
Public key cryptography
ACCESS 2012

based on Tom Davis’ and Nick Korevaar’s notes.

Before exchanging encrypted messages Alice and Bob do some preliminary work.

Alice A©

• Picks two large primes: pA and qA.
(sssh it’s a secret!)
• Computes modulus NA = pAqA.
• Picks encryption power eA such that

gcd(eA, (pA − 1)(qA − 1)) = 1.

Public key: NA eA

Bob B©

• Picks two large primes: pB and qB.
(sssh it’s a secret!)
• Computes modulus NB = pBqB.
• Picks encryption power eB such that

gcd(eB, (pB − 1)(qB − 1)) = 1.

Public key: NB eB

Scenario 1. Bob wants to send a secret MESSAGE to Alice.

Alice A© Bob B©

1. B© transcribes MESSAGE into an integer x
(or several if MESSAGE is too long)
2. B© encrypts message using Alice’s public

key: NA eA

y = EA(x) = xeA mod NA

3. A© knows her number theory and pA and
qA so she can find her decryption power dA by
solving the multiplicative inverse equation

eAdA ≡ 1 mod (pA − 1)(qA − 1)

4. A© decrypts the message

x ≡ DA

(
y
)
≡ ydA mod NA.

The decryption function works because of Fermat’s little theorem, indeed:

DA(EA(x)) ≡ DA(xeA) ≡ (xeA)dA ≡ xeAdA ≡ x1+k(pA−1)(qA−1) ≡ x mod NA.

Problem: Evil can send an message to Alice pretending to be Bob!

1

Scenario 2. Bob wants to send a secret MESSAGE to Alice with secure signature.

Alice A©

• Picks two large primes: pA and qA.
(sssh it’s a secret!)
• Computes modulus NA = pAqA.
• Picks encryption power eA such that

gcd(eA, (pA − 1)(qA − 1)) = 1.

Public key: NA eA

Private key: dA

(with xeAdA ≡ x mod NA).
Signature: sA ≡ integer(s) < NA

transcribing to e.g. “signed by Alice”.

Bob B©

• Picks two large primes: pB and qB.
(sssh it’s a secret!)
• Computes modulus NB = pBqB.
• Picks encryption power eB such that

gcd(eB, (pB − 1)(qB − 1)) = 1.

Public key: NB eB

Private key: dB

(with xeBdB ≡ x mod NB).
Signature: sB ≡ integer(s) < NB

transcribing to e.g. “signed by Bob”.

Alice A© Bob B©

1. B© decrypts his signature sB with B©’s pri-
vate key

DB(sB).

2. B© appends message x to DB(sB) creating
x#DB(sB) (breaks this into blocks < NA) and
encrypts using A©’s public key:

y = EA(x#DB(sB))

3. A© decodes message y:

DA(y) = DA(EA(x#DB(sB)))

= x︸︷︷︸
message

#DB(sB)︸ ︷︷ ︸
gibberish

EVIL doesn’t know DB so EVIL
• can’t get to x#DB(sB)
• can’t read message x
• can’t forge messages to A© which look
like they came from B©.

4. A© uses B©’s public key to compute:

EB(DB(sB)) = sB.

and only B© could make DB(sB)!!

2

