MATH 205: Homework 6 Due Friday May 11

There are problems from Boller and Sally and also from "Multivariable Mathematics" by T. Shifrin. I recommend at least thinking about all the exercises, even if they are not assigned, as you read through the textbook. I also recommend trying to prove all the Theorems which are left unproven in the book. There may be more problems assigned depending on our progress in lecture

Problem 1. Boller and Sally, Section 6.3: 5,6

Problem 2. Shifrin, Section 8.2 Exercises: 2, 3, 4, 6abc, 7abce, 8abcd, 10

Problem 3. Let C be an oriented curve in \mathbb{R}^2 and let n the unit outward normal (i.e. $\{n, T\}$ is a right handed basis for \mathbb{R}^2 , where T is the tangent to C). Let $F = (F_1, F_2)$ be a vector field in \mathbb{R}^2 and $\omega = F_1 dx + F_2 dy$ be the corresponding 1-form. Show that

$$\int_C F \cdot n \, ds = \int_C F_1 dy - F_2 dx.$$

Here $\int_C f \, ds$ is the arc-length integral defined by $\int_a^b f(\gamma(t)) |\gamma'(t)| dt$ if γ parametrizes C. The quantity on the left is called the *flux* of the vector field F through C. Conclude that if $C = \partial \Omega$ then,

$$\int_C F \cdot n ds = \int_\Omega \nabla \cdot F = \int_\Omega \frac{\partial F_1}{\partial x} + \frac{\partial F_2}{\partial y}.$$

Problem 4. An ant finds himself in the xy-plane in the presence of the force field $F = (y^3 + x^2y, 2x^2 - 6xy)$. Around what simple closed curve should be travel counter-clockwise inorder to maximize the work done on him by F? (Hint: use Green's theorem)