

(2)

(1)

(3)

(4)

Math 2280-1
Numerical solution to first order differential equations

(sections 2.4-2.6 in book)
January 24 2007

Here are sample implementations in Maple of several numerical methods for solving first order
differential equations. These should be helpful for the computing project. The same methods are used
for solving systems of first order DEs (and thus nth-order DEs as well). We apply Euler’s method,
improved Euler’s method and Runge-Kutta to one of the simplest DEs: dy/dx=y, y(0)=1, which has the
solution y=exp(x). The interval of approximation we choose is [0,1].

Euler’s method
restart: # Clear Maple’s internal memory

x0:=0; xn:=1.; # first and last points in the interval

y0:=1; # initial condition

n:=5; # number of steps

h:=(xn-x0)/n; # step size

x0 := 0
xn := 1.
y0 := 1
n := 5

h := 0.2000000000

f:=(x,y)->y; # slope function (rhs in DE dy/dx = f(x,y), here

f(x,y)=y)

f := x, y y

x:=x0; y:=y0; # initialize x,y

x := 0
y := 1

for i from 1 to n do

 k:= f(x,y): # current slope

 y:= y + h*k: # new y value (Euler’s method)

 x:= x+h: # increase x

 print(x,y,exp(x)); # display current values and compare to

true sol.

od: # end for i loop

0.2000000000, 1.200000000, 1.221402758
0.4000000000, 1.440000000, 1.491824698
0.6000000000, 1.728000000, 1.822118800
0.8000000000, 2.073600000, 2.225540928
1.000000000, 2.488320000, 2.718281828

(6)

(7)

(5)

To plot the true solution (exp(x)) against the computed one, we would have needed to store the
computed values. Here is a modification of the above code to just do that.

with(plots): # load plotting package

with(LinearAlgebra): # load linear algebra package

x0:=0; xn:=1.; # first and last points in the interval

y0:=1; # initial condition

n:=5; # number of steps

h:=(xn-x0)/n; # step size

x0 := 0
xn := 1.
y0 := 1
n := 5

h := 0.2000000000

f:=(x,y)->y; # slope function (rhs in DE dy/dx = f(x,y),

here f(x,y)=y)

f := x, y y

xvals:=Vector(n+1); yvals:=Vector(n+1);

xvals[1]:=x0; yvals[1]:=y0;

xvals:=

0

0

0

0

0

0

yvals:=

0

0

0

0

0

0

xvals1 := 0

yvals1 := 1

for i from 1 to n do

 x:=xvals[i]: y:=yvals[i]:

 k:= f(x,y): # current slope

 yvals[i+1]:= y + h*k: # new y value (Euler’s method)

(8)

 xvals[i+1]:= x+h: # increase x

od: # end for i loop

calcsol:=pointplot(Matrix([xvals,yvals])):

exactsol:=plot(exp(t),t=0..1,color=black):

display({calcsol,exactsol},title="approximate and exact

solutions");

t
0.0 0.2 0.4 0.6 0.8 1.0

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

2.6

approximate and exact solutions

Decreasing the step size h should give, in exact arithmetic (no rounding error) a better approximation.
However there are two things to keep in mind:

Computers use floating point arithmetic, which means that all operations are rounded to a certain
number of digits and thus we are introducing rounding error to each step. The smaller h is the more
rounding error becomes a problem. By default Maple uses for floating point numbers the most
common storage format dubbed ‘‘double precision’’. One can expect around 16 digits of accuracy (in
C this data type is ‘‘double’’, in Fortran ‘‘double precision’’ or simply real*8). Here is the rounding
error caught in fraganti, in exact arithmetic the result of the following expression should be 1e-16
(which means 10^-16) but Maple gives 0!

1+1e-16-1;

0.

 The smaller the step size the more steps we do, so the longer it takes to compute our approximation.

(11)

(10)

(9)

Here is the above Euler example with n=100 (instead of 5). The code is adapted so that we print the
values every ten steps:

x0:=0; xn:=1.; # first and last points in the interval

y0:=1; # initial condition

n:=100; # number of steps

h:=(xn-x0)/n; # step size

x0 := 0
xn := 1.
y0 := 1

n := 100
h := 0.01000000000

f:=(x,y)->y; # slope function (rhs in DE dy/dx = f(x,y), here f

(x,y)=y)

f := x, y y

xvals:=Vector(n+1); yvals:=Vector(n+1);

xvals[1]:=x0; yvals[1]:=y0;

xvals:=

 1 .. 101 Vectorcolumn

Data Type: anything

Storage: rectangular

Order: Fortran_order

yvals:=

 1 .. 101 Vectorcolumn

Data Type: anything

Storage: rectangular

Order: Fortran_order

xvals1 := 0

yvals1 := 1

for i from 1 to n do

 x:=xvals[i]: y:=yvals[i]:

 k:= f(x,y): # current slope

 yvals[i+1]:= y + h*k: # new y value (Euler’s method)

 xvals[i+1]:= x+h: # increase x

 if frac(i/10)=0 then

 print(xvals[i+1],yvals[i+1],exp(xvals[i+1]));

 fi:

od: # end for i loop

0.1000000000, 1.104622126, 1.105170918
0.2000000000, 1.220190040, 1.221402758

(12)

0.3000000000, 1.347848915, 1.349858808
0.4000000000, 1.488863734, 1.491824698
0.5000000000, 1.644631822, 1.648721271
0.6000000000, 1.816696698, 1.822118800
0.7000000000, 2.006763369, 2.013752707
0.8000000000, 2.216715219, 2.225540928
0.9000000000, 2.448632677, 2.459603111
1.000000000, 2.704813833, 2.718281828

With the results above we get TWO digits of e (instead of only one)

calcsol:=pointplot(Matrix([xvals,yvals]),color=blue):

exactsol:=plot(exp(t),t=0..1,color=red):

display({calcsol,exactsol},title="approximate and exact

solutions");

t
0.0 0.2 0.4 0.6 0.8 1.0

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

2.6

approximate and exact solutions

(15)

(16)

(13)

(14)

Improved Euler’s method
 uses a better approximation of the slope, based on the trapezoidal rule, see explanation in class or
section 2.5.

x0:=0; xn:=1.; # first and last points in the interval

y0:=1; # initial condition

n:=5; # number of steps

h:=(xn-x0)/n; # step size

x0 := 0
xn := 1.
y0 := 1
n := 5

h := 0.2000000000

f:=(x,y)->y; # slope function (rhs in DE dy/dx = f(x,y), here f

(x,y)=y)

f := x, y y

x:=x0; y:=y0;

x := 0
y := 1

for i from 1 to n do

 k1:= f(x,y): # left hand slope

 k2:= f(x+h,y+h*k1): # approximation to right hand slope

 k:=(k1+k2)/2: # averaged slope

 y:= y + h*k: # improved Euler update

 x:= x+h: # increase x

 print(x,y,exp(x)); # display current values and compare to

true sol.

od: # end for i loop

0.2000000000, 1.220000000, 1.221402758
0.4000000000, 1.488400000, 1.491824698
0.6000000000, 1.815848000, 1.822118800
0.8000000000, 2.215334560, 2.225540928
1.000000000, 2.702708163, 2.718281828

With five points we get a result comparable to classical Euler with 100 points!

(20)

(19)

(17)

(18)

Runge Kutta
This method (or rather the particular version we use here) uses an approximation of the slope which is
based on Simpson’s integration rule (see explanation in class or 2.6). It is sometimes called RK4.

x0:=0; xn:=1.; # first and last points in the interval

y0:=1; # initial condition

n:=5; # number of steps

h:=(xn-x0)/n; # step size

x0 := 0
xn := 1.
y0 := 1
n := 5

h := 0.2000000000

f:=(x,y)->y; # slope function (rhs in DE dy/dx = f(x,y), here f

(x,y)=y)

f := x, y y

x:=x0; y:=y0;

x := 0
y := 1

for i from 1 to n do

 k1:= f(x,y): # left hand slope

 k2:= f(x+h/2,y+h*k1/2): # midpoint slope: first approx.

 k3:= f(x+h/2,y+h*k2/2): # midpoint slope: second approx.

 k4:= f(x+h,y+h*k3): # right hand slope approx.

 k:=(k1+2*k2+2*k3+k4)/6: # Simpson’s integration rule

 y:= y + h*k: # RK4 update

 x:= x+h: # increase x

 print(x,y,exp(x)); # display current values and compare to

true sol.

od: # end for i loop

0.2000000000, 1.221400000, 1.221402758
0.4000000000, 1.491817960, 1.491824698
0.6000000000, 1.822106456, 1.822118800
0.8000000000, 2.225520825, 2.225540928
1.000000000, 2.718251136, 2.718281828

We get 5 digits with 5 points, not bad. The DE we have used to sample these numerical methods is
particularly benign. There are cases when even RK4 can give a numerical approximation that is way
off, especially in cases where the solution blows up (see project).

