Public key cryptography

ACCESS 2012

based on Tom Davis’ and Nick Korevaar’s notes.

Before exchanging encrypted messages Alice and Bob do some preliminary work.

o N)

Alice @ Bob

e Picks two large primes: ps and ¢4. e Picks two large primes: pp and ¢g.

(sssh it’s a secret!) (sssh it’s a secret!)

e Computes modulus Ng = paqa. e Computes modulus N = ppqp.

e Picks encryption power e4 such that e Picks encryption power ep such that

ged(ea, (pa —1)(ga — 1)) = L. ged(ep, (p —1)(gp — 1)) = 1.
; . | Najea : . |NB|€B

\Publlc key:) &Pubhc key: y

Scenario 1. Bob wants to send a secret MESSAGE to Alice.

Alice @

Bob

3. @ knows her number theory
g4 so she can find her decrypti

1. ® transcribes MESSAGE into an integer x
(or several if MESSAGE is too long)

2. encrypts message using Alice’s public
NA €A

key:

= Ea(z) =24 mod Ny

—

The decryption function works because of Fermat’s little theorem, indeed:

DA(Ea(z)) = Da(z°4) = (2°4)% = gada = g1 HhPa—D@a—h = 5 mod Ny.

Problem: Evil can send an message to Alice pretending to be Bob!

Scenario 2. Bob wants to send a secret MESSAGE to Alice with secure signature.

o N\ 7)

Alice @ Bob

e Picks two large primes: ps and ¢4. e Picks two large primes: pp and ¢g.

(sssh it’s a secret!) (sssh it’s a secret!)

e Computes modulus Ny = paqa. e Computes modulus Ng = ppgp.

e Picks encryption power e4 such that e Picks encryption power ep such that

ged(ea, (pa —1)(ga — 1)) = L. ged(ep, (pp —1)(gp — 1)) = 1.

Public key: Na| €4 Public key: Ng | B

Private key: da Private key: dp

(with z¢494 = 2 mod N,). (with z¢2%% = x mod Np).

Signature: s4, = integer(s) < Ny Signature: sp = integer(s) < Np
\transcribing to e.g. “signed by Alice”. D \transcribing to e.g. “signed by Bob”.)

Alice @

Bob

3. @ decodes

DA(’) = Da(Ea(z#Dp(sp)))

=& # Dp(sp)

message

ssage y:

gibberish

4. (&) uses B)’s public key to compute:
EB(DB(SB)) = SB.

and only ® could make Dg(sp)!!

1. decrypts his signature sg with ®)’s pri-
vate key
DB(SB>.

2. appends message x to Dp(sp) creating
x#Dp(sp) (breaks this into blocks < N4) and
encrypts using @&)’s public key:

/—. = Ea(x#Dp(sp))

EVIL doesn’t know Dpg so | EVIL

e can’t get to z#Dpg(sp)

e can’t read message x

e can’t forge messages to () which look
like they came from (B).

