Public key cryptography

ACCESS 2012

based on Tom Davis' and Nick Korevaar's notes.

Before exchanging encrypted messages Alice and Bob do some preliminary work.

Alice (A)

- Picks two large primes: p_A and q_A . (sssh it's a secret!)
- Computes modulus $N_A = p_A q_A$.
- Picks encryption power e_A such that

$$gcd(e_A, (p_A - 1)(q_A - 1)) = 1.$$

Public key:

Bob ®

- Picks two large primes: p_B and q_B . (sssh it's a secret!)
- Computes modulus $N_B = p_B q_B$.
- Picks encryption power e_B such that

$$\gcd(e_B, (p_B - 1)(q_B - 1)) = 1.$$

Public key:

Scenario 1. Bob wants to send a secret MESSAGE to Alice.

Alice (A)

Bob ®

- 1. B transcribes MESSAGE into an integer x (or several if MESSAGE is too long)
- 2. (B) encrypts message using Alice's public key: $N_A \mid e_A$

$$y = E_A(x) = x^{e_A} \mod N_A$$

3. (A) knows her number theory and p_A and q_A so she can find her decryption power d_A by solving the multiplicative inverse equation

$$e_A d_A \equiv 1 \mod (p_A - 1)(q_A - 1)$$

4. A decrypts the message

$$x \equiv D_A \left(y \right) \equiv y^{d_A} \mod N_A.$$

The decryption function works because of Fermat's little theorem, indeed:

$$D_A(E_A(x)) \equiv D_A(x^{e_A}) \equiv (x^{e_A})^{d_A} \equiv x^{e_A d_A} \equiv x^{1+k(p_A-1)(q_A-1)} \equiv x \mod N_A.$$

1

Problem: Evil can send an message to Alice pretending to be Bob!

Scenario 2. Bob wants to send a secret MESSAGE to Alice with secure signature.

Alice (A)

- Picks two large primes: p_A and q_A . (sssh it's a secret!)
- Computes modulus $N_A = p_A q_A$.
- Picks encryption power e_A such that

$$gcd(e_A, (p_A - 1)(q_A - 1)) = 1.$$

Public key: $N_A \mid e_A$

Private key: d_A

(with $x^{e_A d_A} \equiv x \mod N_A$).

Signature: $s_A \equiv \text{integer(s)} < N_A$ transcribing to e.g. "signed by Alice".

Bob ®

- Picks two large primes: p_B and q_B . (sssh it's a secret!)
- Computes modulus $N_B = p_B q_B$.
- Picks encryption power e_B such that

$$gcd(e_B, (p_B - 1)(q_B - 1)) = 1.$$

Public key: $N_B e_B$

Private key: d_B

(with $x^{e_B d_B} \equiv x \mod N_B$).

Signature: $s_B \equiv \text{integer(s)} < N_B$ transcribing to e.g. "signed by Bob".

Alice (A)

Bob ®

1. B **decrypts** his signature s_B with B's private key

$$D_B(s_B)$$
.

2. ® appends message x to $D_B(s_B)$ creating $x \# D_B(s_B)$ (breaks this into blocks $< N_A$) and encrypts using @'s public key:

$$y = E_A(x \# D_B(s_B))$$

3. \triangle decodes message y:

$$D_A(y) = D_A(E_A(x \# D_B(s_B)))$$

$$= \underbrace{x}_{\text{message}} \# \underbrace{D_B(s_B)}_{\text{gibberish}}$$

4. (A) uses (B)'s public key to compute:

$$E_B(D_B(s_B)) = s_B.$$

and only B could make $D_B(s_B)!!$

- EVIL doesn't know D_B so EVIL
- can't get to $x \# D_B(s_B)$
- can't read message x
- \bullet can't forge messages to (A) which look like they came from (B).