Public key cryptography #### ACCESS 2012 based on Tom Davis' and Nick Korevaar's notes. Before exchanging encrypted messages Alice and Bob do some preliminary work. ## Alice (A) - Picks two large primes: p_A and q_A . (sssh it's a secret!) - Computes modulus $N_A = p_A q_A$. - Picks encryption power e_A such that $$gcd(e_A, (p_A - 1)(q_A - 1)) = 1.$$ Public key: # Bob ® - Picks two large primes: p_B and q_B . (sssh it's a secret!) - Computes modulus $N_B = p_B q_B$. - Picks encryption power e_B such that $$\gcd(e_B, (p_B - 1)(q_B - 1)) = 1.$$ Public key: Scenario 1. Bob wants to send a secret MESSAGE to Alice. #### Alice (A) #### Bob ® - 1. B transcribes MESSAGE into an integer x (or several if MESSAGE is too long) - 2. (B) encrypts message using Alice's public key: $N_A \mid e_A$ $$y = E_A(x) = x^{e_A} \mod N_A$$ 3. (A) knows her number theory and p_A and q_A so she can find her decryption power d_A by solving the multiplicative inverse equation $$e_A d_A \equiv 1 \mod (p_A - 1)(q_A - 1)$$ 4. A decrypts the message $$x \equiv D_A \left(y \right) \equiv y^{d_A} \mod N_A.$$ The decryption function works because of Fermat's little theorem, indeed: $$D_A(E_A(x)) \equiv D_A(x^{e_A}) \equiv (x^{e_A})^{d_A} \equiv x^{e_A d_A} \equiv x^{1+k(p_A-1)(q_A-1)} \equiv x \mod N_A.$$ 1 **Problem:** Evil can send an message to Alice pretending to be Bob! #### Scenario 2. Bob wants to send a secret MESSAGE to Alice with secure signature. ## Alice (A) - Picks two large primes: p_A and q_A . (sssh it's a secret!) - Computes modulus $N_A = p_A q_A$. - Picks encryption power e_A such that $$gcd(e_A, (p_A - 1)(q_A - 1)) = 1.$$ Public key: $N_A \mid e_A$ Private key: d_A (with $x^{e_A d_A} \equiv x \mod N_A$). Signature: $s_A \equiv \text{integer(s)} < N_A$ transcribing to e.g. "signed by Alice". ## Bob ® - Picks two large primes: p_B and q_B . (sssh it's a secret!) - Computes modulus $N_B = p_B q_B$. - Picks encryption power e_B such that $$gcd(e_B, (p_B - 1)(q_B - 1)) = 1.$$ Public key: $N_B e_B$ Private key: d_B (with $x^{e_B d_B} \equiv x \mod N_B$). Signature: $s_B \equiv \text{integer(s)} < N_B$ transcribing to e.g. "signed by Bob". # Alice (A) # Bob ® 1. B **decrypts** his signature s_B with B's private key $$D_B(s_B)$$. 2. ® appends message x to $D_B(s_B)$ creating $x \# D_B(s_B)$ (breaks this into blocks $< N_A$) and encrypts using @'s public key: $$y = E_A(x \# D_B(s_B))$$ 3. \triangle decodes message y: $$D_A(y) = D_A(E_A(x \# D_B(s_B)))$$ $$= \underbrace{x}_{\text{message}} \# \underbrace{D_B(s_B)}_{\text{gibberish}}$$ 4. (A) uses (B)'s public key to compute: $$E_B(D_B(s_B)) = s_B.$$ and only B could make $D_B(s_B)!!$ - EVIL doesn't know D_B so EVIL - can't get to $x \# D_B(s_B)$ - can't read message x - \bullet can't forge messages to (A) which look like they came from (B).