
 

 

Math 2280-2
Applying the logistic model to U.S. populations

Author: Nick Korevaar, 01/20/2006
Adapted for fourth edition of Edwards and Penney, 01/15/2008

The logistic equation for population change which we have just been studying is:
dP
dt

= kP M P .

Following the text and its equation numbering at page 90, we can write the same differential equation as
dP
dt

= a P b P2                              (1)

with a = k M  and b = k.  In our model the parameters k,M,a,b are related to assumptions about birth and
death rates.  Suppose you have a real population and want to pick parameters a and b to make a good 
model.  One way would be to try to estimate fertility and morbidity rates based on birth and death data, 
but that could get quite complicated.  For example, if you want to develop an accurate model of world 
population growth based on this sort of analysis you would probably need to collect data from different 
regions of our planet and develop different parameters for different societies, solve the problem in each 
part of the globe and then add your results together.   A more simple-minded approach is to see if 
existing  population data is consistent with a logistic model, for appropriate choices of a and b. The book
explains a good way to do this on pages 90-92, in the context of modeling U.S. populations over the past
two centuries.
     If you divide the logistic DE, equation (1) above, by P, you get

1
P

 
dP
dt

= a b P                        (2)

If you have multi-year population data you can get good estimates for the left side of (2) by using 

difference quotients to estimate 
dP
dt

.  Dividing by P gives an estimate for 
1
P

 
dP
dt

.  Carrying this 

computation out for several different times yields a collection of points approximating P,
1
P

 
dP
dt

.  

If these points seem to lie approximately along a line, then (2) will be a good model for the population 
problem, and you can estimate the parameters "a" and "b" by getting the vertical axis-intercept and slope
of the line which best fits the point data, respectively. 

     For example, looking at the USA data in Figure 2.1.9 on page 92, we can estimate 
dP
dt

  in 1800 in a 

"centered" way by taking the difference (P(1810)-P(1790))/20 (in units of people/year).    Centered 
differences as in (3) page 91,  generally give more accurate estimates for the derivative than the one-
sided differences used in the limit definition.  This is shown geometrically in Figure 2.1.8, page 91.  
Finally we would divide our centered estimate for dP/dt in 1800 by P(1800) to get an estimate for  

1
P

 
dP
dt

 in 1800, for the USA population:

restart:

P1:=5.308;

  #population in 1800, in millions.

  #Remember you can do multiline commands

  #by holding down the shift key when you hit return

  #or enter.
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(2)

 

 

 

(3)

P1prime:=(7.240-3.929)/20;

  #estimate for dP/dt in 1800, in millions of

  #people per year, see top right entry in 

  #Figure 2.1.9 page 92

5.308
0.1655500000

P1primeoverP1:=P1prime/P1;

   #estimate for (1/P)*(dP/dt) in 1800;

P1primeoverP1:= 0.03118877167

point1:=[P1,P1primeoverP1];

   #the left-most point on the graph of Figure 2.1.10

point1:= 5.308, 0.03118877167

We can automate this process.  We are still using the table 2.1.9 on page 92. You should verify how 
these numbers were extracted from the tables.

with(linalg):

Warning, the protected names norm and trace have been redefined and 

unprotected

pops:=matrix(21,2,[[1790,3.9],[1800,5.3],[1810,7.2],

       [1820,9.6],[1830,12.9],[1840,17.1],

       [1850,23.2],[1860,31.4],[1870,38.6],

       [1880,50.2],[1890,63.0],[1900,76.2],

       [1910,92.2],[1920,106.0],[1930,123.2],

       [1940,132.2],[1950,151.3],[1960,179.3],

       [1970,203.3],[1980,225.6],[1990,248.7]]);

               #matrix of populations  

              

table( [( 8, 1 ) = 1860, ( 3, 1 ) = 1810, ( 9, 2 ) = 38.6, ( 14, 1 ) = 1920, ( 9, 1 ) = 1870, ( 3, 2 ) = 
7.2, ( 8, 2 ) = 31.4, ( 4, 1 ) = 1820, ( 10, 2 ) = 50.2, ( 13, 2 ) = 92.2, ( 7, 1 ) = 1850, ( 10, 1 ) 
= 1880, ( 4, 2 ) = 9.6, ( 13, 1 ) = 1910, ( 7, 2 ) = 23.2, ( 16, 1 ) = 1940, ( 6, 2 ) = 17.1, ( 20, 
1 ) = 1980, ( 11, 1 ) = 1890, ( 21, 2 ) = 248.7, ( 1, 2 ) = 3.9, ( 17, 2 ) = 151.3, ( 6, 1 ) = 
1840, ( 20, 2 ) = 225.6, ( 12, 2 ) = 76.2, ( 1, 1 ) = 1790, ( 17, 1 ) = 1950, ( 11, 2 ) = 63.0, ( 
21, 1 ) = 1990, ( 12, 1 ) = 1900, ( 2, 2 ) = 5.3, ( 18, 2 ) = 179.3, ( 15, 1 ) = 1930, ( 5, 2 ) = 
12.9, ( 19, 1 ) = 1970, ( 14, 2 ) = 106.0, ( 2, 1 ) = 1800, ( 18, 1 ) = 1960, ( 16, 2 ) = 132.2, ( 
5, 1 ) = 1830, ( 19, 2 ) = 203.3, ( 15, 2 ) = 123.2 ] )

for i from 1 to 11 do

lspoints[i]:=[pops[i+1,2],

   (pops[i+2,2]-pops[i,2])/(20*pops[i+1,2])];

od;



 

(7)
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5.3, 0.03113207547
7.2, 0.02986111111
9.6, 0.02968750000
12.9, 0.02906976744
17.1, 0.03011695906
23.2, 0.03081896552
31.4, 0.02452229300
38.6, 0.02435233160
50.2, 0.02430278884
63.0, 0.02063492064
76.2, 0.01916010498

We will follow  investigation A and find the least squares line fit to this data, in order to extract values 
for "a" and "b" in equation (2).  We remember how to do this from the Math 2270 chapter on 
orthogonality, which included the method of least squares as a special subtopic....You could look at class
notes from last semester, 

http://www.math.utah.edu/~korevaar/2270fall05/oct21.pdf

A:=matrix(11,2);

B:=vector(11);

table( [ ] )
table( [ ] )

for i from 1 to 11 do

A[i,1]:=lspoints[i][1]:

A[i,2]:=1:

B[i]:=lspoints[i][2]:

od:

evalm(A);evalm(B);

  #check work

table( [( 8, 1 ) = 38.6, ( 3, 1 ) = 9.6, ( 9, 2 ) = 1, ( 9, 1 ) = 50.2, ( 3, 2 ) = 1, ( 8, 2 ) = 1, ( 4, 1 ) 
= 12.9, ( 10, 2 ) = 1, ( 7, 1 ) = 31.4, ( 10, 1 ) = 63.0, ( 4, 2 ) = 1, ( 7, 2 ) = 1, ( 6, 2 ) = 1, ( 
11, 1 ) = 76.2, ( 1, 2 ) = 1, ( 6, 1 ) = 23.2, ( 1, 1 ) = 5.3, ( 11, 2 ) = 1, ( 2, 2 ) = 1, ( 5, 2 ) = 
1, ( 2, 1 ) = 7.2, ( 5, 1 ) = 17.1 ] )

table( [( 1 ) = 0.3113207547e-1, ( 2 ) = 0.2986111111e-1, ( 3 ) = 0.2968750000e-1, ( 5 ) = 
0.3011695906e-1, ( 4 ) = 0.2906976744e-1, ( 7 ) = 0.2452229300e-1, ( 6 ) = 
0.3081896552e-1, ( 10 ) = 0.2063492064e-1, ( 11 ) = 0.1916010498e-1, ( 8 ) = 
0.2435233160e-1, ( 9 ) = 0.2430278884e-1 ] )

linsolve(transpose(A)&*(A),transpose(A)&*B);

  #least squares solution

linsolve transposeA  &* A, transposeA  &* B

a:=.3185105239e-1;

   #intercept

b:=-.1694136800e-3;
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   #slope

0.03185105239
0.0001694136800

Now we can create figure 2.1.10:

with(plots): #load the plotting package

pict1:=pointplot({seq(

   lspoints[i],i=1..11)}): 

    #a plot of the points,

    #with output suppressed.  Make sure

    #to end this command with a colon! If you use a

    #semicolon you get a huge mess when you have

    #a lot of points 

line:=plot(a+b*P,P=0..100, color=black):  #same warning here

   #about using a colon vs semicolon

display({pict1,line}, title="Figure 2.1.9");  

    #now use a semicolon, and

    #get a picture containing the line and the 

    #three points we computed. 
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Figure 2.1.9

Figure 2.1.10 shows that the logistic model is a pretty good one for the U.S. population in the 1800’s.  
Let’s use the "a" and "b" which we found with the least squares fit, use the population in 1900 for our 
initial condition, and see how the logistic model works when we try to extend it to the 1900’s:

with(DEtools):  #load the DE package

deqtn1:=diff(x(t),t)=a*x(t) + b*x(t)^2;

     #logistic eqtn with our parameters

d
dt

 x t = 0.03185105239 x t 0.0001694136800 x t 2

P:=dsolve({deqtn1,x(0)=76.21},x(t));
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     #take 1900 as t=0 and solve the initial value

     #problem  

x t =
24273687026419

4 32277541382 47350089593 e

3185105239
100000000000

 t

f:=s->evalf(subs(t=s,rhs(P))); #extract the right-hand side

      #from the above expression to make your solution function

s evalf subs t = s, rhs P

f(s);    #check that those weird subs and rhs commands really 

work

    

6.068421757 1012

3.227754138 1010 4.735008959 1010 e 0.03185105239 s

    We can see how the model works by plotting actual populations against predicted ones, for the 1900’s.

actual:=pointplot({seq([pops[i,1],pops[i,2]],i=1..21)}):

model:=plot(f(s-1900),s=1790..2000,color=black):

display({actual,model});
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Can you think of possible reasons why the model began to fail so badly around 1950?  There are several.


