MATH 203: Homework 7

Due Wednesday Nov 30

Problems are from Rudin 3rd edition.

Problem 1. Chapter 2 (p. 44): 17, 18, 21

Problem 2. Chapter 3 (p. 79): 16, 19

Problem 3. Chapter 4 (p. 98): 6, 9, 11, 25

Problem 4. Suppose that $\{x_n\}_{n=1}^{\infty}$ is a sequence in a metric space X with the following property: there is $x \in X$ such that every subsequence of the x_n has a subsequence converging to x. Show that x_n converges to x.

Problem 5. Given a function $f : \mathbb{R}^k \to \mathbb{R}$ define the support of f

$$\operatorname{supp}(f) = \overline{\{x \in \mathbb{R}^k : |f(x)| > 0\}}.$$

A function f is said to have *compact support* if $\operatorname{supp}(f)$ is a compact set of \mathbb{R}^k . We define the vector space of continuous functions with compact support on \mathbb{R}^k (why is it a vector space? check for yourself you don't need to write it):

 $C_c(\mathbb{R}^k) = \{ f : \mathbb{R}^k \to \mathbb{R} : f \text{ is continuous and has compact support} \}.$

Show that $C_c(\mathbb{R}^k)$ with the norm $||f|| := \sup_{x \in \mathbb{R}^k} |f(x)|$ is a normed space (i.e. check that $||f|| < +\infty$ for all $f \in C_c(\mathbb{R}^k)$). Show by an example that this normed space is *not* complete.

The following final part is just for your own interest you don't have to do it: show that the completion of $C_c(\mathbb{R}^k)$ under the supremum norm $\|\cdot\|$ is the space $C_0(\mathbb{R}^k)$ of continuous function which vanish at ∞ ,

$$C_0(\mathbb{R}^k) := \{f: \mathbb{R}^k \to \mathbb{R}: \ f \text{ is continuous and } \lim_{|x| \to \infty} f(x) = 0\}.$$

Problem 6. Two metrics d_1 and d_2 on a space X are said to be *equivalent* if for any sequence $\{x^j\}_{j=1}^{\infty}$ in X,

 x^{j} converges to x in d_{1} metric if and only if x^{j} converges to x in d_{2} metric.

(i) Show that all the ℓ^p distances for $1 \leq p \leq \infty$ on \mathbb{R}^k are equivalent. Recall that

$$d_{\ell^p}(x,y) = \left(\sum_{n=1}^k |x_n - y_n|^p\right)^{1/p} \text{ and } d_{\ell^{\infty}}(x,y) = \sup_{n=1,\dots,k} |x_n - y_n|^p$$

Hint: Show that convergence in any d_{ℓ^p} is equivalent to convergence of all the entries in absolute value.

(ii) Now consider the sequence space,

$$\ell^{1}(\mathbb{N}_{+}) = \{x = (x_{1}, x_{2}, \dots) \in \mathbb{R}^{\mathbb{N}_{+}} : \|x\|_{1} = \sum_{n=1}^{\infty} |x_{n}| < +\infty\}$$

Show that convergence with respect to ℓ^1 -metric $d_{\ell^1}(x,y) = ||x-y||_1$ implies convergence with respect to the ℓ^∞ metric

$$d_{\ell^{\infty}}(x,y) := \sup_{n \in \mathbb{N}_+} |x_n - y_n|.$$

Give an example of a sequence in the space $\ell^1(\mathbb{N}_+)$ which converges in ℓ^{∞} metric but not in ℓ^1 metric.

Problem 7. [Tao, Analysis II, 12.5.10] A metric space (X, d) is called *totally bounded* if for every $\varepsilon > 0$ there exists a positive integer n and points $x_1, \ldots, x_n \in X$ so that $B(x_1, \varepsilon), \ldots, B(x_n, \varepsilon)$ cover X.

(i) Show that a totally bounded space is bounded.

(*ii*) Show that if (X, d) is sequentially compact (every sequence has a convergent subsequence) then it is complete and totally bounded. Hint: if X is not totally bounded then there is some $\varepsilon > 0$ so that there is no finite covering of X by balls of radius ε . Show that in this situation, given any finite collection of $\varepsilon/2$ radius balls there is another $\varepsilon/2$ radius ball which is disjoint from all of them. Use this inductively to construct an infinite sequence $B(x_j, \varepsilon/2)$ of disjoint balls. From here you can contradict sequential compactness.

 $\mathbf{2}$