Review of numerical methods for first order differential equations Math 2280-2

Fernando Guevara Vasquez

January 24 2008

We review different numerical methods for getting an approximate solution to the initial value problem,

$$\frac{dy}{dx} = f(x, y)$$

$$y(x_0) = y_0,$$
(1)

on some x-interval $[x_0, x_n]$. First let us fill the interval $[x_0, x_n]$ with n + 1 points

$$x_i = x_0 + ih$$
, for $i = 0 \dots n$.

Here $h = 1/(x_n - x_1)$ is the "step size". The basic principle of these methods is to somehow approximate $y_{i+1} \approx y(x_{i+1})$ based on previous iterates. One way to achieve this is by first integrating the DE in (1) between x_i and x_{i+1} ,

$$y(x_{i+1}) - y(x_i) = \int_{x_i}^{x_{i+1}} f(x, y(x)) dx$$
(2)

and then using numerical integration or quadrature rules for approximating the integral in (2).

1 Euler's method

The simplest method is to use the following quadrature rule (which could be called "left point" rule) to approximate the integral (2):

$$\int_{x_i}^{x_{i+1}} f(x, y(x)) dx \approx h f(x_i, y(x_i))$$

Note that the length of the interval over which we integrate is $h = x_{i+1} - x_i$. In pseudocode this gives:

Euler's method for $i = 0 \dots n - 1$ $k \leftarrow f(x_i, y_i)$ $y_{i+1} \leftarrow y_i + hk$ end for

Work: 1 function evaluation/iteration

Accuracy Assuming the solution $y \in C^2$, this is a *first order method*, meaning that there is some C > 0 such that

$$|y(x_n) - y_n| < Ch.$$

2 Improved Euler's method

Now if we use the "trapezoidal rule" to approximate the integral (2) we get:

$$\int_{x_i}^{x_{i+1}} f(x, y(x)) dx \approx \frac{h}{2} (f(x_i, y(x_i)) + f(x_{i+1}, y(x_{i+1}))).$$

The only problem is that this approximation involves $y(x_{i+1})$ which is what we want to compute! Improved Euler's method uses Euler's approximation to *predict* the value of y_{i+1} , that is: $y_{i+1} \approx y_i + hf(x_i, y_i)$. Then this *corrected* value of the slope is used in the update. Such methods are called "predictor-corrector" methods. In pseudocode we would get,

Improved Euler's method

for $i = 0 \dots n - 1$ $k_1 \leftarrow f(x_i, y_i)$ $k_2 \leftarrow f(x_i, y_i + hk_1)$ $k \leftarrow (k_1 + k_2)/2$ $y_{i+1} \leftarrow y_i + hk$ end for

Work: 2 function evaluations/iteration

Accuracy: Assuming $f \in C^{3}$, improved Euler is a *second order method*, i.e. there is some C > 0 such that

$$|y(x_n) - y_n| < Ch^2.$$

3 Runge-Kutta

There are several Runge-Kutta methods, but the classical one is the *fourth order* Runge-Kutta method or RK4. This is a popular method because of its simplicity and accuracy. It can be motivated by approximating the integral (2) with Simpson's rule:

$$\int_{x_i}^{x_{i+1}} f(x, y(x)) dx \approx \frac{h}{6} (f_i + 4f_{i+1/2} + f_{i+1}),$$

where we have written in short $f_i = f(x_i, y(x_i))$ and $x_{i+1/2} = x_i + h/2$ is the midpoint of the interval $[x_i, x_{i+1}]$. We face the same problem, both $f_{i+1/2}$ and f_{i+1} are not known to us because they involve $y_{i+1/2}$ and y_{i+1} . Runge-Kutta makes clever approximations to these quantities:

- 1. The value of the slope at the midpoint $x_{i+1/2}$ is $f_{i+1/2}$, and it is approximated in two ways
 - (a) Let $k_1 = f(x_i, y_i)$. The first approximations uses Euler's method up to the midpoint: $y_{i+1/2} \approx y_i + (h/2)k_1$. So

$$f_{i+1/2} \approx k_2 = f(x_{i+1/2}, y_i + (h/2)k_1).$$

(b) The second approximation uses the first:

$$f_{i+1/2} \approx k_3 = f(x_{i+1/2}, y_i + (h/2)k_2)$$

2. This improved value of the slope at the midpoint is used to estimate the value at the endpoint x_{i+1} :

$$f_{i+1} \approx k_4 = f(x_{i+1}, y_i + hk_3).$$

Runge-Kutta method RK4

for
$$i = 0 \dots n - 1$$

 $k_1 \leftarrow f(x_i, y_i)$
 $k_2 \leftarrow f(x_{i+1/2}, y_i + (h/2)k_1)$
 $k_3 \leftarrow f(x_{i+1/2}, y_i + (h/2)k_2)$
 $k_4 \leftarrow f(x_{i+1}, y_i + hk_3)$
 $k \leftarrow (k_1 + 2k_2 + 2k_3 + k_4)/6$
 $y_{i+1} \leftarrow y_i + hk$
end for

Work: 4 function evaluations/iteration

Accuracy: Assuming $f \in C^5$, RK4 is a *fourth order method*, i.e. there is some C > 0 such that

$$|y(x_n) - y_n| < Ch^4.$$