MATH 205: Homework 5 Due Fri Nov 10

Most of these problems are from "Multivariable Mathematics" by T. Shifrin. I recommend at least thinking about all the exercises, even if they are not assigned, as you read through the textbook. I also recommend trying to prove all the Theorems which are left unproven in the book.

Problem 1. Suppose that $\omega \in \Lambda^k(\mathbb{R}^n)^*$ for k odd, show that $\omega \wedge \omega = 0$. Give an example to show that if k even then $\omega \wedge \omega$ may be nonzero.

Problem 2. Compute the exterior derivatives of the following differential forms:

(1)
$$\omega = e^{xy} dx$$

(2)
$$\omega = z^2 dx + x^2 dy + y^2 dz$$

(3) $\omega = x^2 dy \wedge dz + y^2 dz \wedge dx + z^2 dx \wedge dy$

Problem 3. Can the given 1-form ω be written as $\omega = df$ for a function $f : \mathbb{R}^n \to \mathbb{R}$? If so find f.

- (1) $\omega = -ydx + xdy$
- (2) $\omega = 2xydx + x^2dy$
- (3) $\omega = ydx + zdy + xdz$

(4)
$$\omega = \frac{x}{x^2 + y^2} dx + \frac{y}{x^2 + y^2} dy$$

Problem 4. Compute the pullback $g^*\omega$, simplifying as much as possible.

- (1) $g: \mathbb{R} \to \mathbb{R}^2, g(t) = (3\cos(2t), 3\sin(2t)), \omega = -ydx + xdy$
- (1) $g: \mathbb{R}^2 \to \mathbb{R}^2, g(r, \theta) = (3r\cos(2\theta), 3r\sin(2\theta)), \omega = -ydx + xdy$ (3) $g: \mathbb{R}^2 \to \mathbb{R}^3, g(u, v) = (\cos u, \sin u, v), \omega = zdx + xdy + ydz$ (4) $g: \mathbb{R}^2 \to \mathbb{R}^3, g(u, v) = (\cos u, \sin u, v), \omega = zdx \wedge dy + ydz \wedge dx$

Problem 5. Can every $a \in \Lambda^k(\mathbb{R}^n)$ be written as $v_1 \wedge \cdots \wedge v_k$ for some vectors $v_1, \ldots, v_k \in \mathbb{R}^n$? (Recall that the space $\Lambda^k(\mathbb{R}^n)$ is defined as the linear span of $\{v_1 \wedge \cdots \wedge v_k : v_1, \ldots, v_k \in \mathbb{R}^n\}$ (Hint: Show that $a \wedge a$ may be non-zero)

Problem 6. Let $g: (0,\infty) \times (0,2\pi) \times (0,\pi) \to \mathbb{R}^3$ be the spherical coordinate mapping $g(\rho,\theta,\phi) =$ $(\rho \cos \theta \sin \phi, \rho \sin \theta \sin \phi, \rho \cos \theta)$, compute $q^* \omega$ when $\omega = dx \wedge dy \wedge dz$.

Problem 7. Suppose that $\phi_1, \ldots, \phi_k \in (\mathbb{R}^n)^*$ and $v_1, \ldots, v_k \in \mathbb{R}^n$, show that

$$\phi_1 \wedge \dots \wedge \phi_k(v_1, \dots, v_k) = \det[\phi_i(v_j)].$$

(Hint: take v_i to be the standard basis vectors e_i , and expand $\phi_i = \sum a_{ij} dx_j$, then compute both sides)

Problem 8. Let C be an oriented curve in \mathbb{R}^2 and let n the unit outward normal (i.e. $\{n, T\}$ is a right handed basis for \mathbb{R}^2 , where T is the tangent to C). Let $F = (F_1, F_2)$ be a vector field in \mathbb{R}^2 and $\omega = F_1 dx + F_2 dy$ be the corresponding 1-form. Show that

$$\int_C F \cdot n \, ds = \int_C F_1 dy - F_2 dx.$$

Here $\int_C f \, ds$ is the arc-length integral defined by $\int_a^b f(\gamma(t)) |\gamma'(t)| dt$ if γ parametrizes C. The quantity on the left is called the *flux* of the vector field F through C. Conclude that if $C = \partial \Omega$ then,

$$\int_C F \cdot n ds = \int_{\Omega} \nabla \cdot F = \int_{\Omega} \frac{\partial F_1}{\partial x} + \frac{\partial F_2}{\partial y}.$$

Problem 9. An ant finds himself in the xy-plane in the presence of the force field $F = (y^3 + x^2y, 2x^2 - y^2)$ 6xy). Around what simple closed curve should he travel counter-clockwise inorder to maximize the work done on him by F? (Hint: use Green's theorem)