MATH 203: Homework 3

Due Wednesday Oct 26

Problems are from Rudin 3rd edition.

Problem 1. Chapter 2 (p. 43): 12, 14, 22, 23, 24, 25

Problem 2. For a subset E of a metric space (X, d) we define the *boundary of* E called $\partial E := \overline{E} \cap \overline{E^C}$. Prove the following

- (i) ∂E is a closed set.
- (ii) $x \in \partial E$ if and only if for every r > 0, $B(x,r) \cap E \neq \emptyset$ and $B(x,r) \cap E^C \neq \emptyset$.
- (*iii*) By an example show that ∂E is not necessarily equal to $\partial \overline{E}$.

Problem 3. By an example show that if E_n is a nested sequence of closed sets which are non-empty the intersection $\bigcap_{n=1}^{\infty} E_n$ may be empty.

Problem 4. Chapter 2 (p. 43): 19, 20, 28, 29.