MATH 204: Homework 4
Solutions

Problems are from Rudin 3rd edition.
Problem 1. Chapter 9 (p. 239): 21

Problem 2. Let £ C R™ open and f : E — R be C'. In class we saw that f’(z) € L(R",R) can be
represented as f'(z)h = Vf(z) - h for a vector Vf(z) € R™ which we called the gradient of f. This

makes V f a mapping from E to R™. Suppose that V f is itself differentiable on E and call it’s derivative
D%*f: E — L(R™).

(a)

Suppose that f has a local maximum at a point x € E. Show that D?f(x) < 0 in the sense that,
£€-D*f(x)€ <0 for every &€ R™.

A linear operator with such a property is called non-positive definite (or negative definite if there is
strict inequality).

You saw on the midterm that if f has an interior local maximum at a point € E then V f(z) = 0.
Now let us suppose that the domain E = {x € R" : g(x) < 0} for a C! function g which satisfies
Vg # 0 on E. Here we will need that both f and g are actually C' on an open set containing the
closure of E. Suppose that f attains its maximum over the set E at a point z € OE. Show that,

Vf(x)- v(z) >0,

where v(z) = ;ggg‘ is the unit normal vector to the domain E at the point z.

In the same setting as part (b) assume that V f is also differentiable at the maximum point « € OF.
Let T, be the orthogonal complement of the vector v(z) in R™, i.e. T, is the subspace of directions
tangential to OF at z. Show that,

£ (D?f(x)—AD?g(x))¢ <0 for every ¢ € Ty,

where A € R is the same constant as appears in part (d).

Now lets consider the values of f restricted to OF = {x € R™ : g(z) = 0}. Suppose that f attains
maxgp [ at a point © € OE. Finding the value/location of such a maximum is referred to as a
constrained optimization problem. Show that at such a point,

Vf(z) = AVg(z) for some X € R.

The parameter )\ is often referred to as a Lagrange Multiplier.

part (a). Let a path y(t) = « + &t and consider k(¢t) = f(y(¢)) which has a local maximum at ¢ = 0.
First one should verify that k is twice differentiable at x. Next we claim that k”(¢) < 0, one way is to
look directly at the difference quotients,

k//(o) = lim k(h) + k(_h) — 2k(0)

< 0.
h—0 h? =0

Now we evaluate k/(t) and k" (t) using the chain-rule,

K (t) =V (1) -+ (t) and E'(t) =+'(t) - D*F(y(t)' (1) + 7" (1) - V(1 (1)).

Plugging in 7/(¢) = £ and 7" (t) = 0 we get,

0> K"(0) =& D*f(x)€.

part (b). Let v(t) = z + tv(z) then,

9(z +1v(z)) = g() +1Vg(z) - v(w) +r(t) with lim Tl(t? -
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Noting that Vg(z) - v(z) = |Vg(z)| > 0 we see that g(v(¢)) > 0 for ¢ > 0 small enough and g(y(¢)) <0
for t < 0 small enough. In particular v(¢) € E for ¢ < 0 small enough and so f(y(¢)) < f(z) for t <0
small enough and,

Vf-u(z) = lim fl+tv(@) = fz) _ . fle+tv() - f(2)

t—0 t t—0— t

> 0.

You should attempt to understand the picture geometrically before trying to write down the details in
terms of calculus. Using part (¢) we could see that actually V f(z) = |V f(x)|v(z).

part (d). The first thing I want to do is construct a C! curve (t) mapping some interval I > 0 in R
into JF passing through z at t = 0 and with ~/(0) = £. This way we can argue similarly to part (a) and
to the test problem.

Let’s change coordinates so that v(z) = e,, and we write y € R™ as (y,y,) with ¢’ € R*~1. This

makes T, = span(ey,...,e,_1). Then we can apply to implicit function theorem to find a C*! function
¢ : U — R with U a neighborhood of z’ in R" 1,

9y, ¥(y) =0 with ¢(2') =2 and Vi(2') = —Dyg(z) ' Vyg(z) = 0,
since Vg(z) is parallel to e,,. Now for £ € Ty, i.e. £ = (&1,...,&—1,0), take for v(t) the path,
Y(t) = (&' + &t (2’ +&'t)) with 4/(0) = (¢, V(') - &) = (€,0) = ¢&.
The path ~ is C! in a neighborhood of ¢t = 0 since v given from the implicit function theorem is C' in
a neighborhood of z’.

Now that we have a curve v € JF passing through the point x with velocity £ € T, we can compute,
using that f(y(¢)) has a local maximum at ¢ = 0,

0= Lr00)| = Vi) €

t=0
In other words V f(x) is orthogonal to every vector £ of Ty, but since T, was defined as the orthogonal
complement of span of Vg(z) this means that V f(x) is parallel to Vg(z) or,

Vf(x) = AVg(x) for some X € R.

part (c). So part (c) is not stated correctly, and it is really more natural to put it after part (d), which
I have done here. First we claim that for any unit vector ¢ € T, there exists a C? path v : I — 0F,
where I 3 0 is an open sub-interval of R, with v(0) = x, 7/(0) = £. This requires g to be C?, and it is
not so obvious, in particular it is convenient to use the implicit function theorem as in part (d) above.
I will skip this part and take for granted the existence of such a curve ().

Then we can also compute, by taking the derivative on both sides of g(y(t)) = 0 twice,
Vg(z)-£=0 and &- D?*g(x)¢ ++"(0) - Vg(z) =0

Using the previous equation and part (d) we get that,
7"(0) - Vf(z) = M"(0) - Vg(z) = =\ [¢ - D*g(a)¢]

for the same A as in part (d). Now we compute the second derivative of f(v(t)), since y(¢t) € OF for all
t € I this function has a local max at ¢ = 0 and so,

0> %;f(v(t)) =& D2 f(@)§ +4"(0) - VI(2) = £ (D*f(z) = AD?g(x))¢.

t=0



