
MATH 204: Homework 4
Solutions

Problems are from Rudin 3rd edition.

Problem 1. Chapter 9 (p. 239): 21

Problem 2. Let E ⊂ Rn open and f : E → R be C1. In class we saw that f ′(x) ∈ L(Rn,R) can be
represented as f ′(x)h = ∇f(x) · h for a vector ∇f(x) ∈ Rn which we called the gradient of f . This
makes ∇f a mapping from E to Rn. Suppose that ∇f is itself differentiable on E and call it’s derivative
D2f : E → L(Rn).

(a) Suppose that f has a local maximum at a point x ∈ E. Show that D2f(x) ≤ 0 in the sense that,

ξ ·D2f(x)ξ ≤ 0 for every ξ ∈ Rn.

A linear operator with such a property is called non-positive definite (or negative definite if there is
strict inequality).

(b) You saw on the midterm that if f has an interior local maximum at a point x ∈ E then ∇f(x) = 0.
Now let us suppose that the domain E = {x ∈ Rn : g(x) < 0} for a C1 function g which satisfies
∇g 6= 0 on ∂E. Here we will need that both f and g are actually C1 on an open set containing the
closure of E. Suppose that f attains its maximum over the set E at a point x ∈ ∂E. Show that,

∇f(x) · ν(x) ≥ 0,

where ν(x) = ∇g(x)
|∇g(x)| is the unit normal vector to the domain E at the point x.

(c) In the same setting as part (b) assume that ∇f is also differentiable at the maximum point x ∈ ∂E.
Let Tx be the orthogonal complement of the vector ν(x) in Rn, i.e. Tx is the subspace of directions
tangential to ∂E at x. Show that,

ξ · (D2f(x)−λD2g(x))ξ ≤ 0 for every ξ ∈ Tx,

where λ ∈ R is the same constant as appears in part (d).
(d) Now lets consider the values of f restricted to ∂E = {x ∈ Rn : g(x) = 0}. Suppose that f attains

max∂E f at a point x ∈ ∂E. Finding the value/location of such a maximum is referred to as a
constrained optimization problem. Show that at such a point,

∇f(x) = λ∇g(x) for some λ ∈ R.

The parameter λ is often referred to as a Lagrange Multiplier.

part (a). Let a path γ(t) = x + ξt and consider k(t) = f(γ(t)) which has a local maximum at t = 0.
First one should verify that k is twice differentiable at x. Next we claim that k′′(t) ≤ 0, one way is to
look directly at the difference quotients,

k′′(0) = lim
h→0

k(h) + k(−h)− 2k(0)

h2
≤ 0.

Now we evaluate k′(t) and k′′(t) using the chain-rule,

k′(t) = ∇f(γ(t)) · γ′(t) and k′′(t) = γ′(t) ·D2f(γ(t))γ′(t) + γ′′(t) · ∇f(γ(t)).

Plugging in γ′(t) = ξ and γ′′(t) = 0 we get,

0 ≥ k′′(0) = ξ ·D2f(x)ξ.

part (b). Let γ(t) = x+ tν(x) then,

g(x+ tν(x)) = g(x) + t∇g(x) · ν(x) + r(t) with lim
|t|→0

r(t)

|t|
= 0.
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Noting that ∇g(x) · ν(x) = |∇g(x)| > 0 we see that g(γ(t)) > 0 for t > 0 small enough and g(γ(t)) < 0
for t < 0 small enough. In particular γ(t) ∈ E for t < 0 small enough and so f(γ(t)) ≤ f(x) for t < 0
small enough and,

∇f · ν(x) = lim
t→0

f(x+ tν(x))− f(x)

t
= lim

t→0−

f(x+ tν(x))− f(x)

t
≥ 0.

You should attempt to understand the picture geometrically before trying to write down the details in
terms of calculus. Using part (c) we could see that actually ∇f(x) = |∇f(x)|ν(x).

part (d). The first thing I want to do is construct a C1 curve γ(t) mapping some interval I 3 0 in R
into ∂E passing through x at t = 0 and with γ′(0) = ξ. This way we can argue similarly to part (a) and
to the test problem.

Let’s change coordinates so that ν(x) = en, and we write y ∈ Rn as (y′, yn) with y′ ∈ Rn−1. This
makes Tx = span(e1, . . . , en−1). Then we can apply to implicit function theorem to find a C1 function
ψ : U → R with U a neighborhood of x′ in Rn−1,

g(y′, ψ(y′)) = 0 with ψ(x′) = x and ∇ψ(x′) = −Dng(x)−1∇y′g(x) = 0,

since ∇g(x) is parallel to en. Now for ξ ∈ Tx, i.e. ξ = (ξ1, . . . , ξn−1, 0), take for γ(t) the path,

γ(t) = (x′ + ξ′t, ψ(x′ + ξ′t)) with γ′(0) = (ξ′,∇ψ(x′) · ξ′) = (ξ′, 0) = ξ.

The path γ is C1 in a neighborhood of t = 0 since ψ given from the implicit function theorem is C1 in
a neighborhood of x′.

Now that we have a curve γ ∈ ∂E passing through the point x with velocity ξ ∈ Tx we can compute,
using that f(γ(t)) has a local maximum at t = 0,

0 =
d

dt
f(γ(t))

∣∣∣∣
t=0

= ∇f(x) · ξ.

In other words ∇f(x) is orthogonal to every vector ξ of Tx, but since Tx was defined as the orthogonal
complement of span of ∇g(x) this means that ∇f(x) is parallel to ∇g(x) or,

∇f(x) = λ∇g(x) for some λ ∈ R.
part (c). So part (c) is not stated correctly, and it is really more natural to put it after part (d), which
I have done here. First we claim that for any unit vector ξ ∈ Tx there exists a C2 path γ : I → ∂E,
where I 3 0 is an open sub-interval of R, with γ(0) = x, γ′(0) = ξ. This requires g to be C2, and it is
not so obvious, in particular it is convenient to use the implicit function theorem as in part (d) above.
I will skip this part and take for granted the existence of such a curve γ(t).

Then we can also compute, by taking the derivative on both sides of g(γ(t)) = 0 twice,

∇g(x) · ξ = 0 and ξ ·D2g(x)ξ + γ′′(0) · ∇g(x) = 0

Using the previous equation and part (d) we get that,

γ′′(0) · ∇f(x) = λγ′′(0) · ∇g(x) = −λ
[
ξ ·D2g(x)ξ

]
,

for the same λ as in part (d). Now we compute the second derivative of f(γ(t)), since γ(t) ∈ ∂E for all
t ∈ I this function has a local max at t = 0 and so,

0 ≥ d2

dt2
f(γ(t))

∣∣∣∣
t=0

= ξ ·D2f(x)ξ + γ′′(0) · ∇f(x) = ξ · (D2f(x)− λD2g(x))ξ.


