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Boundary value problems
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Heat equation

Boundary value problems for ODE often arise actually from
problems of PDE. For example consider the heat equation in one
dimension

∂u

∂t
=
∂2u

∂x2
for x ∈ [0, 1]

with

u(t, 0) = u0(x) and u(t, 0) = u(t, 1) = 0 for all t > 0.
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Separation of variables

We start by looking for solutions of a special separated form

u(t, x) = T (t)X (x).

If we plug this into the equation we find

T ′(t)X = TX ′′(x)

or
T ′(t)

T (t)
=

X ′′(x)

X (x)

since the left hand side is independent of t and the right hand side
is independent of x both sides must be equal to a constant, say
−λ.
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Separation of variables

This leads to a pair of equations

T ′(t) = −λT

and
X ′′ = −λX with X (0) = X (1) = 0

which is an ODE boundary value problem (BVP).

If λ < 0 then the solution of the second equation would be

X (x) = A(e−
√

|λ|x − e
√

|λ|x)

in order to satisfy X (0) = 0 but this function cannot be zero at
x = 1 (unless it is trivial).
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Separation of variables
Thus we write

λ = ω2 > 0

and we can solve

X (x) = A cos(ωx) + B sin(ωx)

and
T (t) = Ce−ω2t .

We still need to satisfy the boundary conditions

X (0) = A = 0

and

X (1) = B sin(ωx) = 0 which implies ω = 2πk for some k ≥ 1.

This is an eigenvalue problem for the differential operator d2

dx2
on

an appropriate space including boundary condition information.
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Separation of variables

Thus we have found a family of solutions with

Xk(x) = Bk sin(2πkx) and Tk(t) = e−(2πk)2t

In fact, by linearity, we can take any finite linear combination of
solutions to the heat equation and it will be a solution as well

u(t, x) =
K∑

k=1

Bk sin(2πkx)e
−(2πk)2t .

So we have found a lot of solutions with the right boundary
conditions, but we have not dealt with the initial condition yet.
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Separation of variables
Initial conditions

If we plug in the initial value

u0(x) =
K∑

k=1

Bk sin(2πkx)

we se that for each K we are only achieving a finite dimensional
space of initial conditions.

The hope is that

∪∞
K=1span((sin(2πkx))

K
k=1)

is dense in some much large space of initial data. You may also
recognize that this is a Fourier series.
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Sturm-Liouville operators

In general we will be interested in eigenvalue problems for a larger
class of operators called Sturm-Liouville operators

LX = λX where L =
1

r(x)

(
− d

dx
p(x)

d

dx
+ q(x)

)
with either Dirichlet boundary conditions

x(0) = a and x(1) = b

or Neumann boundary conditions

x ′(0) = a and x ′(1) = b

and more general mixed boundary conditions are possible as well.
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Aims for Sturm-Liouville

We will also aim to prove the existence of a collection of
eigenvalue / eigenvector pairs (Ek , uk)

Luk = Ekuk with uk(0) = uk(1) = 0.

The set of eigenvectors uk will turn out to be complete, any
function u in an appropriate function space will have an expansion

u =
∞∑
k=1

Akuk .

We will be able to phrase all of this as a pure functional analysis
problem if we can set up the right framework and find the right
function space to work in.
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Some functional analysis on Hilbert spaces
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Inner products

Definition
Let V be a complex vector space, a map ⟨·, ·⟩ : V × V → C is
called an inner product and the pair (V , ⟨·, ·⟩) is called an inner
product space if:

1. (Conjugate symmetry) For all v ,w ∈ V

⟨u, v⟩ = ⟨u, v⟩

2. (Linearity in second entry) For all u, v ,w ∈ V and a ∈ C

⟨u, av + w⟩ = a⟨u, v⟩+ ⟨u,w⟩

3. (Positivity) For all u ∈ V

⟨u, u⟩ ≥ 0 with equality if and only if u = 0.
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Norms

Recall we also previously used the notion of a norm

Definition
Given a vector space V over R or C we say that ∥ · ∥ : V → R is a
norm on V and call (V , ∥ · ∥) a normed vector space if

▶ (Positivity) For all v ∈ V , ∥v∥ ≥ 0 and ∥v∥ = 0 if and only if
v = 0.

▶ (Scaling) For all α ∈ R (or C) and v ∈ V

∥αv∥ = |α|∥v∥

▶ (Triangle inequality) For all v ,w ∈ V

∥v + w∥ ≤ ∥v∥+ ∥w∥.
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Inner products induce a norm

Every inner product naturally induces a norm on the space

∥u∥ =
√
⟨u, u⟩

Definition
An inner product space (H⟨·, ·, ⟩) which is complete in the induced
norm is called a Hilbert space. (Recall “complete” means every
Cauchy sequence converges)

Example

▶ Cn with ⟨u, v⟩ =
∑n

j=1 ūjvj

▶ L2([0, 1]) the space of square integrable functions on [0, 1]
with

⟨u, v⟩ =
ˆ 1

0
u(x)v(x) dx .
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More fundamentals of inner products

The triangle inequality for ∥ · ∥ does need some proof, it will follow
from the Cauchy-Schwarz inequality, which is independently
extremely important.

Lemma (Cauchy-Schwarz)

For all u, v ∈ H an inner product space

|⟨u, v⟩| ≤ ∥u∥∥v∥.

Equality is obtained if and only if u and v are parallel.

A vector u is called normalized or a unit vector if ∥u∥ = 1. Two
vectors u, v are called orthogonal if ⟨u, v⟩ = 0. Called parallel if
the two vectors are scalar multiples of each other. If u and v are
orthogonal then

∥u + v∥2 = ∥u∥2 + ∥v∥2
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One dimensional projections

If u is a unit vector then the orthogonal projection onto the
direction u is defined

Puf = ⟨u, f ⟩u.

The vector
(I − Pu)f = f − ⟨u, f ⟩u

is orthogonal to u.

Note that Puf minimizes ∥v − f ∥ over all vectors v parallel to u
since

∥f −αu∥2 = ∥(1−Pu)f +(Puf −αu)∥2 = ∥(1−Pu)f ∥2+|⟨u, f ⟩−α|2

which is minimized when α = ⟨u, f ⟩.
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General orthogonal projections

Suppose that {uj}Nj=1 is an orthonormal set (mutually orthogonal
and normalized). Then f ∈ H can be written as

f =
N∑
j=1

⟨uj , f ⟩uj + f⊥

where f⊥ is orthogonal to the span of the uj . This is the
orthogonal projection onto V = span(u1, . . . , uN)

PV f =
N∑
j=1

⟨uj , f ⟩uj .

We can also show that PV f is the vector closest to f in V .
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Bessel’s inequality

Note that

∥f ∥2 = ∥PV f ∥2 + ∥f⊥∥2 =
N∑
j=1

|⟨uj , f ⟩|2 + ∥f⊥∥2

by the Pythagorean identity applied several times. In particular we
derive

Lemma (Bessel’s inequality)

If {uj}j∈J is any orthonormal collection then

∥f ∥2 ≥
∑
j∈J

|⟨uj , f ⟩|2.

In particular the sum on the right converges.

This implies Cauchy-Schwarz by taking just the single vector
u1 = g/∥g∥.
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Orthonormal bases

An orthonormal set {uj}Jj=1 for J ∈ N ∪ {+∞} is called an
orthonormal basis for H if

∥f ∥2 =
J∑

j=1

|⟨uj , f ⟩|2.

In particular

∥f −
n∑

j=1

⟨uj , f ⟩uj∥2 = ∥f ∥2 −
n∑

j=1

|⟨uj , f ⟩|2 → 0 as n → J

so

f =
J∑

j=1

⟨uj , f ⟩uj

with the implicit limit in the infinite sum holding in the notion of
convergence given by the norm.
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Orthonormal bases

One way to phrase the property on the previous slide: Let
B = {uj}∞j=1 be an orthonormal set and define

Vn = span(u1, . . . , un)

then B is an orthonormal basis for H if

V = ∪∞
j=1Vj

is dense in H, i.e. V = H.

Example

▶ Orthogonal polynomials on L2([0, 1]), Vn is the space of
polynomials of degree at most n, V is the space of
polynomials, and V is dense in L2([0, 1]) (by Weierstrass
theorem).

William M Feldman (Utah) MATH 6410 Fall 2024 20 / 119



Linear operators

A linear operator is a mapping

A : D(A) → H

where D(A) is a linear subspace of H called the domain of A.

We will typically be interested in operators with (at least) dense
domain, differential operators often have this property:

Example

The derivative A = d
dx is a linear operator on L2([0, 1]), a possible

domain for A is D(A) = C 1([0, 1]). Other choices of domain are
possible as well and will matter for concepts we define later, the
largest possible domain for A is the Sobolev space H1([0, 1]) of
functions with one weak derivative in L2([0, 1]).
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Bounded operators

A linear operator A : D(A) → H is called bounded if

∥A∥ := sup
∥u∥=1
u∈D(A)

∥Au∥ < +∞.

Note this is the same operator norm we have seen before.

Boundedness of linear operators is equivalent to Lipschitz
continuity. One direction:

∥Au − Av∥ = ∥A(u − v)∥ ≤ ∥A∥∥u − v∥.
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Bounded operators have closed domain

If a linear operator is bounded on a domain D(A) dense in H then
A can be canonically extended to a bounded linear operator on the
whole space H. The argument is to define for u ∈ H = D(A)

Au = lim
n→∞

Aun where D(A) ∋ un → u

and use boundedness to show that this definition does not depend
on the approximating sequence.

Thus we could have taken D(A) = H. When we talk about
bounded linear operators on H we will typically implicitly mean
D(A) = H.

Differential operators are typically not bounded on the Hilbert
spaces we will study.
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Symmetric operators

A linear operator is called symmetric if its domain is dense in H
and

⟨u,Av⟩ = ⟨Au, v⟩ for all u, v ∈ D(A).

Example

The operator L = − d2

dx2
with the domain

D(L) = {u ∈ C 2([0, 1]) : u(0) = u(1) = 0}

is symmetric on L2([0, 1]). The same differential operator would
not be symmetric if we made a different choice of boundary
conditions in the domain, we will see this in the computation.
Choice of domain is important for unbounded operators!
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Symmetry of L = − d2

dx2 with zero Dirichlet data

We compute for u, v ∈ D(L)

⟨u, Lv⟩ = −
ˆ 1

0
u(x)v ′′(x) dx

= −[uv ′]10 +

ˆ 1

0
u′(x)v ′(x) dx

= [u′v ]10 −
ˆ 1

0
u′′(x)v(x) dx

= ⟨Lu, v⟩

where we used the Dirichlet boundary condition for both u and v
to conclude that each of the boundary terms coming from
integration by parts were zero.
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Eigenvalues and eigenvectors

A number λ ∈ C is said to be an eigenvalue of A if there is a
nonzero vector u ∈ D(A) such that

Au = λu

The eigenspace associated with the eigenvalue λ is

ker(A− λI ) = {u ∈ D(A) : (A− λI )u = 0}.

An eigenvalue is called simple if the eigenspace has dimension 1.

(Note: we will generally be working with symmetric operators
which do not have degenerate eigenvalues, as will be justified by
the spectral theorem appearing later)
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Properties of symmetric operators

Theorem
Suppose A is symmetric, then all eigenvalues are real and
eigenvectors corresponding to distinct eigenvalues are orthogonal.

Proof.
If u is a normalized eigenvector of A with eigenvalue λ

λ∥u∥2 = ⟨u,Au⟩ = ⟨Au, u⟩ = λ∥u∥2

so λ = λ is real.

If u and v are eigenvectors with distinct eigenvalues λ and µ
respectively then

λ⟨u, v⟩ = ⟨Au, v⟩ = ⟨u,Av⟩ = µ⟨u, v⟩

or (λ− µ)⟨u, v⟩ = 0.
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Compact operators

We are looking to find eigenvalues/eigenvectors, this turns out to
be most straightforward with an appropriate notion of
compactness:

Definition
An operator A on H is called a compact operator if

(Aun)
∞
n=1 is precompact whenever (un)

∞
n=1 is bounded.

Lemma
Compact operators are bounded.

Proof.
The set A(B1) is precompact in H so it is bounded. (Here
B1 = {u ∈ H : ∥u∥ < 1}).
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Intuition on compact operators

Differential operators are basically never compact, but their
inverses usually are! (Keep that in mind as motivation)

Generally you can think of compact operators as having a
“regularizing” property.

Example

Consider the integral operator on L2([0, 1])

(Iu)(x) =
ˆ x

0
u(s) ds.

This operator is the inverse of the differential operator B = d
dx on

the domain

D(B) = {u ∈ L2([0, 1]) : u′ ∈ L2([0, 1]) and u(0) = 0}.
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Integral operator example continued...

Example

Note that, using Cauchy-Schwarz,

|(Iu)(x)−(Iu)(y)| = |
ˆ y

x
u(s) ds| ≤

(ˆ y

x
|u(s)|2 ds

)1/2

|x−y |1/2

and the integral term is bounded by ∥u∥L2([0,1]). So Iu is
Hölder-1/2 continuous with constant depending only on ∥u∥L2 ,

[u]C1/2 := sup
x ̸=y∈[0,1]

|u(x)− u(y)|
|x − y |1/2

≤ ∥u∥L2([0,1]).

This means that (Iun)∞n=1 is a uniformly bounded (since I is
bounded) and equicontinuous sequence of functions on [0, 1]
whenever (un)

∞
n=1 is bounded in L2([0, 1])-norm. By the

Arzela-Ascoli theorem (Iun)∞n=1 has a convergent subsequence.
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Intuition on compact operators

Another way of thinking about compact operators: their range is
“almost” finite dimensional.
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The Spectral Theorem for compact
symmetric operators
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Spectral theorem
Symmetry and compactness are sufficient to guarantee an
orthonormal basis of eigenfunctions:

Theorem (Spectral theorem for compact operators)

If A is compact on H then there is a sequence of real eigenvalues
λj which converges to 0, and there are corresponding normalized

eigenvectors uj which form an orthonormal basis for Range(A).

In particular any v ∈ Range(A) can be written as

v =
∞∑
j=1

⟨uj , v⟩uj

and A is diagonalized by this choice of basis

Av =
∞∑
j=1

⟨uj ,Av⟩uj =
∞∑
j=1

⟨Auj , v⟩uj =
∞∑
j=1

λj⟨uj , v⟩uj

William M Feldman (Utah) MATH 6410 Fall 2024 33 / 119



Big picture

Let’s just remind ourselves what role these things will play in our
study of ODE. We want to find basis for appropriate Hilbert space
of eigenfunctions of an ODE boundary value problem. We will
need to understand the following things:

▶ Choice of Hilbert space and domain D(L) which make the
differential operator L symmetric.

▶ Green’s functions. We will need to understand the inverse of
this operator (on its domain) which will (hopefully) be a
compact symmetric operator.

▶ Spectral theorem will imply basis of eigenfunctions.
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Finding one eigenvalue

As in finite dimensions the main issue is to find one eigenvalue.
The eigenvalue which is largest in magnitude naturally satisfies a
variational principle which makes it easier to find.

Theorem
A compact symmetric operator A on a Hilbert space H has an
eigenvalue λ ∈ R with |λ| = ∥A∥.
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Compact symmetric operators have an eigenvalue I

Proof. We begin by noting that λ2 is the maximal value of an
associated quadratic form on the unit sphere in H

λ2 = ∥A∥2 = sup
∥u∥=1

⟨Au,Au⟩ = sup
∥u∥=1

⟨u,A2u⟩.

Via Lagrange multipliers, if there was a maximizer, it would be an
eigenvector of A2 with eigenvalue λ2.

To find a maximizer let’s take a sequence un of unit vectors with

lim
n→∞

⟨un,A2un⟩ = λ2

Since A is compact we can assume that A2un converges. Define

λ2u = lim
n→∞

A2un.
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Compact symmetric operators have an eigenvalue II

Now we want to show un → u, if we show (A2 − λ2)un → 0 this
will follow.

∥(A2 − λ2)un∥2 = ∥A2un∥2 − 2λ2⟨un,A2un⟩+ λ4.

Now the middle term converges to −2λ4 by the choice of the
sequence un and by the definition of u

lim
n→∞

∥A2un∥2 = ∥λ2u∥2 = λ4.

Thus un → u as n → ∞. In particular u is a unit vector.

Since the operator A is compact and hence bounded and hence
continuous

λ2u = lim
n→∞

A2un = A2u
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Compact symmetric operators have an eigenvalue III

i.e. u is an eigenvector of A2 with eigenvalue λ2. Now call
v = (A− λ)u

0 = (A2 − λ2I )u = (A+ λI )(A− λI )u = (A+ λI )v

so either v = 0, in which case (u, λ) is an eigenvector/eigenvalue
pair, or v ̸= 0 in which case (v ,−λ) is an eigenvector/eigenvalue
pair.
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Spectral theorem again

Theorem (Spectral theorem for compact operators)

If A is compact on H then there is a sequence of real eigenvalues
λj which converges to 0, and there are corresponding normalized

eigenvectors uj which form an orthonormal basis for Range(A).

The proof is by iterating the single eigenvalue theorem. We have
found the eigenvalue/eigenvector pair (λ0, u0) with maximal
absolute value. Now define

H1 = {u ∈ H : ⟨u, u0⟩ = 0}.

Can check that H1 is a closed linear subspace of H and hence a
Hilbert space itself. Note that A is an operator on H1 because, for
u ∈ H1,

⟨u0,Au⟩ = ⟨Au0, u⟩ = λ0⟨u0, u⟩ = 0.

Symmetry and compactness are inherited by the restricted
operator.
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Spectral theorem proof set up

We can iterate this procedure finding eigenvalue/eigenvector pairs
(λj , uj) with each uj orthogonal to the previous ui , the sequence
|λj | is non-increasing, and assuming the initial space was infinite
dimensional this iteration will proceed for j ∈ N. This creates a
decreasing sequence of subspaces

H = H0 ⊃ H1 ⊃ · · ·H j ⊃ · · ·

where each H j+1 is the orthogonal complement in H j of the
eigenvector uj .
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Aside on eigenvalue variational principle

We derive from this proof an independently useful variational
principle

Lemma (Eigenvalue variational principle)

The eigenvalues of a compact symmetric operator satisfy

λ2j = sup
u∈H j

⟨u,A2u⟩

where H0 = H and

H j = {u ∈ H : ⟨u, ui ⟩ = 0 for 1 ≤ i ≤ j − 1}.
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Eigenvalues converge to zero

Now suppose that λj ̸→ 0. Then the sequence vj = λ−1
j uj is a

bounded sequence and so Avj = uj is precompact. Thus uj has a
convergent subsequence ujk → u∞. However this is not possible
because the uj are mutually orthogonal and

∥uj − uℓ∥2 = ∥uj∥2 + ∥uℓ∥2 = 2.
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Eigenvectors are a basis for the range
Lets call v = Aw to be an element of Range(A), and we call
X = span(u0, u1, . . . ). Then

PX v =
∞∑
j=0

⟨uj , v⟩uj =
∞∑
j=0

⟨uj ,Aw⟩uj

=
∞∑
j=0

⟨Auj ,w⟩uj

=
∞∑
j=0

⟨uj ,w⟩λjuj

=
∞∑
j=0

⟨uj ,w⟩Auj

= A(
∞∑
j=0

⟨uj ,w⟩uj) = APXw

William M Feldman (Utah) MATH 6410 Fall 2024 43 / 119



Conclusion

So whenever v = Aw we have

PX v = APXw

Now note that w − PXw ∈ span(u1, . . . , uj−1)
⊥ = H j for each

0 ≤ j < +∞ so

∥v−PX v∥ = ∥A(w−PXw)∥ ≤ ( sup
y∈H j

∥y∥=1

∥Ay∥)∥w−PXw∥ = |λj |∥w−PXw∥

then send j → ∞ and λj → 0 so

∥v − PX v∥ = 0 i.e. v = PX v .
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Big picture

Let’s just remind ourselves what role these things will play in our
study of ODE. We want to find basis for appropriate Hilbert space
of eigenfunctions of an ODE boundary value problem. We will
need to understand the following things:

▶ Choice of Hilbert space and domain D(L) which make the
differential operator L symmetric.

▶ Green’s functions. We will need to understand the inverse of
this operator (on its domain) which will (hopefully) be a
compact symmetric operator.

▶ Spectral theorem will imply basis of eigenfunctions.
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Linear differential operators and boundary
conditions
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Adjoint operator

Given a densely defined operator A on a Hilbert space H with
domain D(A) the adjoint operator A† with adjoint domain D(A†)
is defined:

Definition
D(A†) is the set of all x ∈ H such that for all y ∈ D(A) there
exists a z ∈ H with

⟨x ,Ay⟩ = ⟨z , y⟩ and in that case A†x := z .

In particular for all x ∈ D(A†) and y ∈ D(A) we have

⟨x ,Ay⟩ = ⟨A†x , y⟩.
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General linear operators

We will be looking the general class of linear operators

L = pn(x)
dn

dxn
+ · · ·+ p1(x)

d

dx
+ p0(x)

this is an unbounded operator on L2([0, 1]) but we can make a
choice of domain D(L) on which L is defined. Typically this will
be a subspace of Cn([0, 1]) with additional linear and homogeneous
boundary constraints.

In total generality (which you would never actually run into) this
would look like n linearly independent constraints of the form

n−1∑
j=0

ak,ju
(j)(0) + bk,ju

(j)(1) = 0 for 1 ≤ k ≤ n.
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Adjoint first example

Let’s start with a simple case in L2([0, 1])

L = − d2

dx2
with D(L) = {v , Lv ∈ L2([0, 1]) : v(0) = v(1) = 0}.

Then we have already seen that an integration by parts argument
gives

ˆ 1

0
u(x)Lv(x) dx = [u′v − uv ′]10 +

ˆ 1

0
Lu(x)v(x) dx .

Thus L† = L and D(L†) is specified by the additional condition on
u

[u′v − uv ′]10 = 0 for all v ∈ D(L)
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Adjoint first example

Using v ∈ D(L) the condition

[u′v − uv ′]10 = 0 for all v ∈ D(L)

simplifies to
[−uv ′]10 = 0 for all v ∈ D(L).

Since v ′(0) and v ′(1) can be chosen arbitrarily in D(L) we must
have

u(0) = u(1) = 0.

Thus D(L) = D(L†) and it turns out that this operator is
self-adjoint.
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Non self-adjoint example

Let’s make things a little bit more complicated, suppose p(x) > 0
and smooth and consider the operator with Neumann boundary
conditions

L = −p(x)
d2

dx2
with D(L) = {v , Lv ∈ L2([0, 1]) : v ′(0) = v ′(1) = 0}.

Again we will integrate by parts

ˆ 1

0
u(x)Lv(x) dx = [−puv ′]10 +

ˆ 1

0

d

dx
(p(x)u(x))

d

dx
v(x) dx

= [(pu)′v − puv ′]10 −
ˆ 1

0

d2

dx2
(p(x)u(x))v(x) dx

and we identify that

L† = − d2

dx2
p(x).
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Non self-adjoint example

So our adjoint formula with L† = d2

dx2
p(x)

⟨u, Lv⟩ = [(pu)′v − puv ′]10 + ⟨L†u, v⟩

and we still need to determine D(L†) by the condition on u

[(pu)′v − puv ′]10 = 0 for all v ∈ D(L).

Using the boundary condition v ′(0) = v ′(1) = 0 we find, varying
v(0) and v(1), the adjoint boundary conditions:

(pu)′(0) = 0 and (pu)′(1) = 0.
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Momentum operator

Consider the operator

L = i
d

dx
with domain D(L) = {f , f ′ ∈ L2([0, 1]) : f (0) = 0}

Then

ˆ 1

0
g(x)if ′(x) dx = [ig f ]10 +

ˆ 1

0
ig ′(x)f (x) dx .

So the adjoint operator is L† = L and we need to take the domain

D(L†) = {g ′ ∈ L2([0, 1]) : g(1) = 0}

so this operator is not self-adjoint with the given boundary
conditions.
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Twist boundary conditions

Let’s see if we want to make L = i d
dx self-adjoint on L2([0, 1]) by a

good choice of boundary condition, we found above

0 = ⟨g , Lf ⟩ − ⟨Lg , f ⟩ = i [g(1)f (1)− g(0)f (0)]

this is achieved when

g(1)

g(0)
=

f (0)

f (1)
= c

however this requirement will only be self-adjoint when

c =
g(0)

g(1)
= c−1

which implies |c |2 = 1 i.e. c = e iθ.
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Twist boundary conditions

So the following operator is self-adjoint

L = i
d

dx
with D(L) = {f , f ′ ∈ L2([0, 1]) : f (1) = e iθf (0)}

and we can directly find an orthonormal collection of
eigenfunctions since

Lψ = −λψ can be solved for ψ(x) = e iλx

and the conditions imply

e iλ = e iθ so λ = θ + 2πn for some n ∈ Z.
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Sturm-Liouville operators
If we want a second order linear equation which is self-adjoint with
respect to the standard L2([0, 1]) inner product then it should have
the regular Sturm-Liouville form

L = − d

dx
p(x)

d

dx
+ q(x)

and if we allow for a weighted inner product with w(x) > 0

⟨u, v⟩w =

ˆ 1

0
u(x)v(x)w(x) dx

then the operators

L =
1

w(x)

(
− d

dx
p(x)

d

dx
+ q(x)

)
will be self-adjoint (with appropriately chosen boundary
conditions).
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Sturm-Liouville boundary conditions
If we recall the integration by parts computation

0 = ⟨u, Lv⟩w − ⟨Lu, v⟩w = [Q(u, v)]10

where the boundary form is

Q[u, v ] = p(x)(u′(x)v(x)− u(x)v ′(x))

since p(x) > 0 the self-adjoint condition for (Q[u, v ])10 = 0
becomes (if we do not want boundary conditions mixing values at
0 and 1)

u′(x)

u(x)
=

v ′(x)

v(x)
for x ∈ {0, 1}

i.e. the most general self-adjoint condition is the following Robin
type boundary conditions for some real α, β

α1u
′(0) + α2u(0) = 0 and β1u

′(1) + β2u(1) = 0.
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General self-adjointizing weight

General operators

L = p2(x)
d2

dx2
+ p1(x)

d

dx
+ p0(x)

can be made self-adjoint by the choice of weight

w(x) =
1

p2(x)
exp

(ˆ x

0

p1(y)

p2(y)
dy

)
so that

L =
1

w
[
d

dx
wp2

d

dx
+ wp0]

because we chose w so that

1

w
(wp2)

′ = p1.
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Continuous spectrum
In general the inverse of a differential operator can fail to be
compact, typically this comes from a non-compact domain. For
example consider the operator

L = − d2

dx2
on L2(R).

The plane waves

ψ(x) = e iλx solve Lψ = λ2ψ

but are not elements of L2(R). We can however do a smooth
cutoff and find, for each ε > 0, an element ϕε ∈ L2(R) with

∥Lϕ− λ2ϕ∥L2 ≤ ε.

This means that L− λ2 fails to be invertible, although there is no
actual L2 eigenfunction, and

[0,∞) = σcont(L).
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Mixed spectrum

If we consider the Schrödinger operator

L = −d2

dx

2

+ V (x) =

(
i
d

dx

)2

+ V (x) on L2(R)

with a potential which has a well around the origin like

x

V (x) = −2 cosh−2(x)
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Mixed spectrum
In this case there is some pure point spectrum which we call a
bound state, a particle trapped in the energy well, and some
continuous spectrum which we think of as free particles moving
through not trapped by the well: it turns out that

ψ0(x) =
1√
2
cosh−1(x) solves [−d2

dx

2

− 2 cosh−2(x)]ψ0 = 0

so 0 is in the pure point spectrum. However, there are also
solutions

ψ(x) = [1 +
i

λ
tanh(x)]e iλx

(you could guess the form c(x)e iλx with c(x) → c± as |x | → ±∞
by comparing with the V = 0 free particle operator that we studied
before) with

Lψ = λ2ψ

so R+ is part of the continuous spectrum.
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Distributions
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Green’s functions and motivation for distributions

In order to apply the compact operator spectral theorem to
Sturm-Liouville type operators we need to find the inverse. This
will be an integral operator involving something called the Green’s
function.

Let’s start with a formal derivation for the operator

L = − d2

dx2
and D(L) = {f , Lf ∈ L2([0, 1]) : f (0) = f (1) = 0}.
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Green’s functions and motivation for distributions

Suppose that for each x ∈ [0, 1] we can solve

− d2

dx2
G (x , y) = δy (x) and G (0, y) = 0 = G (1, y)

where δy (x) is the Dirac delta mass at x satisfying

ˆ 1

0
φ(x)δy (x) dy = φ(y) for every continuous φ.
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Green’s functions and motivation for distributions

Now suppose that we want to solve

− d2

dx2
w =

n∑
j=1

ajδxj (x) and w(0) = 0 = w(1)

we can find the solution by superposition (linearity)

w(x) =
n∑

j=1

ajG (x , xj).

Now if we think that a general “mass distribution” can be
approximated well by a sum of δ-masses we can guess that the
solution operator

w(x) =

ˆ 1

0
G (x , y)f (y) dy will solve − d2

dx2
w = f (x).
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Green’s functions and motivation for distributions

Or arguing more directly

− d2

dx2

ˆ 1

0
G (x , y)f (y) dy =

ˆ 1

0
[− d2

dx2
G (x , y)]f (y) dy

=

ˆ 1

0
δy (x)f (y) dy = f (x)

where we are implicitly using the formal statement δy (x) = δx(y).

Generally much of this argument was formal because we don’t
know what the Dirac delta actually is!
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General idea

The fundamental idea of distribution theory is to view “not nice”
objects (distributions) as linear functionals on a “nice” space of
functions. For example the Dirac delta makes no sense as a
function on R, but it behaves very nicely as it acts on smooth
functions

⟨δ0, φ⟩ = “

ˆ 1

0
δ0(x)φ(x) dx” = φ(0).

To make sense of this precisely we will need to define an
appropriate space of “nice” test functions and then the space of
distributions will be dual to this nice space.
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Topological vector spaces

Definition
A topological vector space is a vector space V with a topology
T .

We have already seen normed spaces and inner product spaces
which fall under this class. For the purposes of distribution theory
we don’t quite need the full generality of topological vector spaces,
metric vector spaces would be enough.

William M Feldman (Utah) MATH 6410 Fall 2024 68 / 119



Dual spaces

The idea of distribution theory is centered around duality.

Definition
Given a topological vector space V the dual space V ∗ is the space
of continuous linear functionals on V , i.e.

V ∗ = {ℓ : V → R| ℓ is linear and continuous on V }.

We typically write the duality operation in the following way,
purposefully reminiscent of the inner product, for ℓ ∈ V ∗ and
x ∈ V

ℓ(x) = ⟨ℓ, x⟩.

The duality operation ⟨·, ·⟩ : V ∗ × V → R is linear in both entries.
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The space of test functions

The “nice” functions which our distributions will act on is called
the space of test functions

D(R) = C∞
c (R) = {f : R → R : f ∈ C∞(R) and compact support}.

Recall that the support of a function is supp(f ) = {x : f (x) ̸= 0}.

It is not immediately obvious that this space has any elements, a
classic example is

ρ(x) =

{
e
− 1

1−|x|2 x ∈ (−1, 1)

0 x ̸∈ (−1, 1).

many more examples can be constructed by convolving ρ and its
dilates with general integrable compactly supported functions.
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Space of distributions

The correct topology on C∞
c (R) is a bit complicated to define, so I

will leave out the precise definition for now. Since we won’t be too
careful about convergence in the space of distributions we can
afford to ignore it for now. The space of distributions is defined

D′(R) := D(R)∗.

These are the continuous linear functions acting on test functions.
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Schwartz distributions

This is not the only useful choice of test function space / dual
space. Another very common choice, which is much better suited
for Fourier analysis, is the space of Schwartz functions S(R) and
its dual space the space of Schwartz distributions.

The Schwartz functions are the space of functions ϕ so that

∥(1 + |x |2)m/2ϕ(k)∥sup < +∞ for all k ,m ≥ 0.

This replaces compact support by decay faster than any
polynomial.
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Examples of distributions

Example

Every locally integrable function f ∈ L1loc(R) (|f | has finite integral
on any compact set) defined a distribution via the operation

⟨f , φ⟩ =
ˆ
R
f (x)φ(x) dx .

Note that functions in Lploc for p ≥ 1 are also locally integrable.

Definition
If a distribution ℓ is actually integration against a locally integrable
function f

⟨ℓ, φ⟩ =
ˆ
R
f (x)φ(x) dx

then we say ℓ is represented by the function f .
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Examples of distributions

The following two examples are not represented by a locally
integrable function.

Example

The Dirac delta is a distribution defined by the relation

⟨δ0, φ⟩ = φ(0).

Example

The principal value integral for non-locally integrable functions
with some cancellation property

⟨P.V.1
x
, φ⟩ = lim

δ→0

ˆ
R\[−δ,δ]

1

x
φ(x) dx .
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Operations on distributions

Many natural operations can be defined on the space of
distributions by leveraging duality.

Example

If the distribution ℓ was represented by a function f ∈ L1loc then
the translation Ty ℓ should be represented by f (x + y) and

⟨Ty ℓ, φ⟩ =
ˆ
R
f (x + y)φ(x) dy =

ˆ
R
f (z)φ(z − y) dz = ⟨ℓ,T−yφ⟩.

So we use the relation

⟨Ty ℓ, φ⟩ = ⟨ℓ,T−yφ⟩

to define Ty ℓ for general distributions which are not necessarily
represented by integrable functions.
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Distributional derivative

The same type of logic can be used to define the notion of
distributional derivative. First we see how the derivative should
act if the distribution ℓ is represented by a smooth function u

⟨ℓ′, φ⟩ =
ˆ
R
u′(x)φ(x) dx = −

ˆ
R
u(x)φ′(x) dx = −⟨ℓ, φ′⟩

there are no boundary terms because φ is compactly supported.

Then we use this relation to define the distributional derivative on
the entire space D′(R) by

⟨ℓ′, φ⟩ := −⟨ℓ, φ′⟩.

This notion does agree with the classical notion of derivative if ℓ is
represented by a differentiable function.
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Important note

The product of a smooth function with a general distribution is
defined, but, in general, it is not possible to define a product
between distributions.
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Some distributional derivatives

Example

The absolute value function

f (x) = |x |

we compute using the definition

⟨f ′, φ⟩ = −
ˆ
R
|x |φ′(x) dx

=

ˆ 0

−∞
xφ′(x) dx −

ˆ ∞

0
xφ′(x) dx

= −
ˆ 0

−∞
φ(x) dx +

ˆ ∞

0
φ(x) dx =

ˆ
R
sgn(x)φ(x) dx

so f ′ = sgn(x) (or more precisely it is the distribution represented
by the function sgn(x)).
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Some distributional derivatives

Example

The Heaviside function

H(x) =

{
1 x > 0

0 x ≤ 0.

We can compute the derivative

⟨H ′, φ⟩ = −⟨H, φ′⟩

= −
ˆ ∞

0
φ′(x) dx

= φ(0) = ⟨δ0, φ⟩

so H ′ = δ0, the derivative of the Heaviside function is a Dirac mass
at 0.
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Some distributional derivatives

Example

If f is C 1 on R except at finitely many points {x1, . . . , xn} where it
has left and right limits then

f ′ = f ′(x) dx +
n∑

j=1

[f ](xj)δxj

where [f ](x) is the jump of f at x

[f ](x) = lim
y→+x

f (y)− lim
y→−x

f (y).

Example

We can even compute the derivative of the Dirac mass itself

⟨δ′0, φ⟩ = −⟨δ0, φ′⟩ = −φ′(0).
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Solving a differential equation

Now let’s consider a differential equation involving a distribution

d2u

dx2
= δ0

where we are looking for a distributional solution u and the
derivatives are meant in the distributional sense.

In fact we have already found a family of solutions in the previous
slides

u(x) = amax{−x , 0}+ bmax{x , 0} with (b − a) = 1.
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Solving a differential equation

Now let’s consider a differential equation involving a distribution

d2u

dx2
= δ0

where we are looking for a distributional solution u and the
derivatives are meant in the distributional sense.

In fact we have already found a family of solutions in the previous
slides

u(x) = amax{−x , 0}+ bmax{x , 0}+ c with (b − a) = 1.

William M Feldman (Utah) MATH 6410 Fall 2024 82 / 119



Green’s functions
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Solving linear differential equations

We are going to study the solution operator for differential
equations

Lu = h in [0, 1] for u ∈ D(L)

where L is a linear differential operator and D(L) is its domain in
L2([0, 1]) which encodes the boundary conditions.

If 0 is an eigenvalue of L then the solution of the previous problem
is, at best, non-unique. Does a solution exist at all?
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Finite dimensional Fredholm Alternative

For intuition let’s remind ourselves of what happens for finite
dimensional linear systems:

Theorem (Fredholm Alternative)

For a finite dimensional inner product vector space V , an operator
A : V → V and a vector b ∈ V exactly one of the following
alternatives occurs

1. Ax = b has a solution.

2. A†y = 0 has a nontrivial solution with ⟨y , b⟩ ≠ 0.

In particular range(A) = ker(A†)⊥.

There is a generalization of this theorem for compact operators.
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Green’s functions

To avoid any issue with solvability let’s assume that
ker(L) = ker(L†) = {0}. Then, as we motivated before, we are
interested to solve the equation

LxG (x , y) = δ(x − y) in [0, 1] with boundary conditions.

The solution of the ODE BVP with a general right hand side

Lu = h in [0, 1] for u ∈ D(L)

will then be given by

u(x) =

ˆ
[0,1]

G (x , y)h(y) dy .
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Adjoint Green’s function

It turns out that the Green’s function of the adjoint L† is related to
the Green’s function of L by the symmetry

G †(y , x) = G (x , y)

or another way to say this

L†yG (x , y) = δ(x − y) in [0, 1] with adjoint boundary conditions.
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Adjoint Green’s function

We want to check that, for all f ,

L†y

[ˆ 1

0
G (x , y)f (x) dx

]
= f (x)

we will do this by check that the inner product of the left and right
hand side with any φ ∈ D(L) agree

⟨L†y
[ˆ 1

0
G (x , y)f (x) dx

]
, φ(y)⟩ = ⟨

ˆ 1

0
G (x , y)f (x) dx , Lyφ(y)⟩

=

ˆ 1

0

ˆ 1

0
G (x , y)f (x) dxLyφ(y) dy

=

ˆ 1

0
f (x)

ˆ 1

0
G (x , y)Lyφ(y) dydx

= ⟨f , φ⟩.
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Sturm-Liouville Green’s function

Now let’s consider the Sturm-Liouville operator with real
coefficients p > 0 and q

L =
d

dx
p(x)

d

dx
+ q(x)

with a self-adjoint boundary condition

a1u
′(0) + a0u(0) = 0 and b1u

′(1) + b0u(1) = 0.

The Green’s function derivative should have a jump discontinuity
of height 1 at x = y
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Sturm-Liouville Green’s function

The Green’s function should be continuous at x = y , its derivative
should have a jump discontinuity of height 1 at x = y , it should be
symmetric G (x , y) = G (y , x) because the operator is self-adjoint,
and it should be a solution of the homogeneous equation
LxG (x , y) = 0 on each side of the jump x = y . This leads to the
following form

G (x , y) =

{
AuL(x)uR(y) x < y

AuR(x)uL(y) x > y

where uL and uR are solutions

LuL = 0 and LuR = 0 in [0, 1]

and uL satisfies the left boundary condition and uR satisfies the
right boundary condition.
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Sturm-Liouville Green’s function

In order for
∂x(p(x)∂xG ) + q(x)G = δ(x − y)

it must be that p(x)G (x , y) has a jump of height 1 at x = y so

p(y)A(u′R(y)uL(y)− u′L(y)uR(y)) = 1

which gives the formula for A

A =
1

p(y)(u′R(y)uL(y)− u′L(y)uR(y))
=

1

p(y)W (y)

where W is the Wronskian of the two solutions uL and uR .
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Sturm-Liouville Green’s function

Now we have the form

G (x , y) =
1

p(y)W (y)

{
uL(x)uR(y) x < y

uR(x)uL(y) x > y

although note that symmetry actually requires that
p(y)W (y) = const (which you can also check directly for this form
of equation).

There is one final thing to note: why is the Wronskian of uL and
uR nonzero?
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Sturm-Liouville Green’s function

First recall we showed a long time ago (Liouville’s formula) that if
W (y) is nonzero anywhere it is nonzero everywhere. If it were zero
everywhere then uL and uR would be linearly dependent. Meaning
uL satisfies both the left and right boundary condition making uL a
nontrivial solution of

LuL = 0 in [0, 1] uL ∈ D(L).

This contradicts our initial assumption though that 0 was not an
eigenvalue of L.

Generally speaking this procedure can be applied to find the
Green’s function for L− λ for any λ ̸∈ σ(L) ⊂ R.
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Simple Green’s function example

Let’s look for the Green’s function for

d2

dx2
G (x , y) = δy and G (x , 0) = G (x , 1) = 0.

Solutions of Lu = 0 are linear functions u(x) = ax + b so to match
boundary conditions we can take

uL(x) = x and uR(x) = 1− x .

Then the Wronskian is W (y) = −y − (1− y) = −1 and

G (x , y) = −

{
x(1− y) x < y

(1− x)y x > y .
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Simple Green’s function example
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Initial value problem

Consider the initial value problem

du

dt
− A(t)u(t) = f (t) with u(0) = 0.

We can look for a Green’s function for t, s > 0 solving

[
d

dt
− A(t)]G (t, s) = δ(t − s) with G (0, s) = 0.
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Initial value problem

We must have
G (t, s) = 0 for t < s

by uniqueness of the zero solution, and at t = s there is a jump
condition

lim
t↘s

G (t, s) = 1.

But we can just think of this as an initial data problem at t = s

G (t, s) = e
´ t
s A(r) dr for t > s.
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Initial value problem

Therefore the Green’s function is

G (t, s) = H(t − s)e
´ t
s A(r) dr

where H is the Heaviside function.

Thus we have re-derived a case of Duhamel’s formula

u(t) =

ˆ ∞

0
H(t − s)e

´ t
s A(r) dr f (s) ds =

ˆ t

0
e
´ t
s A(r) dr f (s) ds.
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Neumann conditions

Now let’s say we want to solve the Neumann problem

u′′ = f in [0, 1] and u′(0) = u′(1) = 0.

We have an issue though because the constant function 1 is a
nontrivial solution of L1 = 0 which satisfies the boundary
conditions. By Fredholm alternative there will be a solution as long
as

0 = ⟨1, f ⟩ =
ˆ 1

0
f (x) dx .
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Neumann conditions

We will instead look for a Green’s function solving the modified
equation

d2

dx2
G (x , y) = δ(x−y)−1 in [0, 1] and

d

dx
G (x , 0) =

d

dx
G (x , 1) = 0.

Now the right hand side has integral zero so the equation is
formally solvable. And note that

d2

dx2

ˆ 1

0
G (x , y)f (y) dy = f (x)−

ˆ 1

0
f (y) dy

which is equal to f (x) whenever
´ 1
0 f = 0.
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Neumann conditions

This time let’s take the “by hand” approach. First we look for the
solution space of

d2

dx2
u = −1

the general solution has the form

u(x) = A+ Bx − 1

2
x2.

Now we try to satisfy the boundary conditions first on the left then
on the right

0 = u′L(0) = B and 0 = u′R(1) = B − 1

so

uL(x) = AL −
1

2
x2 and uR(x) = AR + x − 1

2
x2.
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Neumann conditions

Next we impose continuity at y

AL −
1

2
y2 = uL(y) = uR(y) = AR + y − 1

2
y2

which gives the equation

AL − AR = y .

The height 1 jump condition on the derivative at y actually comes
out for free because we modified the equation correctly

1 = u′R(y)− u′L(y) = 1− y − (−y) = 1.
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Neumann conditions

At this point we have

G (x , y) =

{
A+ y − 1

2x
2 x < y

A+ x − 1
2x

2 x > y

the constant A is arbitrary, we can choose A = −1
2y

2 to make G
symmetric

G (x , y) =

{
y − 1

2x
2 − 1

2y
2 x < y

x − 1
2x

2 − 1
2y

2 x > y
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Inhomogeneous boundary conditions

Next let’s look at a BVP with non-zero Dirichlet data

d2

dx2
u = f with u(0) = a and u(1) = b.

Now

v(x) =

ˆ 1

0
G (x , y)f dx

solves the homogeneous boundary data problem we need to add a
particular solution of the Lw = 0 with the inhomogeneous
boundary values.
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Inhomogeneous boundary conditions

We can find a solution in terms of the Green’s function

u(x) =

ˆ 1

0

∂2

∂y2
G (x , y)u(y) dy

=

ˆ 1

0
G (x , y)

d2u

dy2
dy + [

∂

∂y
G (x , y)u(y)− G (x , y)u′(y)]1y=0

=

ˆ 1

0
G (x , y)f (y) dy + [

∂

∂y
G (x , y)u(y)]1y=0

=

ˆ 1

0
G (x , y)f (y) dy + b

∂G

∂y
(x , 1)− a

∂G

∂y
(x , 0)

so we have the following formula

u(x) =

ˆ 1

0
G (x , y)f (y) dy + b

∂G

∂y
(x , 1)− a

∂G

∂y
(x , 0).
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Inhomogeneous boundary conditions

Since we already have a formula for G in this case

G (x , y) = −

{
x(1− y) x < y

(1− x)y x > y .

we can plug this in to the previous formula find

u(x) =

ˆ 1

0
G (x , y)f (y) dy + bx + a(1− x).
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Sturm-Liouville eigenfunctions
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Sturm-Liouville Boundary Value Problem

Now let’s consider again the self-adjoint Sturm-Liouville operators
with p(x) > 0

L = − d

dx
p(x)

d

dx
+ q(x) with domain D(L) ⊂ L2([0, 1]).

Assuming that 0 is not an eigenvalue of L we have derived a
formula for the solution of

Lu = f in [0, 1] with u ∈ D(L)

given by

[Rf ](x) =

ˆ 1

0
G (x , y)f (y) dy .

William M Feldman (Utah) MATH 6410 Fall 2024 108 / 119



Properties of R

Lemma
The inverse operator R is compact and symmetric and maps
R : L2([0, 1]) → D(L).

The symmetry of R follows from the self-adjointness of L via the
Green’s function symmetry

G (x , y) = G (y , x)

since

⟨h,Rf ⟩ =
ˆ 1

0
h(x)

ˆ 1

0
G (x , y)f (y)dydx

=

ˆ 1

0

ˆ 1

0
h(x)G (y , x)dx f (y)dy = ⟨Rh, f ⟩
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R is compact

The compactness property of R is very similar to what we did for
the simple integration operator. We will show that for
f ∈ L2([0, 1]) the image Rf is continuous with a modulus of
continuity depending on f only through ∥f ∥L2 .

First of all let’s note that G (x , y) is continuous on [0, 1]× [0, 1] so
it is bounded by some M and there is a modulus ω(r) (monotone,
ω(0) = 0, and continuous) so that

|G (x1, y)− G (x2, y)| ≤ ω(|x1 − x2|).
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R is compact

First we note

|Rf (x)| ≤
ˆ 1

0
|G (x1, y)− G (x2, y)||f (y)| dy ≤ M∥1∥L2∥f ∥L2

so if fn is a bounded sequence in L2 then Rfn is a bounded
sequence in the supremum.

Now we estimate the modulus of continuity

|Rf (x1)− Rf (x2)| ≤
ˆ 1

0
|G (x1, y)− G (x2, y)||f (y)| dy

≤ ω(|x1 − x2|)∥1∥L2∥f ∥L2

So if fn is a bounded sequence in L2 then Rfn is a uniformly
bounded and equicontinuous sequence. By Arzela-Ascoli Rfn has a
uniformly, and hence also in L2-norm, convergent subsequence.
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Sturm-Liouville eigenfunctions

At this point we can apply the spectral theorem for compact
symmetric operators to R and we will achieve the following results
for L:

▶ There is an orthonormal sequence of eigenfunctions ϕj ∈ D(L)

with eigenvalues Ej which form a basis for D(L).

▶ The sequence of eigenvalues can be enumerated
E0 < E1 < · · · and Ej → ∞.

▶ The ground state energy E0 satisfies the Rayleigh-Ritz
variational principle

E0 = min
f ∈D(L),∥f ∥=1

⟨f , Lf ⟩

▶ Each eigenvalue of L is simple.
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Spectral theorem

At this point we can apply the spectral theorem for compact
symmetric operators to find there is a sequence of eigenvalues
λj → 0 and orthonormal eigenvectors

ϕj ∈ L2([0, 1]) with Rϕj = λjϕj

and the orthonormal set {ϕj} is a basis for range(R).

Now we also know that ϕj = λ−1
j Rϕj ∈ D(L) and

Lϕj = Lλ−1
j Rϕj = λ−1

j ϕj

so the ϕj are eigenvectors of L with eigenvalue Ej = λ−1
j . Since

the eigenvalues λj → 0 we have |Ej | → +∞.
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Range of R

Now we show that the range of R contains D(L). Let f ∈ D(L)
then and call g = RLf . Then

L(f − g) = 0 and f , g ∈ D(L).

Since, by our assumption, L does not have zero as an eigenvalue
we must have f = g = RLf meaning that f is in the range of R.
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Eigenvalue ordering
Note that, by a standard integration by parts,

⟨f , Lf ⟩ =
ˆ 1

0
p(x)f ′(x)2 + q(x)f (x)2 dx ≥ (min

[0,1]
q)∥f ∥2L2

and
⟨ϕj , Lϕj⟩ = Ej

so the eigenvalues Ej are bounded from below by min[0,1] q. In
particular they can be listed in increasing order E0 < E1 < · · · as
claimed.

Now we check the variational principle any f ∈ D(L) can be written

f =
∑
j

⟨ϕj , f ⟩ϕj

so, if f is normalized,

⟨f , Lf ⟩ =
∑
j

|⟨ϕj , f ⟩|2Ej ≥ E0

∑
j

|⟨ϕj , f ⟩|2 = E0
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Rayleigh quotient

So we proved that

E0 = inf
f ̸=0

⟨f , Lf ⟩
∥f ∥2

the quantity above is called the Rayleigh quotient. Recall that
the quadratic form can also be written

⟨f , Lf ⟩ =
ˆ 1

0
p(x)f ′(x)2 + q(x)f (x)2 dx for f ∈ D(L)

so the problem of finding the first eigenvalue can be phrased as a
constrained variational problem for this energy functional
associated to the Sturm-Liouville problem.
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All eigenvalues are simple

If u and v are both eigenvectors of L with the same eigenvalue α
the the Wronskian

W (0) = u(0)v ′(0)− u′(0)v(0) = 0

since both u and v satisfy the boundary condition at 0 (the
boundary condition at 0 specifies a 1-dimensional subspace of the
initial data space [w(0),w ′(0)] so the matrix with columns
[u(0), u′(0)]T and [v(0), v ′(0)]T is singular and has zero
determinant).

Then since u and v both solve the same second order linear ODE
(L− α)w = 0 Liouville’s formula tell’s us

W (x) ≡ 0

and so u and v are linearly dependent.
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Sturm-Liouville eigenfunctions: review

So we have proved the following, all under the assumption that
ker(L) = {0}:
▶ There is an orthonormal sequence of eigenfunctions ϕj ∈ D(L)

with eigenvalues Ej which form a basis for D(L).

▶ The sequence of eigenvalues can be enumerated
E0 < E1 < · · · and Ej → ∞.

▶ The ground state energy E0 satisfies the Rayleigh-Ritz
variational principle

E0 = min
f ∈D(L),∥f ∥=1

⟨f , Lf ⟩

▶ Each eigenvalue of L is simple.
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Removing the assumption that ker(L) = {0}

Throughout all of this we assumed that ker(L) = {0}, let me
briefly explain how to remove that assumption.

▶ We will apply all the previous arguments to (L− λ) for some
choice of λ ∈ R \ σ(L). We do want λ ∈ R to preserve
symmetry.

▶ Need to make sure R \ σ(L) ̸= ∅: follows immediately from
our earlier argument

⟨f , Lf ⟩ =
ˆ 1

0
p(x)f ′(x)2 + q(x)f (x)2 dx ≥ (min

[0,1]
q)∥f ∥2L2

which implies that σ(R) ⊂ [min[0,1] q,+∞).
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