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Boundary value problems
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Heat equation

Boundary value problems for ODE often arise actually from
problems of PDE. For example consider the heat equation in one
dimension 5 o
u u
a:ﬁ forXE [0,1]
with

u(t,0) = up(x) and u(t,0) = u(t,1) =0 forall t>0.
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Separation of variables

We start by looking for solutions of a special separated form
u(t,x) = T(t)X(x).
If we plug this into the equation we find
T'(t)X = TX"(x)

" T(6)  X"(x)

T(t)  X(x)
since the left hand side is independent of t and the right hand side

is independent of x both sides must be equal to a constant, say
-
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Separation of variables

This leads to a pair of equations
T'(t) = -AT

and
X" =—-XX with X(0)=X(1)=0

which is an ODE boundary value problem (BVP).

If A < 0 then the solution of the second equation would be
X(x) = A(e=VINx _ v/

in order to satisfy X(0) = 0 but this function cannot be zero at
x =1 (unless it is trivial).

William M Feldman (Utah) MATH 6410 Fall 2024

5 /119



Separation of variables

Thus we write
A=w?>>0

and we can solve
X(x) = Acos(wx) + Bsin(wx)

and ,
T(t) = Ce vt

We still need to satisfy the boundary conditions
X(0)=A=0
and

X(1) = Bsin(wx) =0 which implies w = 2wk for some k > 1.

2

This is an eigenvalue problem for the differential operator % on
X

an appropriate space including boundary condition information.
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Separation of variables

Thus we have found a family of solutions with

Xi(x) = Besin(2rkx) and Ti(t) = e~ 7kt
In fact, by linearity, we can take any finite linear combination of
solutions to the heat equation and it will be a solution as well

K
u(t,x) = Z By Sin(27rkx)e_(27rk)2t.
k=1

So we have found a lot of solutions with the right boundary
conditions, but we have not dealt with the initial condition yet.
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Separation of variables

Initial conditions

If we plug in the initial value

K

up(x) = Z By sin(2mkx)

k=1

we se that for each K we are only achieving a finite dimensional
space of initial conditions.

The hope is that
UR_gspan( (sin(2rhx))(_;)
is dense in some much large space of initial data. You may also

recognize that this is a Fourier series.
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Sturm-Liouville operators

In general we will be interested in eigenvalue problems for a larger
class of operators called Sturm-Liouville operators

LX = AX where L:r(lx)< dp( )d —|—q(x)>

with either Dirichlet boundary conditions
x(0)=a and x(1) = b
or Neumann boundary conditions
x'(0)=a and X'(1)=b

and more general mixed boundary conditions are possible as well.
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Aims for Sturm-Liouville

We will also aim to prove the existence of a collection of
eigenvalue / eigenvector pairs (Ex, uk)

Lu, = Exui with uk(O) = uk(l) =0.

The set of eigenvectors uy will turn out to be complete, any
function v in an appropriate function space will have an expansion

o0
u= ZAkUk-
k=1

We will be able to phrase all of this as a pure functional analysis
problem if we can set up the right framework and find the right
function space to work in.
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Some functional analysis on Hilbert spaces
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Inner products

Definition

Let V be a complex vector space, a map (-,-) : Vx V — Ciis
called an inner product and the pair (V, (-, -)) is called an inner
product space if:

1. (Conjugate symmetry) For all v,w € V

(u,v) = (u, v)
2. (Linearity in second entry) For all u,v,w € V and a€ C
(uyav+ w) = au, v) + (u, w)
3. (Positivity) For all u e V

(u,u) >0 with equality if and only if u = 0.

William M Feldman (Utah) MATH 6410 Fall 2024 12 /119



Norms

Recall we also previously used the notion of a norm

Definition
Given a vector space V over R or C we say that || -||: V = Ris a
norm on V and call (V,] - ||) a normed vector space if
» (Positivity) For all v € V, ||v|]| > 0 and ||v|| = 0 if and only if
v=0.

» (Scaling) Forallaa € R (or C) and v € V
o] = [afl[v]]
» (Triangle inequality) For all v,w € V

v +wi < [lvf + [lwl].
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Inner products induce a norm

Every inner product naturally induces a norm on the space

Jull = v/ (u, )

Definition
An inner product space (H(-,-,)) which is complete in the induced
norm is called a Hilbert space. (Recall “complete” means every
Cauchy sequence converges)
Example

> C" with (u,v) =37 Gjy;

» [2([0,1]) the space of square integrable functions on [0, 1]

with

(u, v) = /0 1 u(x)v(x) dx.
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More fundamentals of inner products

The triangle inequality for || - | does need some proof, it will follow
from the Cauchy-Schwarz inequality, which is independently
extremely important.

Lemma (Cauchy-Schwarz)

For all u,v € H an inner product space
[(u, ) < [[ull[[v]].

Equality is obtained if and only if u and v are parallel.

A vector u is called normalized or a unit vector if ||u|| = 1. Two
vectors u, v are called orthogonal if (u,v) = 0. Called parallel if
the two vectors are scalar multiples of each other. If u and v are
orthogonal then

Ju+ VI = ul + v
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One dimensional projections

If uis a unit vector then the orthogonal projection onto the
direction u is defined
Puf = (u,f)u.

The vector
(I =P =Ff—(u,f)u

is orthogonal to u.

Note that P,f minimizes ||v — f|| over all vectors v parallel to u
since

If —aul* = [|(1=Pu)f+(Puf —au)|* = [[(1=Pu)FI>+[(u, f) ~af?

which is minimized when o = (u, f).
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General orthogonal projections

Suppose that {uj}j'\’:1 is an orthonormal set (mutually orthogonal

and normalized). Then f € H can be written as
N
f= (u, Fhuj+fL

Jj=1

where f| is orthogonal to the span of the u;. This is the
orthogonal projection onto V = span(uy, ..., uy)

N

Pvf = Z<Uj, f>UJ'.

J=1

We can also show that Py f is the vector closest to f in V.
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Bessel's inequality
Note that

N
]I = 1P FI> + £l => U, AP + Ll
j=1

by the Pythagorean identity applied several times. In particular we

derive

Lemma (Bessel's inequality)

If {u;}jey is any orthonormal collection then
2 2
112 = > [y, ).
jed
In particular the sum on the right converges.

This implies Cauchy-Schwarz by taking just the single vector
v =g/lel.
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Orthonormal bases

An orthonormal set {uj}f:1 for J € NU {400} is called an
orthonormal basis for H if

J
12 = [, ).
j=1

In particular

n

Hf_z<”ﬁf>”j||2 =[£I —Z\(uj,f>|2 —0 as n—J

j=1 j=1
SO
J
f= Z<Uj7 f) uj
Jj=1
with the implicit limit in the infinite sum holding in the notion of
convergence given by the norm.
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Orthonormal bases

One way to phrase the property on the previous slide: Let
B = {u;}72, be an orthonormal set and define

V, = span(uy, ..., u,)
then B is an orthonormal basis for H if

V=UZV;

is dense in H,ie. V=H.
Example

» Orthogonal polynomials on L2([0,1]), V, is the space of
polynomials of degree at most n, V is the space of

polynomials, and V is dense in L2([0,1]) (by Weierstrass
theorem).
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Linear operators

A linear operator is a mapping
A:D(A) — H

where D(A) is a linear subspace of H called the domain of A.

We will typically be interested in operators with (at least) dense
domain, differential operators often have this property:

Example

The derivative A = d% is a linear operator on L2([0,1]), a possible
domain for A is D(A) = C([0,1]). Other choices of domain are
possible as well and will matter for concepts we define later, the
largest possible domain for A is the Sobolev space H([0,1]) of
functions with one weak derivative in L2([0, 1]).
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Bounded operators

A linear operator A: D(A) — H is called bounded if

|A] == sup ||Aul] < +oo.
Jul|=1
ueD(A)

Note this is the same operator norm we have seen before.

Boundedness of linear operators is equivalent to Lipschitz
continuity. One direction:

[Au = Avl| = [|A(u = V)| < [[Allllu = vI|
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Bounded operators have closed domain

If a linear operator is bounded on a domain D(A) dense in H then
A can be canonically extended to a bounded linear operator on the
whole space H. The argument is to define for u € H = D(A)

Au = lim Au, where D(A)> u, —u

n—oo

and use boundedness to show that this definition does not depend
on the approximating sequence.

Thus we could have taken D(A) = H. When we talk about

bounded linear operators on H we will typically implicitly mean
D(A) = H.

Differential operators are typically not bounded on the Hilbert
spaces we will study.
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Symmetric operators

A linear operator is called symmetric if its domain is dense in H

and

(u,Av) = (Au,v) for all u,v € D(A).
Example
The operator L = —:722 with the domain

D(L) = {u e C?([0,1]) : u(0) = u(1) = 0}

is symmetric on L2([0,1]). The same differential operator would
not be symmetric if we made a different choice of boundary
conditions in the domain, we will see this in the computation.
Choice of domain is important for unbounded operators!
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Symmetry of L = _j_; with zero Dirichlet data

We compute for u,v € D(L)

1
(u,Lv) = —/O u(x)v"(x) dx

1
- —[Hv’]é +/O v (x)V/(x) dx
1
= [u/v]} — u”(x)v(x) dx
== | v
= (Lu,v)

where we used the Dirichlet boundary condition for both v and v
to conclude that each of the boundary terms coming from
integration by parts were zero.
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Eigenvalues and eigenvectors

A number )\ € C is said to be an eigenvalue of A if there is a
nonzero vector u € D(A) such that

Au = Au
The eigenspace associated with the eigenvalue A is
ker(A— M) ={u e D(A): (A— \)u=0}.

An eigenvalue is called simple if the eigenspace has dimension 1.

(Note: we will generally be working with symmetric operators
which do not have degenerate eigenvalues, as will be justified by
the spectral theorem appearing later)
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Properties of symmetric operators

Theorem
Suppose A is symmetric, then all eigenvalues are real and
eigenvectors corresponding to distinct eigenvalues are orthogonal.

Proof.
If uis a normalized eigenvector of A with eigenvalue A

Mull? = (u, Au) = (Au, u) = X|u][®

so A = \is real.

If u and v are eigenvectors with distinct eigenvalues A\ and p
respectively then

Mu, v) = (Au,v) = (u, Av) = plu, v)
or (A — p){u,v) =0. O
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Compact operators

We are looking to find eigenvalues/eigenvectors, this turns out to
be most straightforward with an appropriate notion of
compactness:

Definition

An operator A on H is called a compact operator if

(Aup)72, is precompact whenever (up)%°, is bounded.

Lemma
Compact operators are bounded.

Proof.
The set A(B) is precompact in H so it is bounded. (Here
Bi ={ueH:|ul <1}). O
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Intuition on compact operators
Differential operators are basically never compact, but their
inverses usually are! (Keep that in mind as motivation)

Generally you can think of compact operators as having a
“regularizing” property.

Example
Consider the integral operator on L2([0,1])

(Zu)(x) = /OX u(s) ds.

This operator is the inverse of the differential operator B = % on

the domain

D(B) = {u € L?([0,1]) : ¢ € L?([0,1]) and u(0) = 0}.
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Integral operator example continued...

Example
Note that, using Cauchy-Schwarz,

(@) -@ao =1 [ us)asl < [ \u(s)2ds> Xy 12

and the integral term is bounded by ||ul|;2([0 1)- So Zu is
Holder-1/2 continuous with constant depending only on ||ul|;2,

|u(x) = u(y)|

u = sup ———F— =< ||lu .
Ll xtyeloa]  |x —y['/? lelizqo.y

This means that (Zu,)%2; is a uniformly bounded (since Z is
bounded) and equicontinuous sequence of functions on [0, 1]
whenever (u,)°%; is bounded in L2([0,1])-norm. By the
Arzela-Ascoli theorem (Zu,)° ; has a convergent subsequence.
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Intuition on compact operators

Another way of thinking about compact operators: their range is
“almost” finite dimensional.
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The Spectral Theorem for compact
symmetric operators
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Spectral theorem

Symmetry and compactness are sufficient to guarantee an
orthonormal basis of eigenfunctions:

Theorem (Spectral theorem for compact operators)

If A is compact on H then there is a sequence of real eigenvalues
Aj which converges to 0, and there are corresponding normalized
eigenvectors uj which form an orthonormal basis for Range(A).

In particular any v € Range(A) can be written as

oo
v = Z<“j= v)uj
=1

and A is diagonalized by this choice of basis

Av = i(uj-,Aij = i (Auj, v) i)‘l (uj,v
=1 =1
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Big picture

Let's just remind ourselves what role these things will play in our
study of ODE. We want to find basis for appropriate Hilbert space
of eigenfunctions of an ODE boundary value problem. We will
need to understand the following things:
» Choice of Hilbert space and domain D(L) which make the
differential operator L symmetric.
> Green’s functions. We will need to understand the inverse of
this operator (on its domain) which will (hopefully) be a
compact symmetric operator.

» Spectral theorem will imply basis of eigenfunctions.
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Finding one eigenvalue

As in finite dimensions the main issue is to find one eigenvalue.
The eigenvalue which is largest in magnitude naturally satisfies a
variational principle which makes it easier to find.

Theorem
A compact symmetric operator A on a Hilbert space H has an
eigenvalue A € R with |\| = ||A|l.
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Compact symmetric operators have an eigenvalue |

Proof. We begin by noting that \? is the maximal value of an
associated quadratic form on the unit sphere in H

A2 = ||A|]? = sup (Au,Au) = sup (u, A%u).
lJul=1 [[ul=1

Via Lagrange multipliers, if there was a maximizer, it would be an
eigenvector of A% with eigenvalue \2.

To find a maximizer let's take a sequence u, of unit vectors with

lim <un,A2un> =\
n—o0

Since A is compact we can assume that A%u, converges. Define

ANu= lim A?u,.
n—oo
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Compact symmetric operators have an eigenvalue |l

Now we want to show u, — u, if we show (A2 — A\?)u, — 0 this
will follow.

142 = 32)uall® = [[A2ug|[2 — 222 (un, A%up) + %

Now the middle term converges to —2\* by the choice of the
sequence u, and by the definition of u

I|m ||A2u H2 H)\2UH2 A4

Thus u, — u as n — oo. In particular v is a unit vector.

Since the operator A is compact and hence bounded and hence

continuous

ANu= lim Azun:A2u
n—oo
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Compact symmetric operators have an eigenvalue |ll

i.e. uis an eigenvector of A with eigenvalue A2. Now call
v=(A—Nu

0=(A2=XNu=(A+\)A—=X)u=(A+ v
so either v =0, in which case (u, ) is an eigenvector/eigenvalue
pair, or v # 0 in which case (v, —\) is an eigenvector/eigenvalue

pair.
Ol
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Spectral theorem again

Theorem (Spectral theorem for compact operators)

If A is compact on H then there is a sequence of real eigenvalues
Aj which converges to 0, and there are corresponding normalized
eigenvectors uj which form an orthonormal basis for Range(A).
The proof is by iterating the single eigenvalue theorem. We have

found the eigenvalue/eigenvector pair (Ao, tg) with maximal
absolute value. Now define

H'={uecH: (uu) =0}

Can check that H! is a closed linear subspace of H and hence a
Hilbert space itself. Note that A is an operator on H! because, for
ue H,

(up, Au) = (Aug, u) = Ao{up, u) = 0.

Symmetry and compactness are inherited by the restricted
operator.
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Spectral theorem proof set up

We can iterate this procedure finding eigenvalue/eigenvector pairs
(Aj, uj) with each u; orthogonal to the previous u;, the sequence
|Aj| is non-increasing, and assuming the initial space was infinite
dimensional this iteration will proceed for j € N. This creates a
decreasing sequence of subspaces

H=H'SH'>...H > ...

where each H/*1 is the orthogonal complement in H/ of the
eigenvector u;.
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Aside on eigenvalue variational principle

We derive from this proof an independently useful variational
principle

Lemma (Eigenvalue variational principle)
The eigenvalues of a compact symmetric operator satisfy
2 2
A5 = sup (u, A%u)
ueH!

where H° = H and

Hj:{ueH:<u,u,->:0 for 1<i<j—1}.
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Eigenvalues converge to zero

Now suppose that \; / 0. Then the sequence v; = Afluj- is a
bounded sequence and so Av; = u; is precompact. Thus u; has a
convergent subsequence uj, — us. However this is not possible
because the u; are mutually orthogonal and

oty = well® = [l |* + [Juel|* = 2.
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Eigenvectors are a basis for the range

Lets call v = Aw to be an element of Range(A), and we call
X =span(ug, u1,...). Then

o

Pxv = Z<ujv V>Uj =

j=0

(uj, Aw) uj

WE

.
Il
o

M

(Auj, w)uj

.
Il
o

(uj, w)Aju;

o

-
Il
o

(uj, w)Au;

.5'18

(.
Il
o

o
A (uj, wyuj) = APxw
j=0
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Conclusion

So whenever v = Aw we have
va = AP)(W

Now note that w — Pxw € span(u, ..., uj,l)L = H! for each
0<j<+00s0
[v=Pxvl| = |A(w=Pxw)|| < (sup [[Ay[])llw—Pxwl|| = |Ajl[[w—Pxwl|
yeH!
lyll=1

then send j — oo and A\; — 0 so

|lv—Pxv||=0 ie v=Pxv.
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Big picture

Let's just remind ourselves what role these things will play in our
study of ODE. We want to find basis for appropriate Hilbert space
of eigenfunctions of an ODE boundary value problem. We will
need to understand the following things:
» Choice of Hilbert space and domain D(L) which make the
differential operator L symmetric.
> Green’s functions. We will need to understand the inverse of
this operator (on its domain) which will (hopefully) be a
compact symmetric operator.

» Spectral theorem will imply basis of eigenfunctions.
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Linear differential operators and boundary
conditions
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Adjoint operator

Given a densely defined operator A on a Hilbert space H with
domain D(A) the adjoint operator AT with adjoint domain D(AT)
is defined:

Definition
D(AT) is the set of all x € H such that for all y € D(A) there
exists a z € H with

(x,Ay) = (z,y) and in that case A'x := z.

In particular for all x € D(AT) and y € D(A) we have

(x, Ay) = (Alx, y).
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General linear operators

We will be looking the general class of linear operators

n

L= Pn(X)%

ot ()

T po(x)

this is an unbounded operator on L2([0,1]) but we can make a
choice of domain D(L) on which L is defined. Typically this will

be a subspace of C"([0,1]) with additional /inear and homogeneous
boundary constraints.

In total generality (which you would never actually run into) this
would look like n linearly independent constraints of the form

n—1
> aju(0) + b ju)(1) =0 for 1<k <n.
j=0
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Adjoint first example

Let's start with a simple case in L2([0, 1])

2

L= —% with D(L) = {v, Lv € L2(]0,1]) : v(0) = v(1) = O}.

Then we have already seen that an integration by parts argument
gives

1 1
u(x) —Uv—ﬂvll ulx)v(ix) dx.
/ou(x)Lv(x)dx—[ 1o+/0 Lu()v(x) d

Thus LT = L and D(L') is specified by the additional condition on
u
[v'v —TV]§ =0 forall ve D(L)
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Adjoint first example

Using v € D(L) the condition
[v'v —TV]§ =0 forall ve D(L)
simplifies to
[-av']§ =0 forall ve D(L).

Since v/(0) and v/(1) can be chosen arbitrarily in D(L) we must
have

u(0) = u(1) =0.

Thus D(L) = D(L") and it turns out that this operator is
self-adjoint.
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Non self-adjoint example

Let's make things a little bit more complicated, suppose p(x) > 0
and smooth and consider the operator with Neumann boundary
conditions

2

L= —p(x)% with D(L) = {v, Lv € L*([0,1]) : v/(0) = V/(1) = 0}.

Again we will integrate by parts

1 , 1 d d
/0 u()Lv(x) dx = [puv'Th + /0 = (p)u(x)) - v(x) e

e
= [(pu)'v — puvJ§ - / & (peou(x))v(x) d

and we identify that
d2
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Non self-adjoint example

So our adjoint formula with LT = %p(x)
(0, Lv) = [(pu)'v — puv/I} + (LT, v)
and we still need to determine D(LT) by the condition on u
[(pu)'v — puv']§ =0 forall v e D(L).

Using the boundary condition v/(0) = v/(1) = 0 we find, varying
v(0) and v(1), the adjoint boundary conditions:

(pu)(0) =0 and (pu)(1)=0.
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Momentum operator

Consider the operator

L= i% with domain D(L) = {f, f' € ?([0,1]) : f(0) =0}

Then

1

1 [
/ g(x)if' (x) dx = [igf]s +/ ig'(x)f(x) dx.
0 0
So the adjoint operator is LT = L and we need to take the domain

D(L") = {g’ € L([0,1]) : g(1) =0}

so this operator is not self-adjoint with the given boundary
conditions.
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Twist boundary conditions

Let's see if we want to make L = id% self-adjoint on L2([0,1]) by a
good choice of boundary condition, we found above

0=(g,Lf) —(Lg,f) =i[g(1)f(1) — g(0)f(0)]

this is achieved when

g(l) _ f(0) _

g(0) - f(1)
however this requirement will only be self-adjoint when

g(0) _ 1

()

which implies |c|> = 1 i.e. ¢ = €.
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Twist boundary conditions

So the following operator is self-adjoint
L= i% with D(L) = {f,f € L?([0,1]) : f(1) = €’F(0)}

and we can directly find an orthonormal collection of
eigenfunctions since

Ly = —X\ip can be solved for 1(x) = ™
and the conditions imply

e =e so \=0+2rn for some ncZ.
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Sturm-Liouville operators

If we want a second order linear equation which is self-adjoint with
respect to the standard L2([0, 1]) inner product then it should have

the regular Sturm-Liouville form

L=~ p() 2+ 4(x)

and if we allow for a weighted inner product with w(x) >0

then the operators

L= s (-5 )

w(x)

will be self-adjoint (with appropriately chosen boundary
conditions).
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Sturm-Liouville boundary conditions
If we recall the integration by parts computation

0= <U, LV>W — <LU7 V>W = [Q(ua V)]é

where the boundary form is

Q[u, vl = p(x)(t/(x)v(x) = u(x)v'(x))

since p(x) > 0 the self-adjoint condition for (Q[u, v])§ =0
becomes (if we do not want boundary conditions mixing values at
0 and 1)

u'(x) _ v(x)

u(x)  v(x)
i.e. the most general self-adjoint condition is the following Robin
type boundary conditions for some real «, 3

for x € {0,1}

a1u'(0) + au(0) =0 and B1u'(1) + Bau(l) = 0.
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General self-adjointizing weight
General operators

d? d
L= Pz(X)@ + P1(X)a + po(x)

can be made self-adjoint by the choice of weight

0= 5i0r )

so that
[ 1.d d n ]
= —|—wpr— + w,
w - dx P2 dx Po
because we chose w so that
1 ,
;(sz) = p1-
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Continuous spectrum

In general the inverse of a differential operator can fail to be
compact, typically this comes from a non-compact domain. For
example consider the operator

d2

L=—— on L%R).

dx? (R)

The plane waves
Y(x) = ™ solve Ly =\

but are not elements of L?(R). We can however do a smooth
cutoff and find, for each £ > 0, an element ¢. € L2(R) with

IL¢ — X262 < e.

This means that L — \? fails to be invertible, although there is no
actual L? eigenfunction, and

[0,00) = ocont(L).
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Mixed spectrum

If we consider the Schrodinger operator

22 2
L= —% +V(x) = <ii() + V(x) on L*(R)

with a potential which has a well around the origin like

V(x) = —2cosh™2(x)
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Mixed spectrum

In this case there is some pure point spectrum which we call a
bound state, a particle trapped in the energy well, and some
continuous spectrum which we think of as free particles moving
through not trapped by the well: it turns out that

1 d??
Yo(x) = 7 cosh™1(x) solves [—a — 2cosh™2(x)Jip = 0
so 0 is in the pure point spectrum. However, there are also
solutions

P(x) =[1+ ﬁtanh(x)]e"/\x

(you could guess the form c(x)e' with c(x) — cx as |x| — +o0
by comparing with the V = 0 free particle operator that we studied
before) with

Ly = N2
so R, is part of the continuous spectrum.
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Distributions
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Green's functions and motivation for distributions

In order to apply the compact operator spectral theorem to
Sturm-Liouville type operators we need to find the inverse. This
will be an integral operator involving something called the Green’s

function.

Let's start with a formal derivation for the operator

2

d
L=——

—5 and D(L)={f,Lf € L2([0,1]) : £(0) = f(1) = 0}.
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Green's functions and motivation for distributions

Suppose that for each x € [0, 1] we can solve
2

T 2G(x y) =96,(x) and G(0,y)=0=G(1,y)

where d,(x) is the Dirac delta mass at x satisfying

1
/ ©(x)0y(x) dy = ¢(y) for every continuous ¢.
0
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Green's functions and motivation for distributions

Now suppose that we want to solve
d? .
eV = Zajéxj(x) and w(0) =0=w(1)
j=1
we can find the solution by superposition (linearity)
n
wix) = 3 2,G(x. ).
j=1

Now if we think that a general “mass distribution” can be
approximated well by a sum of J-masses we can guess that the
solution operator

1
w(x) = /0 G(x,y)f(y) dy will solve — 2= f(x).
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Green's functions and motivation for distributions

Or arguing more directly
d? 1 1 g2
~ 55 | Sanitn) dy = [ -6l ) oy
1
:/0 3y (x)f(y) dy = f(x)

where we are implicitly using the formal statement d,(x) = dx(y).

Generally much of this argument was formal because we don’t
know what the Dirac delta actually is!

William M Feldman (Utah) MATH 6410 Fall 2024 66 / 119



General idea

The fundamental idea of distribution theory is to view “not nice”
objects (distributions) as linear functionals on a “nice” space of
functions. For example the Dirac delta makes no sense as a
function on R, but it behaves very nicely as it acts on smooth
functions

1
(o, 0) = /0 So(x)p(x) dx” = (0).

To make sense of this precisely we will need to define an
appropriate space of “nice” test functions and then the space of
distributions will be dual to this nice space.
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Topological vector spaces

Definition

A topological vector space is a vector space V with a topology
T.

We have already seen normed spaces and inner product spaces
which fall under this class. For the purposes of distribution theory
we don't quite need the full generality of topological vector spaces,
metric vector spaces would be enough.
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Dual spaces

The idea of distribution theory is centered around duality.

Definition
Given a topological vector space V the dual space V* is the space
of continuous linear functionals on V/, i.e.

V*={¢:V — R| £is linear and continuous on V'}.

We typically write the duality operation in the following way,
purposefully reminiscent of the inner product, for £ € V* and
xeV

Ux) = (¢, x).

The duality operation (-,-) : V* x V — R is linear in both entries.
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The space of test functions

The “nice” functions which our distributions will act on is called
the space of test functions

DR)=CFR)={f:R—R: fe C®R) and compact support}.

Recall that the support of a function is supp(f) = {x : f(x) # 0}.

It is not immediately obvious that this space has any elements, a
classic example is

) — e_ﬁ x € (—1,1)
o) {o x & (~1,1).

many more examples can be constructed by convolving p and its
dilates with general integrable compactly supported functions.
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Space of distributions

The correct topology on C2°(R) is a bit complicated to define, so |
will leave out the precise definition for now. Since we won't be too
careful about convergence in the space of distributions we can
afford to ignore it for now. The space of distributions is defined

These are the continuous linear functions acting on test functions.
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Schwartz distributions

This is not the only useful choice of test function space / dual
space. Another very common choice, which is much better suited
for Fourier analysis, is the space of Schwartz functions S(R) and
its dual space the space of Schwartz distributions.

The Schwartz functions are the space of functions ¢ so that
||(1 + |X|2)m/2¢(k)||sup < 400 for all k, m > 0.

This replaces compact support by decay faster than any
polynomial.
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Examples of distributions

Example
Every locally integrable function f € L} (R) (|f| has finite integral

loc
on any compact set) defined a distribution via the operation

Note that functions in L? _for p > 1 are also locally integrable.

loc
Definition
If a distribution ¢ is actually integration against a locally integrable
function f

(.g) = /R Fx)p(x) d

then we say / is represented by the function f.

William M Feldman (Utah) MATH 6410 Fall 2024 73 /119



Examples of distributions

The following two examples are not represented by a locally
integrable function.

Example
The Dirac delta is a distribution defined by the relation
Example

The principal value integral for non-locally integrable functions
with some cancellation property

1 . / 1
PV.— ) = lim —p(x) dx.
(P.V.~,¢) = lim s )
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Operations on distributions
Many natural operations can be defined on the space of

distributions by leveraging duality.

Example
If the distribution ¢ was represented by a function f € L}OC then
the translation T,/ should be represented by f(x + y) and

<Tyf>s0>=/Rf(X+y)90(X) dy:/Rf(Z)w(z—y) dz = ((, T_yp).

So we use the relation
(Tyl, ) =, T_yp)

to define T, ¢ for general distributions which are not necessarily
represented by integrable functions.
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Distributional derivative

The same type of logic can be used to define the notion of
distributional derivative. First we see how the derivative should
act if the distribution ¢ is represented by a smooth function u

(. 0) = /R o (x)p(x) dx = - /R u(x)¢(x) dx = —(£, &)

there are no boundary terms because ¢ is compactly supported.

Then we use this relation to define the distributional derivative on
the entire space D'(R) by

<£lv 4/3> = _<£’ 90,>'

This notion does agree with the classical notion of derivative if ¢ is
represented by a differentiable function.
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Important note

The product of a smooth function with a general distribution is
defined, but, in general, it is not possible to define a product
between distributions.
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Some distributional derivatives

Example
The absolute value function

we compute using the definition

(Fo) = — /R x|/ (x) dx

so ' = sgn(x) (or more precisely it is the distribution represented
by the function sgn(x)).
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Some distributional derivatives

Example
The Heaviside function

We can compute the derivative

<H/7 90) = _<Ha (pl>

=— /000 ¢’ (x) dx
= ¢(0) = (do, )

so H' = §g, the derivative of the Heaviside function is a Dirac mass
at 0.
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Some distributional derivatives

Example

If fis C* on R except at finitely many points {xi, ..., x,} where it
has left and right limits then

F1=f(x) dx+ ) _[Fl(x)6y
j=1
where [f](x) is the jump of f at x

[fl(x) = lim f(y)— lim f(y).

Y—rx y—_x

Example
We can even compute the derivative of the Dirac mass itself

(00, ¢) = — (00, ") = —¢'(0).
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Solving a differential equation

Now let's consider a differential equation involving a distribution

d?u

a2 ~ 0

where we are looking for a distributional solution u and the
derivatives are meant in the distributional sense.

In fact we have already found a family of solutions in the previous
slides

u(x) = amax{—x,0} + bmax{x,0} with (b—a)=1.
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Solving a differential equation

Now let's consider a differential equation involving a distribution

d?u

a2 ~ 0

where we are looking for a distributional solution u and the
derivatives are meant in the distributional sense.

In fact we have already found a family of solutions in the previous
slides

u(x) = amax{—x,0} + bmax{x,0} + ¢ with (b—a)=1.
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Green's functions
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Solving linear differential equations

We are going to study the solution operator for differential
equations

Lu=h in [0,1] for ue D(L)

where L is a linear differential operator and D(L) is its domain in
L2([0,1]) which encodes the boundary conditions.

If 0 is an eigenvalue of L then the solution of the previous problem
is, at best, non-unique. Does a solution exist at all?
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Finite dimensional Fredholm Alternative

For intuition let's remind ourselves of what happens for finite
dimensional linear systems:
Theorem (Fredholm Alternative)

For a finite dimensional inner product vector space V/, an operator
A:V — V and a vector b € V exactly one of the following
alternatives occurs

1. Ax = b has a solution.
2. Aty =0 has a nontrivial solution with (y, b) # 0.
In particular range(A) = ker(AT)~+.
There is a generalization of this theorem for compact operators.
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Green's functions

To avoid any issue with solvability let’'s assume that
ker(L) = ker(L") = {0}. Then, as we motivated before, we are
interested to solve the equation

LyG(x,y) =d(x —y) in [0,1] with boundary conditions.
The solution of the ODE BVP with a general right hand side
Lu=h in [0,1] for ue D(L)

will then be given by
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Adjoint Green's function

It turns out that the Green's function of the adjoint L' is related to
the Green's function of L by the symmetry

Gy, x) = G(xy)
or another way to say this

L;G(X,y) =d(x —y) in [0,1] with adjoint boundary conditions.
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Adjoint Green's function

We want to check that, for all f,

L [ /O S dx] — F(%)

we will do this by check that the inner product of the left and right
hand side with any ¢ € D(L) agree

(L} [/OIG(X,Y)f( ],90 / G(x,y)f(x) dx, Lye(y))

f(x) dxLye(y) dy

/ G(x,
/f(/ (y) dydx
;)
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Sturm-Liouville Green’s function

Now let’'s consider the Sturm-Liouville operator with real
coefficients p > 0 and g

L= 2P0 +a(x)

with a self-adjoint boundary condition
a1u'(0) + apu(0) =0 and byu'(1) + bou(1) = 0.

The Green's function derivative should have a jump discontinuity
of height 1 at x =y
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Sturm-Liouville Green’s function

The Green's function should be continuous at x = y, its derivative
should have a jump discontinuity of height 1 at x = y, it should be
symmetric G(x,y) = G(y, x) because the operator is self-adjoint,
and it should be a solution of the homogeneous equation

L, G(x,y) = 0 on each side of the jump x = y. This leads to the
following form

) — Aup(x)ur(y) x<y
6y) = {AUR(X)UL(y) x>y

where u; and ug are solutions
Luy =0 and Lug =0 in [0,1]

and u; satisfies the left boundary condition and ug satisfies the
right boundary condition.
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Sturm-Liouville Green’s function

In order for
Ix(p(x)0xG) + q(x)G = d(x — y)

it must be that p(x)G(x,y) has a jump of height 1 at x =y so
p(y)A(ur(y)ucly) — ur(y)ur(y)) =1

which gives the formula for A

1 1
p()(r()uly) — v (V)ur(y)) — P(Y)W(y)

where W is the Wronskian of the two solutions u; and ug.

A=
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Sturm-Liouville Green’s function

Now we have the form

Glx.y) = 1 {ul_(x)uR(y) x<y

PNW() | ur(x)urly) x>y

although note that symmetry actually requires that
p(y)W(y) = const (which you can also check directly for this form
of equation).

There is one final thing to note: why is the Wronskian of u; and
uR nonzero?
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Sturm-Liouville Green’s function

First recall we showed a long time ago (Liouville's formula) that if
W/(y) is nonzero anywhere it is nonzero everywhere. If it were zero
everywhere then u; and ug would be linearly dependent. Meaning
u; satisfies both the left and right boundary condition making u; a
nontrivial solution of

Lug =0 in [0,1] u, € D(L).

This contradicts our initial assumption though that 0 was not an
eigenvalue of L.

Generally speaking this procedure can be applied to find the
Green's function for L — X for any X\ & o(L) C R.
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Simple Green's function example

Let's look for the Green's function for

d2
WG(X,)/):(S}, and G(x,0) = G(x,1)=0.

Solutions of Lu = 0 are linear functions u(x) = ax + b so to match
boundary conditions we can take

ur(x) =x and ug(x)=1-x.

Then the Wronskian is W(y) = -y — (1 —y) = —1 and

) x(1=y) x<y
Clay) = {(l—x)y X > y.
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Simple Green's function example

William M Feldman (Utah) MATH 6410 Fall 2024 95 /119



Initial value problem

Consider the initial value problem
du .
pri A(t)u(t) = f(t) with u(0)=0.

We can look for a Green's function for t,s > 0 solving

[%—A(t)]G(t,s):(S(t—s) with G(0,s) = 0.
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Initial value problem

We must have
G(t,s)=0 for t<s

by uniqueness of the zero solution, and at t = s there is a jump
condition

lim G(t,s) = 1.
t\s ( ’ )
But we can just think of this as an initial data problem at t = s

G(t,s) = els AV dr for ¢ s,
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Initial value problem

Therefore the Green's function is
G(t,s) = H(t — s)ef;A(r) dr

where H is the Heaviside function.

Thus we have re-derived a case of Duhamel’s formula

o t t t
u(t) = / H(t — s)eli A drf(s) ds — / el A dr(g) g
0

0
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Neumann conditions

Now let's say we want to solve the Neumann problem
J'=f in [0,1] and J(0) =4 (1) =0.

We have an issue though because the constant function 1 is a
nontrivial solution of L1 = 0 which satisfies the boundary
conditions. By Fredholm alternative there will be a solution as long
as

1
0=(1,f) :/0 f(x) dx.
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Neumann conditions

We will instead look for a Green'’s function solving the modified

equation
& Gy) = 6x—y)-1 in [0,1] and L-6(x,0) = L6(x.1)
dX2 X,y = X y n y an dX X, = dX X7

Now the right hand side has integral zero so the equation is
formally solvable. And note that

2 1 1
2 | s ar =)~ [ 1) o

which is equal to f(x) whenever fol f=0.
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Neumann conditions

This time let's take the “by hand” approach. First we look for the
solution space of
d2
dx2

the general solution has the form

u=-1

1
u(x)=A+ Bx — §X2.

Now we try to satisfy the boundary conditions first on the left then
on the right

0=u;(0)=B and 0=uR(l)=B-1

SO

1 1
UL(X):AL_§X2 and UR(X):AR+X—§X2,
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Neumann conditions

Next we impose continuity at y

1
AL =5y = uly) = ur(y) = Ar +y — 5y
which gives the equation

A[_ — AR =Y.

The height 1 jump condition on the derivative at y actually comes
out for free because we modified the equation correctly

l=up(y) —u(y)=1-y—(-y)=1
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Neumann conditions

At this point we have

A+y—3x3 x<y
A+x—1Ix2 x>y

G(va) = {

the constant A is arbitrary, we can choose A = —%yz to make G
symmetric

1.2 1.2
y—sx?—3y? x<y
G(X,y)Z{ 2 2

1.2
X_EX_Ey X>_y
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Inhomogeneous boundary conditions

Next let's look at a BVP with non-zero Dirichlet data

d2
a2l = f with u(0)=a and u(l) =b.

Now

1
v(x) :/0 G(x,y)f dx

solves the homogeneous boundary data problem we need to add a
particular solution of the Lw = 0 with the inhomogeneous
boundary values.
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Inhomogeneous boundary conditions

We can find a solution in terms of the Green's function

2
o) = [ 8Gum(mw

d2u 0 ! 1
iécmnd2w+[cwwmm—a&nmeo
1
=/G@ﬂﬂ)w+[vwwm;o
G 0G
/ Glx.)F(y) dy + b5 (1) = a5 (x,0)
so we have the following formula

! 0G 0G
u(x) :/0 G(x,y)f(y) dy+b@(x,1)—aa(x,0).
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Inhomogeneous boundary conditions

Since we already have a formula for G in this case

_ Jx(M=y) x<y
Gly) = {(1—x)y X > y.

we can plug this in to the previous formula find

1
u(x):/0 G(x,y)f(y) dy + bx + a(1 — x).
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Sturm-Liouville eigenfunctions
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Sturm-Liouville Boundary Value Problem

Now let’s consider again the self-adjoint Sturm-Liouville operators
with p(x) >0

%p(x)dii + q(x) with domain D(L) C L3([0,1]).

Assuming that 0 is not an eigenvalue of L we have derived a
formula for the solution of

L=—

Lu=f in [0,1] with ue D(L)

given by

[RF](x / G(x, y)f
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Properties of R

Lemma
The inverse operator R is compact and symmetric and maps

R : L%([0,1]) — D(L).
The symmetry of R follows from the self-adjointness of L via the
Green's function symmetry

G(x,y) = G(y,x)

since

1 1
(h, RF) = / A() / G(x,y)F(y)dydx

/ / Gy, x)dx f(y)dy = (Rh, f)
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R is compact

The compactness property of R is very similar to what we did for
the simple integration operator. We will show that for

f € L2([0,1]) the image Rf is continuous with a modulus of
continuity depending on f only through ||f||;2.

First of all let's note that G(x, y) is continuous on [0, 1] x [0, 1] so
it is bounded by some M and there is a modulus w(r) (monotone,
w(0) = 0, and continuous) so that

1G(x1,y) = GO, y)| < w(lxa — ).
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R is compact

First we note
1
|Rf(x)] S/O |G(x1,y) — Gx2, V)| (y)] dy < M[1]|2||f][ 2

so if f, is a bounded sequence in L? then Rf, is a bounded
sequence in the supremum.

Now we estimate the modulus of continuity

1
IRf(Xl)Rf(Xz)IS/ 1G(x1,y) = GO, y)IIF(y)] dy
0
< w(pa =)l )flle

So if f, is a bounded sequence in L2 then Rf, is a uniformly
bounded and equicontinuous sequence. By Arzela-Ascoli Rf, has a
uniformly, and hence also in L?-norm, convergent subsequence.
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Sturm-Liouville eigenfunctions

At this point we can apply the spectral theorem for compact
symmetric operators to R and we will achieve the following results
for L:

» There is an orthonormal sequence of eigenfunctions ¢; € D(L)

with eigenvalues Ej which form a basis for D(L).

» The sequence of eigenvalues can be enumerated
Eo<E < andEj—>oo.

> The ground state energy £y satisfies the Rayleigh-Ritz
variational principle

EO = i <f7 Lf>

= min
feD(L),|Ifll=1

» Each eigenvalue of L is simple.
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Spectral theorem

At this point we can apply the spectral theorem for compact
symmetric operators to find there is a sequence of eigenvalues
Aj — 0 and orthonormal eigenvectors

¢; € L*([0,1]) with R¢; = \j¢;

and the orthonormal set {¢;} is a basis for range(R).
Now we also know that ¢; = )\Jfqubj € D(L) and

Loj = LA 'Re; = Ao

so the ¢; are eigenvectors of L with eigenvalue E; = )\fl. Since
the eigenvalues \; — 0 we have |Ej| — +o0.
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Range of R

Now we show that the range of R contains D(L). Let f € D(L)
then and call g = RLf. Then

L(f —g)=0 and f,g e D(L).

Since, by our assumption, L does not have zero as an eigenvalue
we must have f = g = RLf meaning that f is in the range of R.
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Eigenvalue ordering
Note that, by a standard integration by parts,

1
(F,LF) = /0 p()F (x)? + a(x)F(x)? dx > (min q)||F|%

[0,1]
and
(¢, Loj) =
so the eigenvalues E; are bounded from below by minjg 1) g. In
particular they can be listed in increasing order Eg < E; < --- as
claimed.

Now we check the variational principle any f € D(L) can be written

F=> (6,F)¢
J
so, if f is normalized,

(F, LF) Zm, |2E>EoZ\¢J, =
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Rayleigh quotient

So we proved that

. (f,Lf)
Eo=inf 2/
O o [IF]P

the quantity above is called the Rayleigh quotient. Recall that
the quadratic form can also be written

1
(f,Lf) = /0 p(x)f'(x)® + q(x)f(x)?® dx for f e D(L)

so the problem of finding the first eigenvalue can be phrased as a
constrained variational problem for this energy functional
associated to the Sturm-Liouville problem.
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All eigenvalues are simple

If u and v are both eigenvectors of L with the same eigenvalue «
the the Wronskian

W(0) = u(0)v/(0) — «'(0)v(0) =0

since both u and v satisfy the boundary condition at 0 (the
boundary condition at 0 specifies a 1-dimensional subspace of the
initial data space [w(0), w/(0)] so the matrix with columns

[u(0), u’(0)]" and [v(0),V/(0)]" is singular and has zero
determinant).

Then since u and v both solve the same second order linear ODE
(L — a)w = 0 Liouville's formula tell’s us

and so u and v are linearly dependent.
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Sturm-Liouville eigenfunctions: review

So we have proved the following, all under the assumption that
ker(L) = {0}:

» There is an orthonormal sequence of eigenfunctions ¢; € D(L)

with eigenvalues E; which form a basis for D(L).

» The sequence of eigenvalues can be enumerated
Eo < E; <--- and E; — oo.

> The ground state energy £y satisfies the Rayleigh-Ritz
variational principle

Ey = i FLF
0= repfiy (LD

» Each eigenvalue of L is simple.
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Removing the assumption that ker(L) = {0}

Throughout all of this we assumed that ker(L) = {0}, let me
briefly explain how to remove that assumption.

» We will apply all the previous arguments to (L — A) for some
choice of A € R\ o(L). We do want A € R to preserve
symmetry.

> Need to make sure R\ o(L) # 0: follows immediately from
our earlier argument

1
(f,Lf) = /0 PO (x)? + q(x)F(x)? dx > (ngl? q)lIflz2

which implies that o(R) C [minpg 1] g, +00).
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