1. Theory

- Notion of DE, order of DE, interpretation as physical model
- Know how to sketch and interpret a slope field.
 - sketch solutions (Euler’s method “by eye”)
 - identify equilibriums and whether they are stable, unstable or neither.
- Existence and uniqueness theorem for first order DEs.
- Equilibrium solutions, critical points and phase diagram.
- Know how to interpret a bifurcation diagram.
- For \(n \)-th order linear DEs
 \[
 L(y) = y^{(n)} + a_{n-1}(x)y^{(n-1)} + \cdots + a_1(x)y' + a_0(x)y = f(x)
 \]
 - Existence and uniqueness theorem
 - For the homogeneous DE \(L(y) = 0 \): Wronskian, linear independence of solutions and dimension of ker \(L \).
 - Any solution \(y \) to (1) can be written as \(y = y_h + y_p \), where \(y_h \in \ker L \) and \(L(y_p) = f \) is a particular solution.
- For constant coefficient linear DE \((a_i(x) = a_i = \text{const}) \):
 - relation between roots of characteristic polynomial and the solutions to \(L(y) = 0 \).
 - real roots, multiple roots and complex roots.
 - Euler’s formula: \(e^{i\theta} = \cos \theta + i \sin \theta \)

2. Models

- Natural growth and decay: \(y' = ky \). Applications to populations, interest rates, radioactive decay.
- Mixture problems \(x' = r_i c_i - r_o c_o, c_o = x/V \).
- Population models: \(P' = aP^2 + bP + c \). Logistic equation \((c = 0) \), harvesting \((c \neq 0) \). Identify limiting population, equilibriums, and doomsday/extinction scenarios.
- Acceleration/velocity models: linear resistance \(mv' = -kv - mg \). Quadratic resistance not included.
- Pendulum \(L\theta'' + g\theta = 0 \)
- Mechanical vibrations: \(mx'' + cx' + kx = f(t) \)
 - Identify regime: undamped, overdamped, underdamped, critically damped.
 - Identify properties of regime: natural frequency, pseudo-frequency, envelope, phase angle and amplitude.
 - Go from \(A\cos \omega t + B\sin \omega t \) to \(C\cos(\omega t - \alpha) \).

3. Methods

- Integration to find a \{general, particular\} solution to the simplest DE: \(y'(x) = f(x) \).
- Integrating factor method for linear first order DEs: \(y' + p(x)y = q(x) \).
- Separation of variables for separable DEs: \(dy/dx = f(y)/g(x) \)
- Method of undetermined coefficients for finding a particular solution to \(L(y) = f \), where \(L \) is an \(n\)-th order linear differential operator with constant coefficients.
- Method of variation of parameters: not included.
- Numerical methods
 - Euler (1st order accurate) and Improved Euler (2nd order accurate). Runge Kutta not included.
 - Notion of order of accuracy