x)v(x)dx. Given the orthogonality relations

valid for n = 0, 1, 2, . . . and m = 0, 1, 2, . . .

(cos(λnx), cos(λmx)) =

{
1
2

if n = m

0 if n 6= m,

show that

an = 2

∫ 1

0

cos(λnx)f(x)dx, for n = 0, 1, 2, . . .

(c) Solve problem (1) with f(x) = cos(3πx/2) + 2 cos(7πx/2).
Problem 2 (30 pts) Consider the 2D Laplace equation below, which models the steady
state temperature distribution of a square plate where the right and left sides are kept in
an ice bath and the bottom and top sides have prescribed temperatures f1(x) and f2(x)
respectively.

(2)


uxx + uyy = 0, for 0 < x < 1 and 0 < y < 1

u(0, y) = u(1, y) = 0, for 0 < y < 1

u(x, 0) = f1(x), for 0 < x < 1

u(x, 1) = f2(x), for 0 < x < 1.

(a) Explain why it is possible to decompose (2) into the two subproblems below (the x
and y below are implicitly in (0, 1)).

(P1)


vxx + vyy = 0,

v(0, y) = v(1, y) = 0,

v(x, 0) = f1(x),

v(x, 1) = 0

(P2)


wxx + wyy = 0,

w(0, y) = w(1, y) = 0,

w(x, 0) = 0,

w(x, 1) = f2(x)
1



(b) Show that if we assume that the solution to (P2) is w(x, y) = X(x)Y (y), then separa-
tion of variables gives

X ′′ + kX = 0, X(0) = 0, X(1) = 0

Y ′′ − kY = 0, Y (0) = 0

(c) Assuming k = µ2 > 0, obtain the product solutions to (P2)

wn(x, y) = Bn sin(nπx) sinh(nπy)

(d) Write down the general form of a solution to (P2), and use the formulas at the end of
the exam to express Bn in terms of f2(x).

(e) In a similar way it is possible to obtain the product solutions to (P1),

vn(x, y) = An sin(nπx) sinh(nπ(1− y)).

Write down the general form of a solution to (P1) and give an expression for An in
terms of f1(x).

(f) Solve (2) with f1(x) = 100 and f2(x) = 100x(1− x). You may use the identity below
(valid for n = 1, 2, . . .):∫ 1

0

x(1− x) sin(nπx)dx =
2((−1)n − 1)

π3n3
.

Problem 3 (30 pts) Consider a circular membrane of radius 2 with radially symmetric
initial shape f(r) and zero initial velocity. Then the displacement from equilibrium satisfies
the 2D Wave equation

(3)


utt = ∆u, for 0 < r < 2 and t > 0

u(r, 0) = f(r), for 0 < r < 2

ut(r, 0) = 0, for 0 < r < 2

u(2, t) = 0, for t > 0.

Carrying out the method of separation of variables gives that a general solution to (3) has
the form

u(r, t) =
∞∑
n=1

AnJ0(
αn

2
r) cos(

αn

2
t),

with αn being the n−th positive zero of the first kind zeroth order Bessel function J0(r).
(a) Use the initial conditions and the orthogonality relations for Bessel functions (see end

of this exam) to show that

An =
1

2J2
1 (αn)

∫ 2

0

f(r)J0(
αn

2
r)r dr.

(b) Solve (3) with f(r) = 4− r2. Hint: Use the last integration formula in §0.3.
Problem 4 (10 pts) Determine whether the function f(x, y) = ln(x2 + y2) satisfies
Laplace’s equation ∆u = 0.
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Some useful formulas

0.1. Orthogonality relations for sine series. With the inner product (u, v) =
∫ a

0
u(x)v(x)dx,

we have for all m, n non-zero integers,(
sin
(mπ
a
x
)
, sin

(nπ
a
x
))

=


2

a
if m = n

0 if m 6= n

0.2. Hyperbolic trigonometry.

coshx =
ex + e−x

2
, sinhx =

ex − e−x

2
(coshx)′ = sinhx, (sinhx)′ = coshx

cosh2 x− sinh2 y = 1, sinh 0 = 0

0.3. Bessel functions. The following identities are valid for p ≥ 0 and n = 0, 1, . . ..∫
J1(r)dr = −J0(r) + C and

∫
rp+1Jp(r)dr = rp+1Jp+1(r) + C

0.4. Orthogonality relations for Bessel functions. Let a > 0 and m ≥ 0 be fixed.
Denote with αmn the n−th positive zero of the Bessel function of the first kind of order m.
With the inner product

(u, v) =

∫ a

0

u(r)v(r)r dr

we have for all j, k non-zero integers,(
Jm(

αmj

a
r), Jm(

αmk

a
r)
)

=


a2

2
J2
m+1(αmj) if j = k

0 if j 6= k.
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