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We review different numerical methods for getting an approximate solution to
the initial value problem,

dy

dx
= f(x, y)

y(x0) = y0,
(1)

on some x−interval [x0, xn]. First let us fill the interval [x0, xn] with n + 1 points

xi = x0 + ih, for i = 0 . . . n.

Here h = 1/(xn − x1) is the “step size”. The basic principle of these methods is to
somehow approximate yi+1 ≈ y(xi+1) based on previous iterates. One way to achieve
this is by first integrating the DE in (1) between xi and xi+1,

y(xi+1)− y(xi) =

∫ xi+1

xi

f(x, y(x))dx (2)

and then using numerical integration or quadrature rules for approximating the in-
tegral in (2).
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1 Euler’s method

The simplest method is to use the following quadrature rule (which could be called
“left point” rule) to approximate the integral (2):∫ xi+1

xi

f(x, y(x))dx ≈ hf(xi, y(xi))

Note that the length of the interval over which we integrate is h = xi+1 − xi. In
pseudocode this gives:

Euler’s method
for i = 0 . . . n− 1

k ← f(xi, yi)
yi+1 ← yi + hk

end for

Work: 1 function evaluation/iteration
Accuracy Assuming the solution y ∈ C2, this is a first order method, meaning that
there is some C > 0 such that

|y(xn)− yn| < Ch.
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2 Improved Euler’s method

Now if we use the “trapezoidal rule” to approximate the integral (2) we get:∫ xi+1

xi

f(x, y(x))dx ≈ h

2
(f(xi, y(xi)) + f(xi+1, y(xi+1))).

The only problem is that this approximation involves y(xi+1) which is what we want
to compute! Improved Euler’s method uses Euler’s approximation to predict the
value of yi+1, that is: yi+1 ≈ yi + hf(xi, yi). Then this corrected value of the slope
is used in the update. Such methods are called “predictor-corrector” methods. In
pseudocode we would get,

Improved Euler’s method
for i = 0 . . . n− 1

k1 ← f(xi, yi)
k2 ← f(xi, yi + hk1)
k ← (k1 + k2)/2
yi+1 ← yi + hk

end for

Work: 2 function evaluations/iteration
Accuracy: Assuming f ∈ C3, improved Euler is a second order method, i.e. there
is some C > 0 such that

|y(xn)− yn| < Ch2.
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3 Runge-Kutta

There are several Runge-Kutta methods, but the classical one is the fourth order
Runge-Kutta method or RK4. This is a popular method because of its simplicity
and accuracy. It can be motivated by approximating the integral (2) with Simpson’s
rule: ∫ xi+1

xi

f(x, y(x))dx ≈ h

6
(fi + 4fi+1/2 + fi+1),

where we have written in short fi = f(xi, y(xi)) and xi+1/2 = xi + h/2 is the mid-
point of the interval [xi, xi+1]. We face the same problem, both fi+1/2 and fi+1 are
not known to us because they involve yi+1/2 and yi+1. Runge-Kutta makes clever
approximations to these quantities:

1. The value of the slope at the midpoint xi+1/2 is fi+1/2, and it is approximated
in two ways

(a) Let k1 = f(xi, yi). The first approximations uses Euler’s method up to
the midpoint: yi+1/2 ≈ yi + (h/2)k1. So

fi+1/2 ≈ k2 = f(xi+1/2, yi + (h/2)k1).

(b) The second approximation uses the first:

fi+1/2 ≈ k3 = f(xi+1/2, yi + (h/2)k2).

2. This improved value of the slope at the midpoint is used to estimate the value
at the endpoint xi+1:

fi+1 ≈ k4 = f(xi+1, yi + hk3).

Runge-Kutta method RK4
for i = 0 . . . n− 1

k1 ← f(xi, yi)
k2 ← f(xi+1/2, yi + (h/2)k1)
k3 ← f(xi+1/2, yi + (h/2)k2)
k4 ← f(xi+1, yi + hk3)
k ← (k1 + 2k2 + 2k3 + k4)/6
yi+1 ← yi + hk

end for

Work: 4 function evaluations/iteration
Accuracy: Assuming f ∈ C5, RK4 is a fourth order method, i.e. there is some
C > 0 such that

|y(xn)− yn| < Ch4.
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