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Course information

Instructor: William Feldman (he/him/his)

Office: JWB 101

Webpage: math.utah.edu/~feldman/teaching.html

Canvas: Canvas page will be used for grades, Zoom info, any
possible lecture recordings.

Office Hours: TBA, will be held in Zoom room listed above.

TA: Keshav Patel

COVID note: Be prepared for possible Zoom classes.
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Course information

Primary Textbooks:

Differential Equations and Dynamical Systems, Lawrence
Perko.

Ordinary Differential Equations and Dynamical Systems,
Gerald Teschl [pdf].

Supplementary Texts:

Theory of Ordinary Differential Equations, Christopher P.
Grant.

Additional course materials will be shared online.
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Grading policy

Course work:

I 50% - Homework - Individual problems assigned
approximately 3-5 per week depending on length, typically due
7 days after they are assigned. Scores of lowest 15% of
problems will be dropped at end of semester.

I 50% - Final Exam - The final exam is on Monday, December
13, 2021 at 1:00 – 3:00 pm.

Your final letter grade will be determined by the following rubric:

A : 90%+

A- : 85%-90%

B+ : 80%-85%

B : 70% - 80%

C : below
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Initial value problems
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Initial value problems

Initial value problem (IVP) for a first order system: find
x(t) : [0,T ]→ Rn solving{

ẋ(t) = f (t, x(t)) for t ∈ (0,T )

x(0) = x0.
(1)

where f : U → Rn is continuous, U ⊂ Rn open, and x0 ∈ U.
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Following a vector field
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The fundamental questions

Mathematical theory of differential equations always starts with a
set of questions called well-posedness
I Existence: “Is there a solution?”

I Local (i.e. small interval around initial time)
I Global (all positive times)

I Uniqueness: “Is there only one solution?”
I Regularity of the dependence on the data.
I Regularity of the dependence on the equation.
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Qualitative features

Once we have understood the basics we can begin to ask more
refined questions and start to really understand the solutions of a
particular ODE.

I Long time / asymptotic behavior of solutions
I Dependence on the equation

I Bifurcation theory
I Perturbation theory
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Higher order equations

What about differential equations involving higher order
derivatives? Why just consider first order systems?

General abstract higher order ODE, look for y(t) solving{
F (t, y , y (1), . . . , y (k)) = 0 for t > 0

y (j)(0) = y0,j for 0 ≤ j ≤ k − 1.
(2)

If ∂1F (~y0, 0) 6= 0 then, by implicit function theorem, can solve for
y (k)

y (k)(t) = g(t, y(t), . . . , y (k−1)(t))
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Higher order equations (ctd...)

Now write
x(t) = (y(t), . . . , y (k−1)(t))T ∈ Rk

Which solves the first order system{
ẋ(t) = f (t, x(t)) for t > 0

x(0) = (y(0), y (1)(0), . . . , y (k−1)(0))T
(3)

with
f (t, x) = (x2, x3, . . . , xk−1, g(t, x1, . . . , xk))T
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Examples and ideas
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Newton’s Equations

Particle of mass m > 0 at position x(t) moves in R under the
influence of a force field F : R→ R and a kinetic frictional force
(coefficient µ ≥ 0) opposing motion

mẍ = −µẋ + F (x).

It is common to view this as a first order system by considering the
equation for (x , p) = (x ,mẋ) the position and momentum{

ẋ = 1
mp

ṗ = − µ
mp + F (x).

(4)
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Newton’s Equations

Newton’s equations have a conserved (µ = 0) / dissipated (µ > 0)
quantity. Multiply the ODE by ẋ

mẍ ẋ − ẋF (x) = −µẋ2

and note that the left hand side is a derivative

d

dt
(
p2

2m
+ V (x)) = −µẋ2 ≤ 0

where

V (x) = −
ˆ x

0
F (u) du.

William M Feldman (Utah) MATH 6410 Fall 2021 16 / 107



Newton’s Equations

This quantity is called the Hamiltonian

H(p, x) =
p2

2m
+ V (x)

When µ = 0 the solutions of Newton’s equations remain on level
sets of the Hamiltonian and the first order system has the
Hamiltonian form {

ẋ = ∂H
∂p (p, x)

ṗ = −∂H
∂x (p, x).
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Newtons equations: mass on spring

Ideal point mass m on a spring with constant k, rest state at 0,

H(p, x) =
p2

2m
+

1

2
kx2.

x

p
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Damped mass on spring

x

p
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Newtons equations: pendulum

Ideal point mass m hung on a string of length L, θ is the angle
from the vertical axis and p = mLθ̇ is the momentum

H(p, x) =
p2

2m
+ mgL(1− cos θ).

x

p
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Damped pendulum

x

p
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Population dynamics

Most basic equation of population dynamics is the most basic ODE
of all

Ṅ = rN and N(0) = N0.

Models, for example, population growth of some species, nuclear
decay, etc. The number r is the reproduction / decay rate.

Slightly more sophisticated is the logistic growth model

Ṅ = rN(1− N/K ) and N(0) = N0.

Here K is the carrying capacity.
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Phase line analysis

Plot the positive/negative regions of f (N) = rN(1− N/K ) on R

K0

Solutions converge to critical point (zero of f and stationary
solution of the ODE) either 0 or K based on where initial data
sits. We will make this rigorous later.
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Population dynamics

Now if we add in “harvesting” to the logistic growth model

Ṅ = rN(1− N/K )− H and N(0) = N0

where H is the number of the population harvested per unit time.

For H < rK
4 there are two positive fixed points, which collide and

annihilate at H = rK
4 , called a saddle-node bifurcation.

H

N

rK
4

0

K

K/2
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Chemical reaction

Reversible synthesis/decomposition reaction between chemicals A
and B producing AB

A + B
k1


k2

AB

forward reaction occurs with rate k1 backwards occurs with rate k2.

Call nX (t) to be the concentration of reactant X at time t, then
the densities evolve by the ODE system{

ṅAB = k1nAnB − k2nAB

ṅA = ṅB = k2nAB − k1nAnB .
(5)
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Chemical reactions: homework

Problem
Consider the chemical reaction system{

ṅAB = k1nAnB − k2nAB

ṅA = ṅB = k2nAB − k1nAnB .

I Show that nA − nB , nAB + nA, nAB + nB , and
nAB + 1

2 (nA + nB) are all invariant quantities under the
evolution.

I Use this to rewrite the initial value problem as a single
equation for x(t) = nA(t) with parameters α = nA(0)− nB(0)
and β = nAB(0) + nA(0).

I Use phase line analysis to determine the long time behavior of
x(t).
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Existence and Uniqueness
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Failure of uniqueness

Classic example of non-uniqueness{
ẋ = x1/3 for t > 0,

x(0) = 0.
(6)

Can solve by separation of variables to find three solutions already

x(t) = ±(2/3)3/2t3/2 and x(t) ≡ 0 for t > 0.

However there are many more solutions

x(t) = ±(2/3)3/2 max{0, (t − t0)}3/2

are also solutions for any t0 ≥ 0.
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Plot of non-uniqueness example
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Non-uniqueness example

Remark
Note that the x derivative of f (x) = x1/3 is not bounded near 0.
As we will see soon this is exactly the cause of the non-uniqueness.

Remark
Note that this equation actually does actually have uniqueness
backwards in time. However trajectories can cross in negative time
which is equivalent to the forward in time non-uniqueness.

This is not “non-physical” see law for emptying a fluid filled
cylinder by draining through a hole in the bottom ḣ = −ah1/2

(after non-dimensionalization) where h is the height of fluid in the
cylinder.
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Failure of (global in time) existence

Classic example of failure of global existence{
ẋ = x2 for t > 0,

x(0) = x0 > 0.
(7)

Typical separation of variables yields the solution

x(t) =
x0

1− x0t
for 0 ≤ t < 1/x0.

We say this solution blows up at time 1/x0.
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Blow-up example

t

x(
t)
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Integral form of IVP

Suppose we have a solution of the IVP{
ẋ(t) = f (t, x(t)) for t ∈ (0,T )

x(0) = x0

(IVP)

(i.e. it is a C 1 function and satisfies the equation pointwise). By
fundamental theorem of calculus

x(t) = x0 +

ˆ t

0
ẋ(s) ds

= x0 +

ˆ t

0
f (s, x(s)) ds
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Integral form of IVP

Say that x ∈ C ([0,T ]→ R), is a solution of the integral form of
(IVP) if

x(t) = x0 +

ˆ t

0
f (s, x(s)) ds for all t ∈ [0,T ]. (I-IVP)

Now if x solves (I-IVP) then, since f (s, x(s)) is a continuous
function, fundamental theorem of calculus implies x is
differentiable and

ẋ(t) = f (t, x(t)) for all t ∈ [0,T ].

Thus the integral and differential forms of the initial value problem
are equivalent.
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Integral form of IVP

Remark
This is a simple example of the general idea of weak solution
which appears often in PDE. One introduces a weaker notion of
solution which makes existence easier. Then one has to do some
work to show uniqueness of weak solutions, or even better that
weak solutions are classical solutions (easy in this case).
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A useful note

Remark
If x(t) is continuous on an interval [a, b] and solves ẋ = f (t, x(t))
except possibly at some time t0 ∈ (a, b). Then actually x solves on
the whole interval. The proof is just to use the integral forms

x(t) = x(a) +

ˆ t

0
f (s, x(s)) ds for a ≤ t < t0

and

x(t) = x(t0) +

ˆ t

t0

f (s, x(s)) ds for t0 ≤ t < b.
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Solution concatenation

Lemma
If x is a solution of ẋ = f (t, x) on (a, 0] and y is a solution of
ẏ = f (t, y) on [0, b) and x(0) = y(0) then

z(t) :=

{
x(t) a < t ≤ 0

y(t) 0 ≤ t ≤ b

is a solution of ż = f (t, z) on (a, b).
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Uniqueness
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Lipschitz continuity

A function g : Rn → Rn is called Lipschitz continuous with
Lipschitz constant L if

|g(x)− g(y)| ≤ L|x − y | for all x , y ∈ Rn.

A function g : Rn → Rn is called locally Lipschitz continuous if
it is Lipschitz continuous on every compact subset of Rn.
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The Lipschitz constant

It turns out that g is Lipschitz continuous on a convex set U ⊂ Rn

if and only if Dg is bounded on U (in measure theoretic sense).

A function g : Rn → Rn is called differentiable at a point x0 if
there is a linear mapping Dg(x0) : Rn → Rn (i.e. an n × n matrix)
so that

lim
x→x0

|g(x)− g(x0)− Dg(x0)(x − x0)|
|x − x0|

= 0

(Note: I am writing |v | = (v2
1 + · · ·+ v2

n )1/2 for vectors v ∈ Rn)

If g is continuously differentiable then

[Dg(x0)]ij =
∂gi
∂xj

(x0).
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The Lipschitz constant

For x and y in U the line [x , y ] from x to y is contained in U so

|g(y)− g(x)| =

∣∣∣∣ˆ 1

0

d

ds
[g(x + s(y − x))] dt

∣∣∣∣
=

∣∣∣∣ˆ 1

0
Dg(x + s(y − x))(y − x) ds

∣∣∣∣
≤
ˆ 1

0
|Dg(x + s(y − x))(y − x)| ds

≤
ˆ 1

0
‖Dg(x + s(y − x))‖op|y − x | ds

≤ sup
z∈[x ,y ]

‖Dg(z)‖op|x − y |.

In particular when g is C 1 it is locally Lipschitz, if it is C 1 with
bounded derivative then it is (globally) Lipschitz.
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Uniqueness theorem

Theorem
Suppose f (t, x) is Lipschitz continuous in x with constant L for all
t ≥ 0. Then if x and y are solutions of

ẋ = f (t, x) and ẏ = f (t, y) for t > 0

then
|x(t)− y(t)| ≤ eLt |x0 − y0| for t ≥ 0.

In particular if x0 = y0 then x(t) = y(t).
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Grönwall’s Inequality

Lemma (Grönwall)

Suppose A ≥ 0 and B, and φ are continuous non-negative
functions on [0,T ] and φ solves the integral inequality

φ(t) ≤ A +

ˆ t

0
B(s)φ(s) ds for all t ∈ [0,T ] (8)

then

φ(t) ≤ A exp

(ˆ t

0
B(s) ds

)
.
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Grönwall’s Inequality Proof

Assume for now that A > 0. Define

u(t) := A +

ˆ t

0
B(s)φ(s) ds.

By fundamental theorem of calculus this function is C 1. Compute

u̇(t) = B(t)φ(t) ≤ B(t)u(t).

Since u > 0 we can divide both sides by u(t) and write

d

dt
(log u(t)) ≤ B(t).

William M Feldman (Utah) MATH 6410 Fall 2021 44 / 107



Grönwall’s Inequality Proof

Integrating on both sides from 0 to t

log u(t) ≤ logA +

ˆ t

0
B(s) ds.

Then exponentiate to find

φ(t) ≤ u(t) ≤ A exp(

ˆ t

0
B(s) ds).

For the case A = 0 note that φ also satisfies the integral inequality
(8) for all A > 0, so we can just send A→ 0 in the above
inequality.
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Grönwall’s Inequality Proof (slight variation)

Assume for now that A > 0. Define

u(t) := A +

ˆ t

0
B(s)φ(s) ds.

By fundamental theorem of calculus this function is C 1. Compute

u̇(t) = B(t)φ(t) ≤ B(t)u(t).

Multiply both sides by e−
´ t

0 B(s) ds

e−
´ t

0 B(s) ds u̇(t)− e−
´ t

0 B(s) dsB(t)u(t) ≤ 0.
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Grönwall’s Inequality Proof (slight variation)

Now the left hand side is a derivative

d

dt
(e−

´ t
0 B(s) dsu(t)) ≤ 0.

Integrate from 0 to t to find

u(t) ≤ u(0) exp(

ˆ t

0
B(s) ds)

and then conclude by using φ(t) ≤ u(t) and u(0) = A.
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Uniqueness theorem (again)

Theorem
Suppose f (t, x) is Lipschitz continuous in x with constant L for all
t ≥ 0. Then if x and y are solutions of

ẋ = f (t, x) and ẏ = f (t, y) for t > 0

then
|x(t)− y(t)| ≤ eLt |x0 − y0| for t ≥ 0.

In particular if x0 = y0 then x(t) = y(t).
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Uniqueness proof

Proof.
Using the integral formula

x(t)− y(t) = x0 − y0 +

ˆ t

0
[f (s, x(s))− f (s, y(s))] ds.

By triangle inequality

|x(t)− y(t)| ≤ |x0 − y0|+
ˆ t

0
|f (s, x(s))− f (s, y(s))| ds

≤ |x0 − y0|+
ˆ t

0
L|x(s)− y(s)| ds

Apply Grönwall’s inequality with φ(t) = |x(t)− y(t)|.
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Distinct solutions cannot cross

Corollary

Suppose f (t, x) is Lipschitz continuous in x with constant L for all
t ≥ 0. If x and y are solutions of

ẋ = f (t, x) and ẏ = f (t, y) for t > 0

then
|x(t)− y(t)| ≥ e−Lt |x0 − y0|.

William M Feldman (Utah) MATH 6410 Fall 2021 50 / 107



Distinct solutions cannot cross

Idea: Run the equation backwards in time and apply the
uniqueness result.

x(0)

y(0)

x(T ) = y(T )
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Distinct solutions cannot cross

Proof.
Idea: Run the equation backwards in time and apply the
uniqueness result.

Fix T > 0 and consider the trajectories traced in the reverse
direction x̄(t) = x(T − t) and ȳ(t) = y(T − t). These solve the
ODE

ż = −f (T − t, z)

with initial data x̄(0) = x(T ) and ȳ(0) = y(T ). By the uniqueness
theorem applied to this backwards ODE

|x(0)− y(0)| = |x̄(T )− ȳ(T )|
≤ eLT |x̄(0)− ȳ(0)|
≤ eLT |x(T )− y(T )|.
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Autonomous equations

Definition
An ODE ẋ = f (t, x) is called autonomous if the right hand side
f (t, x) = f (x) does not depend on t.

Remark
Note that any n-dimensional non-autonomous ODE system can be
viewed as an (n + 1)-dimensional autonomous system by solving
for (t, x) in

ṫ = 1 and ẋ = f (t, x).

This is not always a useful way to think.
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Distinct trajectories of autonomous equations cannot cross

Definition
A trajectory of an autonomous ODE is the image of a solution as
a subset of Rn. That is, if ẋ = f (x) on a time interval I then

Γx = x(I ) = {x(t) : t ∈ I} ⊂ Rn

is a trajectory of the ODE. Trajectories of non-autonomous ODE
are subsets of (−∞,∞)× Rn.

Lemma
Suppose f : Rn → Rn globally Lipschitz continuous. If Γ1 and Γ2

are trajectories of ẋ = f (x) then either they are disjoint or Γ1 ∪ Γ2

is also a trajectory.
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Understanding the no crossing lemma statement

Possible situations

Γ1

Γ2

Γ1

Γ1 ∩ Γ2

Γ2 Γ2Γ1
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No crossing proof

Suppose there is a point z0 ∈ Γx ∩ Γy , i.e. there is tx ∈ Ix and
ty ∈ Iy such that x(tx) = z0 and y(ty ) = z0. Define

x̄(t) = x(t − tx) and ȳ(t) = y(t − ty ),

by time translation invariance these also solve the same ODE and
x̄(0) = ȳ(0) = z0. Thus by uniqueness x̄(t) = ȳ(t) on their
common interval of definition.

Then, recalling our previous remark about continuous paths which
solve the ODE except at finitely many times,

z(t) =

{
x̄(t) t ∈ Ix

ȳ(t) t ∈ Iy

solves the ODE ż = f (z) and Γz = Γx ∪ Γy is a trajectory.
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Phase line analysis

First order autonomous equation x(t) ∈ R{
ẋ(t) = f (x(t)) t ∈ I

x(0) = x0.
(9)

Lemma
If f is Lipschitz continuous, f > 0 on [a, b], and f (a) = f (b) = 0
then for any x0 ∈ (a, b)

lim
t→−∞

x(t) = a and lim
t→∞

x(t) = b.
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Phase line analysis
Proof

Since a and b are stationary solutions we can apply the no crossing
theorem and derive that x(t) 6= a for all t and x(t) 6= b for all t.

Since x is continuous and x(0) ∈ (a, b) we must have x(t) ∈ (a, b)
for all t ∈ R. This implies then that ẋ(t) = f (x(t)) > 0 so x is
strictly monotone increasing. Thus the limits limt→±∞ x(t) both
exist.
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Phase line analysis
Proof

If x(t) ≤ c < b for all t > 0 then

inf
t>0

f (x(t)) ≥ inf
[x0,c]

f ≥ µ > 0

since continuous functions achieve their minimum on compact sets
and f > 0 on [x0, c]. Then

b ≥ x(t) =

ˆ t

0
f (x(t)) dt ≥ µt

which is a contradiction for t large. Thus limt→∞ x(t) = b.
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Some functional analysis (for Existence)
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Normed spaces

Definition
Given a vector space V over R or C we say that ‖ · ‖ : V → R is a
norm on V and call (V , ‖ · ‖) a normed vector space if

I (Positivity) For all v ∈ V , ‖v‖ ≥ 0 and ‖v‖ = 0 if and only if
v = 0.

I (Scaling) For all α ∈ R (or C) and v ∈ V

‖αv‖ = |α|‖v‖

I (Triangle inequality) For all v ,w ∈ V

‖v + w‖ ≤ ‖v‖+ ‖w‖.
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Normed spaces

Definition

Examples of normed spaces

I Euclidean space Rn with the Euclidean norm

‖x‖ = (
n∑

j=1

x2
j )1/2.

I The space L(V ) of linear operators T : V → V for a normed
space (V , ‖ · ‖V ) comes with a canonical norm called the
operator norm

‖T‖L(V ) = ‖T‖op = sup
v 6=0

‖T (v)‖V
‖v‖V

.
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Normed spaces

More examples of normed spaces

I The space of continuous functions C (U) on a domain U ⊂ Rn

with the supremum norm

‖f ‖sup = sup
x∈U
|f (x)|.

Definition
A normed space is called complete if every Cauchy sequence in V
converges. A complete normed vector space is called a Banach
space.

All of the previous spaces are complete (for the space of linear
operators need to add the assumption that (V , ‖ · ‖V ) is complete).
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Contraction mappings

Definition
For a subset X of a normed space V a function φ : X → X is
called a strict contraction of X if there is µ < 1 so that

‖φ(x)− φ(y)‖ ≤ µ‖x − y‖ for all x , y ∈ X .

Theorem (Contraction mapping theorem)

If X is a closed subset of a complete normed space V and
φ : X → X is a strict contraction then φ has a fixed point, i.e.
there is x∗ ∈ X such that

φ(x∗) = x∗.
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Contraction mapping theorem

Remark
Fixed point theorems in general and the contraction mapping
theorem in particular are an extremely common and useful way to
prove existence of solutions of equations of various types.

In particular we will apply it to achieve an existence theorem for
ODE IVPs. As we will see the existence result will not be too
abstract, actually the proof furnishes an algorithm with a
convergence rate.
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Proof of contraction mapping theorem

Let x0 ∈ X arbitrary then define iteratively

xn+1 = φ(xn).

Using the contraction property

‖xn+1 − xn‖ = ‖φ(xn)− φ(xn−1)‖ ≤ µ‖xn − xn−1‖

so by induction

‖xn+1 − xn‖ ≤ µn‖φ(x0)− x0‖.
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Proof of contraction mapping theorem (ctd...)

Now for arbitrary n > m

‖xn − xm‖ ≤
n−1∑
j=m

‖xj+1 − xj‖

≤
n−1∑
j=m

µj‖φ(x0)− x0‖

≤ µm

1− µ
‖φ(x0)− x0‖.

Thus xn is a Cauchy sequence, and since X is closed and V is
complete xn converges to some x∗ ∈ X . Then by continuity

x∗ = lim
n→∞

xn+1 = lim
n→∞

φ(xn) = φ(x∗).
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Picard-Lindelöf Theorem (global version)

Theorem
Suppose f : R× Rn → Rn satisfies

|f (t, x)− f (t, y)| ≤ L|x − y | for all x , y ∈ Rn.

Then for any x0 ∈ Rn there is a unique C 1 solution x(t) of

x(t) = x0 +

ˆ t

0
f (s, x(s)) ds for all t ∈ R.
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Outline of the proof

I Local existence
I Define a functional whose fixed points are solutions of the

ODE IVP
I Show that this functional is a contraction if the time interval

[0,T ] is sufficiently small depending on L.

I Global existence
I ODE solutions can be extended by concatenation.
I Apply local existence result repeatedly.
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Proof of Picard-Lindelöf Theorem

First we define a space where we will search for solutions

X = {x ∈ C ([0,T ]→ Rn) : x(0) = x0}.

This is a closed subset of the Banach space C ([0,T ]→ Rn).

For each x ∈ X define Φ : X → X by

Φ[x ](t) := x0 +

ˆ t

0
f (s, x(s)) ds for t ∈ [0,T ].

Note that any fixed point of Φ is a solution of (I-IVP). We claim
that for T ≤ 1

2L the mapping Φ is a contraction of X .
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Aside: example of the Picard iteration

For example if the equation is the scalar linear problem ẋ = ax
then the contraction mapping iteration on Φ produces

y0(t) = x0, y1(t) = x0 +

ˆ t

0
ay0(s) ds = x0 + tax0

and so on

yk(t) = x0 +

ˆ t

0
ayk−1(s) ds = x0 + x0at + · · ·+ x0

aktk

k!
.

Of course this is the series expansion for the exponential so

yk(t)→ y(t) = x0e
at as k →∞.

(Note: this argument also works exactly the same for linear
systems, although we need to understand the matrix exponential)
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Proof of Picard-Lindelöf Theorem (ctd...)
Φ(X ) ⊂ X

First we need to check that Φ indeed maps X to X , note that

Φ[x ](0) = x0 +

ˆ 0

0
f (s, x(s)) ds = x0

so the initial data is correct. Also Φ[x ](t) is continuous in t
because it is the anti-derivative of a continuous function and hence
is C 1.
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Proof of Picard-Lindelöf Theorem (ctd...)
Contraction property

Now consider two paths x , y ∈ X and we estimate for 0 ≤ t ≤ T

|Φ[x ](t)− Φ[y ](t)| = |
ˆ t

0
f (s, x(s))− f (s, y(s)) ds|

≤
ˆ t

0
L|x(s)− y(s)| ds

≤ LT‖x − y‖sup.

Since this inequality holds for all t ∈ [0,T ] we also find, using
T ≤ 1

2L

‖Φ[x ]− Φ[y ]‖sup ≤ LT‖x − y‖sup ≤
1

2
‖x − y‖sup.

Thus Φ is a contraction and has a (unique) fixed point in X .
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Proof of Picard-Lindelöf Theorem (ctd...)
Global extension

Now suppose that we have a solution x of (IVP) on some interval
[0,T ]. By the previous argument there exists a (unique) solution of

ẏ(t) = f (t, y(t)) and y(T ) = x(T ) for t ∈ [T ,T +
1

2L
].

By the solution concatenation lemma

z(t) =

{
x(t) t ∈ [0,T ]

y(t) t ∈ [T ,T + 1
2L ]

is also a solution of (IVP) now on [0,T + 1
2L ]. By iteration there is

a solution on the time interval [0,∞).
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Localizing existence and uniqueness results
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Locally Lipschitz

It is not very convenient that our only uniqueness result requires a
global assumption (Lipschitz continuity) to get a local result
(uniqueness).

Definition
Call f (t, x) to be locally Lipschitz continuous uniformly in t in
a domain U ⊂ Rn if for every K ⊂ U compact and every T > 0
there is an L ≥ 1 so that

|f (t, x)− f (t, y)| ≤ L|x − y | for x , y ∈ K and t ∈ [−T ,T ].

Example

I f (x) = x2

I Any f (t, x) which is in the space C ([0,T ];C 1(U)).
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Localizing the uniqueness theorem

Theorem
Suppose f (t, x) is locally Lipschitz continuous uniformly in t on
(t, x) ∈ R× U then any two solutions of the initial value problem

ẋ = f (t, x) and x(0) = x0

agree on their common time interval of definition.

William M Feldman (Utah) MATH 6410 Fall 2021 77 / 107



Uniqueness proof

Uniqueness is a “local property” let’s first show how to reduce to
the case of proving uniqueness on a short time interval.

Suppose that x and y are two solutions of the IVP defined,
respectively, on open time intervals Ix and Iy . Call

E = {t ∈ Ix ∩ Iy : x(t) = y(t)}.

If we show that E is both open and closed then it must be the
whole interval.
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Uniqueness proof

The set E is immediately closed because it is the set where the
difference of two continuous functions is zero.

To show E is open we must show that if some time t0 ∈ E , i.e.
x(t0) = y(t0), then x(t) = y(t) in an open neighborhood
(t0 − δ, t0 + δ). This is local version of the current uniqueness
theorem, we can just argue with t0 = 0.
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Uniqueness proof

Now given x0 ∈ U choose r > 0 so that Br (x0) ⊂ U. Then there is
L ≥ 1 so that f (t, x) is Lipschitz continuous in x with constant L
on Br (x0) for every −1 ≤ t ≤ 1.

Since f is a continuous function on the compact set
[−1, 1]× Br (x0) there is an M ≥ 1 so that |f | ≤ M on that set.

Call t∗ = sup{t : x([0, t]) ⊂ Br (x0)}, in words t∗ is the first time
that x(t) leaves Br (x0). We want to show that t∗ ≥ δ := r/M. If
t∗ = +∞ we are done, otherwise x(t∗) ∈ ∂Br (x0) and so

r = |x(t∗)− x0| ≤ Mt∗

in which case t∗ ≥ M/r = δ.

Thus any solution of the ODE IVP starting from x0 stays in Br (x0)
for 0 ≤ t ≤ δ and we can apply the original uniqueness proof with
the Lipschitz constant L.
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Maximal interval of existence

Theorem
Suppose U ⊂ Rn and f is locally Lipschitz continuous on U
uniformly in t. Then for any x0 ∈ U there is an open interval
I (x0) ⊂ R containing t = 0 and a unique C 1 solution x(t) of

x(t) = x0 +

ˆ t

0
f (s, x(s)) ds and x(t) ∈ U for all t ∈ I (x0)

so that I (x0) = (t−, t+) is maximal in the following sense: for any
compact K ⊂ U

x(t) 6∈ K for min
±
|t − t±| sufficiently small.
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Examples

We have already seen a nice example

ẋ = x2 and x(0) = x0 > 0.

Then the solution is

x(t) =
x0

1− x0t
for t <

1

x0
.

In this case the maximal interval of existence is easy to read off
I (x0) = (−∞, 1

x0
).
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Examples

Consider the system in U = {(x , y , z) : z > 0} ⊂ R3

ẋ = − y

z2
, ẏ =

x

z2
, and ż = 1 (10)

with initial data

(x(0), y(0), z(0)) = (0,−1,
1

π
).

Can check explicitly the solution is

(sin
1

t
, cos

1

t
, t) on t ∈ (0,∞)

which is the maximal interval of existence.
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Examples

(sin
1

t
, cos

1

t
, t) on t ∈ (0,∞)

88 2. Nonlinear Systems: Local Theory

with x(1/7r) = (0, -1,1/7r)T. The solution is

X3

Figure 1. The solution x(t) for Example 3.

sin 1/t
x(t) = cos 1/t

t

on the maximal interval (a 6) = (0, oo). Cf. Figure 1. At the finite endpoint
a = 0, lim x(t) does not exist. Note, however, that the arc lengtht0+

Jt Ix(r)Idr>Jt
x1(r)+x2(r)dT ft d =1-7r

Co
1/7r 1/irx3(T)T T t

as t -, 0+. Cf. Problem 3.

We next establish the existence and some basic properties of the maximal
interval of existence (a, Q) of the solution x(t) of the initial value problem
M.
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Non-trivial continuation interval on each compact subset

Lemma
Suppose U ⊂ Rn open and f : R× U → Rn satisfies for any
compact K ⊂ U there is L so that

|f (t, x)− f (t, y)| ≤ L|x − y | for all x , y ∈ K and all t.

Suppose that K ⊂ U compact. There exists T (K ) > 0 so that for
all x0 ∈ K there exists a unique solution of (IVP) for

x(t) = x0+

ˆ t

0
f (s, x(s)) ds and x(t) ∈ U for all t ∈ (−T (K ),T (K )).
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Sketch.
There is an r > 0 so that for all x0 ∈ K have Br (x0) ⊂ U, call
K r = ∪x0∈KBr (x0) which is also a compact subset of U. Then
localize the domain for the fixed point argument:

X = {x : [0,T ]→ Br (x0) : x(t) continuous and x(0) = x0}.

Define L to be the Lipschitz constant of f (t, ·) on K r and

M = sup
t∈[0,1],x∈K r

|f (t, x)|.

For T sufficiently small depending on L and M the Picard fixed
point functional will map X to itself (a non-trivial issue now) and
be a contraction.
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Maximal interval of existence

Define

t+ = sup{t > 0 : ∃ a solution of (I-IVP) on [0, t]}

and
t− = inf{t < 0 : ∃ a solution of (I-IVP) on [t, 0]}.

There is a solution x(t) of (I-IVP) on I = (t−, t+) (exercise).
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Maximal interval of existence

Suppose that there is a compact set K ⊂ U and a sequence of
times (tn)n∈N with tn → t+ so that

x(tn) ∈ K .

By the non-trivial continuation Lemma there is a time T (K ) > 0
so that any initial data in K has a solution for at least time T (K ).
Let n sufficiently large so that t+ − tn < T (K ). Then define y(t)
to be the solution of

ẏ(t) = f (t, y(t)) and y(tn) = x(tn)

which exists at least until tn + T (K ) > t+. The concatenation of
x(t) and y(t) is a solution of the IVP on [0, tn + T (K )] which
contradicts the definition of t+.
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The flow map and invariants
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Flow map

In the following let’s restrict to the easy setting f globally Lipschitz
continuous in x uniformly in t.

The existence and uniqueness theorems allow us to define the flow
map φt : Rn → Rn. For each x0 ∈ Rn let φt(x0) be the solution of
the ODE IVP

d

dt
φt(x0) = f (t, φt(x0)) with φ0(x0) = x0.

Ω

φt φt(Ω)
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Flow map regularity

Quantitative uniqueness results imply regularity / invertibility of
the flow map.

Theorem
If f (t, x) is Lipschitz continuous in x with constant L for all t then

e−Lt |x0 − y0| ≤ |φt(x0)− φt(y0)| ≤ eLt |x0 − y0|.

In particular φt(x) is Lipschitz in x with constant eLt .
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Flow maps of autonomous systems

Flow maps of autonomous systems, such as

d

dt
φt(x0) = f (φt(x0)) with φ0(x0) = x0,

have some very nice properties:

I (Initial identity)
φ0(x) = x .

I (Group property) For all t, s and x

φt+s(x) = φt(φs(x)) = φs(φt(x)).

I (Inversion by backwards flow) For all t

φ−t(φt(x)) = x .
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Invariant quantities

A quantity H : Rn → R is called an invariant quantity under the
flow φt if

H(φt(x)) = H(x) for all x ∈ Rn.

Or, in other words, if

0 =
d

dt
H(φt(x)) = ∇H(φt(x)) · φ̇t(x) = ∇H(φt(x)) · f (φt(x)).

Example

I H(p, x) = 1
2p

2 + V (x) for the Newton’s equations /
Hamiltonian system

ẋ = p and ṗ = −∇V (x).
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Invariant sets

A subset of phase space S ⊂ Rn is called an invariant set under
the flow φt if

φt(S) ⊂ S

for all t ∈ R. It is called positively invariant if this holds for all
t > 0, and negatively invariant if this holds for all t < 0.

Example

I Any level set {H(x) = c} of an invariant quantity H, e.g. the
total energy for Newton’s equations.

I Any solution trajectory.

William M Feldman (Utah) MATH 6410 Fall 2021 94 / 107



Invariant sets: 2× 2 linear system (saddle)

The linear system
d

dt

[
x
y

]
=

[
−x
y

]
The equations are uncoupled so we can solve

x(t) = x0e
−t and y(t) = y0e

t .

Then every level surface
xy = c

in R2 is an invariant set.
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Invariant sets: 2× 2 linear system (saddle)

x

y

Figure: The axes are invariant, but note that no neighborhood of the
origin is positively or negatively invariant.
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Invariant sets: 2× 2 non-linear saddle

The non-linear system

d

dt

[
x
y

]
=

[
−x

y + x2

]
.

Easy to solve explicitly, solve first equation and then plug into
second

φt(x0, y0) =

[
x0e
−t

y0e
t +

x2
0
3 (et − e−2t)

]
.

The x0 = 0 axis is invariant, and also can check that the set
S = {y0 = −x2

0/3} is also invariant.
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Invariant sets: 2× 2 non-linear saddle

100 2. Nonlinear Systems: Local Theory

is invariant under the flow fit. This follows since if c E S then c2
and it follows that

= -c21/3

r cle-t

t(c) = I-2ze_2t E S.
L 3

Thus 4t(S) c S for all t E R. The phase portrait for the nonlinear system
(1) with f(x) given above is shown in Figure 4. The set S is called the
stable manifold for this system. This is discussed in Section 2.7.

x2

Figure 4. The invariant set S for the system (1).

PROBLEM SET 5
1. As in Example 1, sketch the region fl in the (t, xo) plane for the initial

value problem

z=x2
x(0) = xo.

2. Do problem 1 for the initial value problem

2 = -x3
x(0) = xo.

3. Sketch the flow for the linear system x 1= Ax with

A=I 0 2]
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Invariant sets: dissipative system

Positive/negative invariant sets naturally arise in dissipative
systems. For example let’s consider again the example of a
mass-spring system with damping

d

dt

[
x
v

]
=

[
v

− k
mx − µ

mv

]
.

The energy

H(v , x) =
1

2
mv2 + kx2

is invariant when µ = 0 and is decreasing in time when µ > 0. In
particular any sub-level set of the energy is positively invariant

S = {(v , x) ∈ R2 : H(v , x) ≤ λ} for λ ≥ 0.
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Damped spring

x

v

Figure: In blue the 1
4 level set of the energy H(v , x) = 1

2v
2 + 1

4x
2. In

black a solution of the damped mass-spring system started at
(x0, v0) = (1, 0).
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Volume distortion by the flow map

One way to measure how trajectories of the ODE system are
converging or diverging is by looking at how volumes change under
the flow map. Recall the change of variables theorem tells us that
for any Ω (measurable)

|φt(Ω)| =

ˆ
Ω
|det(Dφt(x))| dx

Using the inequality

‖A−1‖nop ≤ det(A) ≤ ‖A‖nop

we can find
e−nLt |Ω| ≤ |φt(Ω)| ≤ enLt |Ω|.
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Evolution of the Jacobian determinant

To be more precise we need to compute the ODE solved by the
Jacobian determinant of the flow map

J(t, x) = det(Dφt(x)).

It turns out, following some computations, that the Jacobian
determinant solves the following ODE IVP

d

dt
J(t, x) = (divx f )(t, φt(x))J(t, x) and J(0, x) = 1.
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Evolution of the Jacobian determinant

d

dt
J(t, x) = (divx f )(t, φt(x))J(t, x) and J(0, x) = 1.

Remark
If divx(f (t, x)) ≡ 0 then J(t, x) ≡ 1 and volumes do not change
under the flow. If div(f (t, x)) ≥ 0 then J(t, x) ≥ 1 for all t > 0
and volumes are increased under the flow, vice versa for negative
divergence.

Remark
This formula is quite important in basic fluid mechanics. It
explains why divergence free flows, as appear for example in the
incompressible Euler or Navier Stokes equations, are actually
incompressible.
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Evolution of the derivative

Let’s compute the ODE for J(t, x). We start with the evolution of
Dφt(x):

d

dt
Dφt(x) = D(

d

dt
φt(x))

= D(f (t, φt(x)))

= Df (t, φt(x))Dφt(x).

Note that Dφt(x) solves a linear non-autonomous ODE.
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Derivative of the determinant

Now we need to compute the derivative of the determinant. Start
with the derivative at the identity

d

ds
det(I + sB) = lim

s→0

det(I + sB)− det(I )

s
.

The determinant det(I + sB) is a polynomial in s with zeroth order
term 1 and linear term tr(B)s:

det(I + sB) =
∑
σ

sgn(σ)
n∏

i=1

(δiσ(i) + sBiσ(i))

Thus
det′(I )(B) = tr(B).
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Derivative of the determinant

Now for the derivative of the determinant at an invertible matrix A

det′(A)(B) =
d

ds
det(A + sB) =

d

ds
det(A(I + sA−1B))

= det(A)
d

ds
det(I + sA−1B))

= det(A)tr(A−1B).

So if we are trying to compute the time derivative of an evolving
determinant we can do so by chain rule, called Jacobi’s formula

d

dt
det(A(t)) = det′(A(t))(

d

dt
A(t)) = det(A(t))tr(A−1 d

dt
A(t)).
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Evolution of the Jacobian determinant

Combining the work on the previous slides

d

dt
J(t, x) = J(t, x)tr(Dφt(x)−1 d

dt
Dφt(x))

= J(t, x)tr(Dφt(x)−1Df (t, φt(x))Dφt(x))

= J(t, x)tr(Df (t, φt(x))Dφt(x)Dφt(x)−1)

= J(t, x)tr(Df (t, φt(x)))

= J(t, x)(divx f )(t, φt(x)).

We used the cyclic property of the trace on the third line.
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