Access Coin instructions

. You will need to import the following modules:

import primes # to sign transactions

import coins # hashes, transactions, blocks etc...
import coins_client # to talk to the server

import pubkeys # the public keys from Thursday

. Define your private key by constructing an object:

privkey = PrivateKey(N=943,
e=7,
d=504)

. The module pubkeys contains the public keys from all groups as a list of 7 elements.
So pubkeys.pubkeys[i % 7] is the public key of group i. In Python, i % 7 calculates ¢
mod 7. If i is your group number you can check that the public part of your private
key matches the ones in the module pubkeys

privkey.pubkey () == pubkeys.pubkeys[i % 7]

. Bitcoin and other cryptocurrencies are peer to peer, meaning many nodes in the
network have a copy of the blockchain. Keeping track of the blockchain involves
tedious book-keeping and error checking, so we will just assume that one server has
the blockchain. The URL for the server will be provided, it will be something like
http://someserver.utah.edu:8080/. We point our code to the right URL:

coins_client.base_url = "http://someserver.utah.edu:8080/"

. It’s time to mine some coins!

(a) First ask the server for a new block, specifying the public key pubkey to whom
the reward for mining this block will be assigned.

b = coins_client.get_newblock (pubkey)

(b) Doing b.check_nonce() returns True if the block nonce is OK or False otherwise.


http://someserver.utah.edu:8080/

()
(d)
(e)

(2)

Mining the block b means to try many different values for the integer b.nonce,
until b.check_nonce() is True.

You can do this manually by incrementing the nonce until the nonce is good, but
it is much better to write a while loop.

Once we have a good nonce we can submit the block to the blockchain server:

status ,msg = coins_client.post_newblock(b)

If the block was accepted by the server, status is True. Otherwise, msg contains
a message describing the error.

Congratulations! You now have 10 Access Coins.

Repeat (a) — (f) another time, so that you have 20 Access Coins.

Please do not mine more than two blocks and wait until all the groups
have mined 2 blocks before continuing with the next step!

6. Signing. Complete the function coins.txsig that signs a Transaction tx with the
PrivateKey privkey. The order of operations is as follows.

(d)

Compute the hash of the transaction, tx.hash() will do the trick and give you a
string with exactly n = 32 characters.

Encode the hash using the Davis table into an integer with 2n = 64 digits (use
primes.davis_enc(h), where h is the hash string)

Decrypt this integer with the private key that is supplied as an argument

return the result

7. Transactions. Let’s say that Group A wants to buy an espresso from Group B, for
x coins. Let pubkeyA and pubkeyB be their public keys and let privkeyA be the private
key of Group A.

(a)

(b)

Group A asks the server to list all the transactions that are in favor of Group A
(and that have not been spent yet)

wallet = coins_client.get_wallet (pubkeyA)

Group A creates a transaction from using one or more of these unspent trans-
actions that appear in the wallet . The function coins.tx_send_funds does this
and makes sure there is no overspending!

tx = coins.tx_send_funds(wallet,
pubkeyA , pubkeyB,
x,"For a frothy espresso")




()

Group A uses privkeyA and the function coins.tx_sig to sign the new transaction
tx. The signature is an integer, say sig. Anyone can check that Group A wants
this transaction as is, since encrypting sig with the pubkeyA should give tx.hash
O (in Davis coding). Any attempt to tamper with the transaction would change
the hash and the transaction signature will not check out anymore!

Group A posts the transaction to the server.

status ,msg = coins_client.post_tx(tx,sig)

Group C (which may be A, B, or a different group) will eventually get a block
with this new transaction included in it, mine it and submit to the server. Once
Group B gets confirmation from the server that the transaction has cleared,
Group B can give Group A an espresso!

Note: Please no eating or drinking in the computer lab!




