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Constant coefficient linear systems
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Linear systems

In this section we will study autonomous linear systems of ODE

ẋ = Ax with x(0) = x0.

Here x(t) ∈ Rn and A is an n × n matrix.

Besides their independent importance linear systems arise when
one considers solutions of a nonlinear autonomous system near a
critical point. We will make this precise in various ways as we
proceed in the course.
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One motivation: linearizing near a stationary point

For intuition think of the following (only formal) calculation:
Suppose f : Rn → Rn is C 1, f (0) = 0 and consider the nonlinear
system

ẋ = f (x) and x(0) = εy0

with small initial data. Write x(t) = εy(t) and rewrite

ẏ =
1

ε
f (εy) =

1

ε
(f (0) + εDf (0)y + O(ε2|y |2))

using that 0 is a stationary point and ignoring terms of order ε and
higher we find

ẏ ≈ Df (0)y and y(0) = y0.
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Matrix exponential

Definition
If A is an n × n matrix we define the matrix exponential

eA =
∞∑

k=0

Ak

k!
.

This can be difficult to compute, we will discuss how to do it, but
at least we can first show that the infinite sum converges.
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Matrix exponential

Recall the operator norm of a matrix

∥A∥op = sup
x ̸=0

|Ax |
|x | .

Which has the nice property

∥AB∥op ≤ ∥A∥op∥B∥op

We just need to show that the series is absolutely summable in the
operator norm. We compute

∥
∞∑

k=0

Ak

k!
∥op ≤

∞∑

k=0

∥Ak∥op
k!

≤
∥A∥kop
k!

= e∥A∥op
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Product formula

Note that, in general, it is not necessarily the case that

eAeB = eA+B .

However, this does hold when A and B commute. This can be
verified simply by taking the product of the series representations
and using the commutation. One particular consequence:

Lemma
If A is an n × n matrix then eA is invertible and its inverse is e−A.
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Solution matrix of a linear system

The matrix exponential eAt is itself a matrix solution of linear
system

Ẋ = AX and X (0) = I .

We compute formally

d

dt
eAt =

d

dt

∞∑

k=0

Aktk

k!
=

∞∑

k=1

Aktk−1

(k − 1)!
= AeAt .

This requires pulling a derivative inside an infinite sum, but is
justified by previous arguments which show the uniform
convergence of both the original sum and the sum for the
derivative.

William M Feldman (Utah) MATH 6410 Fall 2024 8 / 110



Flow map

This actually explicitly identifies the flow map for the ODE ẋ = Ax :

ϕt(x0) = eAtx0

is a solution of

d

dt
ϕt(x0) = Aϕt(x0) and ϕ0(x0) = x0.

So the study of linear constant coefficient ODE initial value
problems reduces to understanding matrix exponentials.
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Variation of parameters / Duhamel’s formula

If we add an inhomogeneous term we can still easily determine the
flow map. Consider a system of the form

ẋ = Ax + f (t) with x(0) = x0.

The solution is given by the Variation of parameters or
Duhamel formula

x(t) = eAtx0 +

ˆ t

0
eA(t−s)f (s) ds.
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Proof / derivation of Duhamel

Multiply both sides of the equation

ẋ = Ax + f (t)

on the left by e−At and rearrange to find

e−At ẋ − Ae−Atx = e−At f (t).

Note that the left hand side is the time derivative of e−Atx(t).

Then integrate from time 0 to time t

e−Atx(t)− x0 =

ˆ t

0
e−As f (s) ds.

Then multiply both sides on the left by eAt and note that
eAte−As = eA(t−s) because A commutes with itself.
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Diagonal systems

The easiest case to compute the matrix exponential / solve the
linear ODE is when the matrix in question is diagonal, i.e. the
system is uncoupled

ẋ = Λx with Λ = diag(λ1, . . . , λn).

In that case
Λk = diag(λk

1 , . . . , λ
k
n)

and so
eΛt = diag(eλ1t , . . . , eλnt).

Allowing complex matrices / solutions can immediately derive that
all solutions stay bounded in positive times if and only if
Re(λj) ≤ 0 for all 1 ≤ j ≤ n (such statement about eigenvalues of
general matrix will more info when some eigenvalues have zero real
part)
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Diagonal systems

22 1. Linear Systems

cases. It is called a proper node in the first case with A = µ and an improper
node in the other two cases. If A > p > 0 or if A > 0 in Case II, the arrows
in Figure 2 are reversed and the origin is referred to as an unstable node.
Whenever A has two negative eigenvalues A < µ < 0, the phase portrait
of the linear system (1) is linearly equivalent to one of the phase portraits
shown in Figure 2. The stability of the node is determined by the sign of
the eigenvalues: stable if A < u < 0 and unstable if A > u > 0. Note that
each trajectory in Figure 2 approaches the equilibrium point at the origin
along a well-defined tangent line 0 = 00, determined by an eigenvector of
A, ast -.oo.

x2 x2 x2

X=µ

X1

Figure 2. A stable node at the origin.

Case III. B = I
b

al with a < 0.

b>O
b<O

Figure S. A stable focus at the origin.

X<0

The phase portrait for the linear system (2) in this case is given in
Figure 3. Cf. Problem 9. The origin is referred to as a stable focus in these
cases. If a > 0, the trajectories spiral away from the origin with increasing

1.5. Linear Systems in R2 21

or
cos bt - sin btlatx(t) = e sin bt cos bt x0

respectively. We now list the various phase portraits that result from these
solutions, grouped according to their topological type with a finer classifi-
cation of sources and sinks into various types of unstable and stable nodes
and foci:

1
Case I. B = [0 µ] with A < 0 < µ.

X I

Figure 1. A saddle at the origin.

The phase portrait for the linear system (2) in this case is given in
Figure 1. See the first example in Section 1.1. The system (2) is said to
have a saddle at the origin in this case. If p < 0 < A, the arrows in
Figure 1 are reversed. Whenever A has two real eigenvalues of opposite
sign, A < 0 < µ, the phase portrait for the linear system (1) is linearly
equivalent to the phase portrait shown in Figure 1; i.e., it is obtained from
Figure 1 by a linear transformation of coordinates; and the stable and
unstable subspaces of (1) are determined by the eigenvectors of A as in the
Example in Section 1.2. The four non-zero trajectories or solution curves
that approach the equilibrium point at the origin as t - ±oo are called
separatrices of the system.

Case II.B= I0 0] with A<u<0orB= 10 11 with A<0.
The phase portraits for the linear system (2) in these cases are given in

Figure 2. Cf. the phase portraits in Problems 1(a), (b) and (c) of Problem
Set 1 respectively. The origin is referred to as a stable node in each of these

Figure: λ = µ < 0: stable node, λ < µ < 0: unstable node (different
rates), µ < 0 < λ: saddle
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Real distinct eigenvalues

The next easiest case is when the matrix A has n distinct real
eigenvalues. Then there are n linearly independent eigenvectors
v1, . . . , vn with Avj = λjvj . Call Q = [v1, . . . , vn] then we can
change coordinates to a diagonal matrix

AQ = [Av1, · · · ,Avn]
= [λ1v1, . . . , λnvn]

= [Qλ1e1, . . . ,Qλnen] = QΛ

where Λ = diag(λ1, . . . , λn). Since Q is invertible we have
Q−1AQ = Λ.
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Real distinct eigenvalues

We can use the coordinate transformation to compute the matrix
exponential. First note that

(Q−1AQ)k = Q−1AQQ−1AQ . . .QQ−1AQ = Q−1AkQ.

Plugging this formula into the matrix exponential formula

eΛt = eQ
−1AQt =

∞∑

k=0

(Q−1AQ)ktk

k!
= Q−1(

∞∑

k=0

Aktk

k!
)Q = Q−1eAtQ

The flow map of the linear system is a coordinate change of the
flow map for a diagonal system.
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Complex eigenvalues

Since A is a real matrix complex eigenvalues must come in
complex conjugate pairs λ± = ρ± iω with corresponding complex
conjugate pair eigenvectors v , v̄ .

Let’s consider the 2× 2 case just to get started, change
coordinates via Q = [Re(v), Im(v)]

AQ = [Re(Av), Im(Av)]

= [Re(λv), Im(λv)]

= [ρRe(v)− ωIm(v), ωRe(v) + ρIm(v)]

= Q

[
ρ ω
−ω ρ

]
.
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Complex eigenvalues

This is called the real canonical form of the matrix

Q−1AQ =

[
ρ −ω
ω ρ

]
=

[
ρ 0
0 ρ

]
+

[
0 −ω
ω 0

]
= R +Ω.

The diagonal matrix R = ρI causes exponential growth / decay
eρt , the skew symmetric matrix Ω causes rotation with period 2π

ω .
By same arguments from before

eQ
−1AQt = Q−1eAtQ

so we just need to compute the matrix exponential of the
canonical form, and since Ω and R commute e(R+Ω)t = eRteΩt .
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Complex eigenvalues

For skew symmetric matrix Ω we compute by induction the powers
are

Ω2n = (−1)n
[
ω2n 0
0 ω2n

]

and

Ω2n+1 = (−1)n
[

0 −ω2n+1

ω2n+1 0

]

so

eΩt =

[ ∑∞
n=0(−1)n ω2nt2n

(2n)! −∑∞
n=0(−1)n ω2n+1t2n+1

(2n+1)!∑∞
n=0(−1)n ω2n+1t2n+1

(2n+1)!

∑∞
n=0(−1)n ω2nt2n

(2n)!

]

=

[
cosωt − sinωt
sinωt cosωt

]
.
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Complex eigenvalues

1.5. Linear Systems in R2 23

t and the origin is called an unstable focus. Whenever A has a pair of
complex conjugate eigenvalues with nonzero real part, a ± ib, with a < 0,
the phase portraits for the system (1) is linearly equivalent to one of the
phase portraits shown in Figure 3. Note that the trajectories in Figure 3 do
not approach the origin along well-defined tangent lines; i.e., the angle 0(t)
that the vector x(t) makes with the x1-axis does not approach a constant
Bo as t -+ oo, but rather I9(t)I -+ oo as t - oo and Ix(t)I - 0 as t - oo in
this case.

Case IV. B = lb0 -b
0]

The phase portrait for the linear system (2) in this case is given in
Figure 4. Cf. Problem 1(d) in Problem Set 1. The system (2) is said to
have a center at the origin in this case. Whenever A has a pair of pure
imaginary complex conjugate eigenvalues, fib, the phase portrait of the
linear system (1) is linearly equivalent to one of the phase portraits shown
in Figure 4. Note that the trajectories or solution curves in Figure 4 lie on
circles Ix(t)I = constant. In general, the trajectories of the system (1) will
lie on ellipses and the solution x(t) of (1) will satisfy m < Jx(t)I < M for all
t E R; cf. the following Example. The angle 0(t) also satisfies I0(t)I --' 00
as t -+ oo in this case.

b>0 b<0

Figure 4. A center at the origin.

If one (or both) of the eigenvalues of A is zero, i.e., if det A = 0, the
origin is called a degenerate equilibrium point of (1). The various portraits
for the linear system (1) are determined in Problem 4 in this case.

Example (A linear system with a center at the origin). The linear
system

* = Ax
with

A- r0 -41
1 0

22 1. Linear Systems

cases. It is called a proper node in the first case with A = µ and an improper
node in the other two cases. If A > p > 0 or if A > 0 in Case II, the arrows
in Figure 2 are reversed and the origin is referred to as an unstable node.
Whenever A has two negative eigenvalues A < µ < 0, the phase portrait
of the linear system (1) is linearly equivalent to one of the phase portraits
shown in Figure 2. The stability of the node is determined by the sign of
the eigenvalues: stable if A < u < 0 and unstable if A > u > 0. Note that
each trajectory in Figure 2 approaches the equilibrium point at the origin
along a well-defined tangent line 0 = 00, determined by an eigenvector of
A, ast -.oo.

x2 x2 x2

X=µ

X1

Figure 2. A stable node at the origin.

Case III. B = I
b

al with a < 0.

b>O
b<O

Figure S. A stable focus at the origin.

X<0

The phase portrait for the linear system (2) in this case is given in
Figure 3. Cf. Problem 9. The origin is referred to as a stable focus in these
cases. If a > 0, the trajectories spiral away from the origin with increasing

Figure: ρ = 0: center, ρ < 0: stable spiral, ρ > 0 unstable spiral (reverse
arrows). Sign of ω determines rotation direction ω > 0
counter-clockwise, ω < 0 clockwise.
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Distinct eigenvalues

If the matrix A has n distinct eigenvalues (real or complex) then
we can combine the previous two ideas and put the matrix in
normal form.

List the eigenvalues

λ1, . . . , λk , λk+1, λ̄k+1 . . . , λk+ℓ, λ̄k+ℓ

all distinct with λj = ρj + iωj , the first k real and the last 2ℓ
complex. Each eigenvalue has an associated eigenvector
wj = uj + ivj together forming a basis of Rn

B = {u1, . . . , uk , uk+1, vk+1, . . . , uℓ, vℓ}.
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Distinct eigenvalues

Then the real normal form can be written as a block diagonal
matrix

Q−1AQ = diag(λ1, . . . , λk ,D1, . . . ,Dℓ)

with the coordinate transformation

Q = [u1, . . . , uk , uk+1, vk+1, . . . , uk+ℓ, vk+ℓ]

and block matrices

Dj =

[
ρj −ωj

ωj ρj

]
.
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Degenerate eigenvalues

Recall that eigenvalues are roots of the characteristic polynomial

0 = det(A− λI ) =
n∏

j=1

(λ− λj).

The algebraic multiplicity α(µ) of an eigenvalue µ is the order of
the root of the characteristic polynomial at µ.

On the other hand each eigenvalue has at least one eigenvector
and we can define the eigenspace

ker(A− µI ) = {v ∈ Cn : (A− µI )v = 0}.

The dimension of the eigenspace associated with µ is always less
than or equal to the algebraic multiplicity of the eigenvalue µ and
it is called the geometric multiplicity.
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Generalized eigenspaces

When the algebraic multiplicity is strictly larger than the geometric
multiplicity we need to look at the generalized eigenspaces

Ek(µ) = {v ∈ Cn : (A− µI )kv = 0}.

The generalized eigenspaces have a triangular structure

(A− µI )Ek(µ) ⊂ Ek−1(µ).
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Cyclic vectors

It turns out we can reduce to the case of a single generalized
eigenspace Rk = Ek(µ) with a cyclic vector v so that

span(v , (A− µI )v , · · · , (A− µI )k−1v) = Rk

and changing coordinates with

Q = [v , (A− µI )v , · · · , (A− µI )k−1v ]

we get

Q−1AQ =




µ 1 0 · · · 0
0 µ 1 · · · 0
...

. . .
. . .

...
... µ 1
0 · · · · · · 0 µ



.
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Degenerate eigenvalues: simplest example

The simplest example of a degenerate eigenvalue is the matrix

A =

[
λ 1
0 λ

]
.

In this case the matrix cannot be diagonalized by a coordinate
transform, but we can still compute the matrix exponential. In
particular note that the matrix

N = A− λI =

[
0 1
0 0

]

is nilpotent, Nm = 0 for some power m (in this case m = 2
works).
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Degenerate eigenvalues: simplest example

The matrix exponential can then be computed by

eAt = e(A−λI )t+λIt

= eNteλt

= (I + Nt +
1

2
N2t2 + · · · )eλt

= (I + Nt)eλt

=

[
eλt teλt

0 eλt

]

Degenerate eigenvalues cause polynomial changes in the
growth/decay, this is particularly important when there is a zero
eigenvalue.
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Degenerate stable node

Take λ = −1 above, the solutions of the previous ODE are of the
form

x1(t) = ae−t + bte−t and x2(t) = be−t .

x1

x 2
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Larger Jordan blocks (real eigenvalue)

Let’s look at a general k × k Jordan block associated with a real
eigenvalue λ

A =




λ 1 0 · · · 0
0 λ 1 · · · 0
...

. . .
. . .

...
... λ 1
0 · · · · · · 0 λ



.

As before N = A− λI is nilpotent, now with order k , Nk = 0.
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Larger Jordan blocks (real eigenvalue)
Observe that

N =




0 1 0 · · · 0
0 0 1 · · · 0
...

. . .
. . .

...
... 0 1
0 · · · · · · 0 0



, N2 =




0 0 1 · · · 0
0 0 0 1 · · · 0
...

. . .
. . .

. . .
...

...
. . .

. . . 1
... 0
0 · · · · · · 0




up to

Nk−1 =




0 0 0 · · · 1
0 0 0 · · · 0
...

. . .
. . .

...
... 0 0
0 · · · · · · 0 0




and Nk = 0.

William M Feldman (Utah) MATH 6410 Fall 2024 29 / 110



Larger Jordan blocks (real eigenvalue)
Then the matrix exponential gives

eAt = eλt(I + Nt + · · ·+ Nk−1tk−1

(k − 1)!
)

or, explicitly,

eAt = eλt




1 t t2

2 · · · tk−1

(k−1)!

0 1 t · · · tk−2

(k−2)!
...

. . .
. . .

...
... 1 t
0 · · · · · · 0 1



.

Or, in other words, the solutions of the ODE ẋ = Ax are

x(t) = P(t)eλte1 + P ′(t)eλte2 + · · ·+ P(k−1)(t)eλtek

where P is any polynomial of order at most k − 1.
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Larger Jordan blocks (complex eigenvalue)

For a repeated complex eigenvalue can either allow for matrices
with complex entries, or to keep real entries, use the complex
Jordan block form

A =




D I2×2 0 · · · 0
0 D I2×2 · · · 0
...

. . .
. . .

...
... D I2×2

0 · · · · · · 0 D



.

which is a 2ℓ× 2ℓ matrix, I2×2 are 2× 2 identity matrices, 0 are
2× 2 zero matrices, and D is a 2× 2 matrix of the form

D =

[
ρ −ω
ω ρ

]
.
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Larger Jordan blocks (complex eigenvalue)

As before can separate D = ρI2×2 +Ω with the skew symmetric

2× 2 matrix Ω =

[
0 −ω
ω 0

]
and write

A = ρI + diag(Ω, . . . ,Ω) + N

where the matrix N is nilpotent of order ℓ so solutions are of the
form

xk(t) = P
(k−1)
1 (t)eρt cosωt + P

(k−1)
2 (t)eρt sinωt

where P1 and P2 are polynomials of order at most ℓ− 1.

Note that this gives a solution space of dimension 2ℓ as expected.
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Commutation

Problem (Not formally assigned)

Suppose that A is a k × k matrix and Bij are k × k matrices for
1 ≤ i , j ≤ m which each commute with A. Show that the
mk ×mk block matrices commute

A =




A 0 · · · 0

0 A
...

...
. . . 0

0 · · · 0 A




and B =




B11 · · · B1m
...

. . .
...

Bm1 · · · Bmm


 .
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Larger Jordan blocks (real eigenvalue)
The relevant computation is

N2 =




0 0 I2×2 · · · 0
0 0 0 I2×2 · · · 0
...

. . .
. . .

. . .
...

...
. . .

. . . I2×2
... 0
0 · · · · · · 0




up to

Nℓ−1 =




0 0 0 · · · I2×2

0 0 0 · · · 0
...

. . .
. . .

...
... 0 0
0 · · · · · · 0 0




and Nℓ = 0.
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Jordan normal form

Let A be an n × n real matrix with, possibly repeated, real
eigenvalues λ1, . . . , λk and complex eigenvalues
λk+1, λ̄k+1 . . . , λk+ℓ, λ̄k+ℓ with λj = ρj + iωj and k + 2ℓ = n.

There are generalized eigenvectors wj = uj + ivj so that

Q = [u1, . . . , uk , uk+1, vk+1, . . . , uk+ℓ, vk+ℓ] is invertible

and Q transforms A to block diagonal form

Q−1AQ = diag(J1, . . . , Jm)

where each Ji is a Jordan block associated with a real or complex
eigenvalue.
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Stability / instability of autonomous linear
systems
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Stable/unstable/center subspaces

Consider the linear system

ẋ = Ax

with eigenvalues λ1, . . . , λk , λk+1, λ̄k+1 . . . , λk+ℓ, λ̄k+ℓ, possibly
repeated, with λj = ρj + iωj , and generalized eigenvectors
wj = uj + ivj forming a basis of Rn

B = {u1, . . . , uk , uk+1, vk+1, . . . , uℓ, vℓ}.

Then define the stable subspace Es , unstable subspace Eu, and
center subspace Ec

Es = span{uj , vj : ρj < 0}, Eu = span{uj , vj : ρj > 0},

and
Ec = span{uj , vj : ρj = 0}.
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Example: stable and center subspace

Consider the 3× 3 system, which is already in its real canonical
form,

A =




0 −1 0
1 0 0
0 0 −1


 .

In this case eigenvalues are ±i and −1 and

Es = span(e3), Eu = {0}, and Ec = span(e1, e2).

Solutions are of the form

x(t) = [r cos(t + θ), r sin(t + θ), ze−t ]T

parameters (r , θ, z) are the cylindrical coordinates of x0.

William M Feldman (Utah) MATH 6410 Fall 2024 38 / 110



Example: stable and center subspace

x(t) = [r cos(t + θ), r sin(t + θ), ze−t ]T

Solutions starting above xy -plane converge to a limit cycle on the
xy -plane as t → ∞.

x 3

x2 x1
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Invariance of stable/unstable/center subspaces

Theorem
Let A be an n × n matrix then

Rn = Es ⊕ Eu ⊕ Ec

and the subspaces Es , Eu and Ec are all invariant under the flow
eAt .

Proof.
1. The subspaces Es , Eu and Ec are linearly independent and span
Rn by the set up (we started with a basis of generalized
eigenvectors and just split it into three disjoint subsets).
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Invariance of stable/unstable/center subspaces

Proof (ctd...)

2. Next let’s check that AE ⊂ E if E is a generalized eigenspace
associated with an eigenvalue λ. Note that if v ∈ E so
(A− λI )kv = 0 for some minimal k then

(A− λI )k−1(A− λI )v = 0

so (A− λI )v is also in E , or

Av ∈ λv + E = E .

Since Es , Eu and Ec are direct sums of generalized eigenspaces
they are also mapped to themselves by A.
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Invariance of stable/unstable/center subspaces

Proof (ctd...)

3. Finally we consider the action of eAt . For v ∈ Es

eAtv = lim
k→∞

(I + A+ · · ·+ Ak

k!
)v

then (I + A+ · · ·+ Ak

k! )v is in Es for all k and since subspaces of
finite dimensional spaces are closed the limit eAtv is also in Es .
The same argument applies to Ec and Eu.
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Stability theorem

Theorem
The following are equivalent

▶ All eigenvalues of A have negative real part.

▶ For all x0 ̸= 0 we have limt→∞ eAtx0 = 0 and
limt→−∞ |eAtx0| = +∞.

▶ There are constants M, m, a and b positive so that for all
t > 0

|eAtx0| ≤ Me−at |x0|
and for all t < 0

|eAtx0| ≥ me−bt |x0|.

In this case we say that the stationary solution at 0 is
asymptotically stable.
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Stable and unstable subspaces

Theorem
For a real matrix A there are constants M, m, a and b positive so
that:

▶ For all x0 ∈ Es and all t > 0

|eAtx0| ≤ Me−at |x0|

▶ For all x0 ∈ Eu and all t > 0

|eAtx0| ≥ mebt |x0|.
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Stable and unstable subspaces

Theorem (Continued...)

▶ For all x0 ∈ Ec

|eAtx0| ≤ M(1 + tk)|x0|

where k is the largest difference between the algebraic and
geometric multiplicity of any eigenvalue with 0 real part. If
k = 0 and Eu is trivial then all solution are bounded and we
say the system is stable.

▶ If x0 ̸∈ Es ⊕ Ec (in particular Eu is non-trivial) then

|eAtx0| → ∞ as t → +∞.
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Nonlinear stability of fixed points
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Nonlinear stability

Consider a nonlinear autonomous system

ẋ = f (x)

with f smooth and f (0) = 0.

If all of the eigenvalues of Df (0) have strictly negative real part
then the fixed point at zero is said to be linearly stable.

In this setting we can also prove a type of nonlinear stability.
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Nonlinear stability

Theorem
Suppose that f is smooth and f (0) = 0 and all eigenvalues of
Df (0) have negative real part. Then there is a δ > 0 and α > 0 so
that any solution of

ẋ = f (x) and x(0) = x0

with |x0| ≤ δ will satisfy

|x(t)| ≤ Ce−αt |x0|.
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Perturbed linear systems

To attack this theorem will first study nonlinear perturbations of
linear systems

ẋ = A(t)x + g(t, x) with x(0) = x0.

We will be able to consider either stable constant coefficient
systems or stable time periodic systems.

We encapsulate both cases with the following generalized
assumption on the fundamental matrix solutions of the
homogeneous equation:

Call Φ(t) to be the principal matrix solution of the homogeneous
equation and Π(t, s) = Φ(t)Φ(s)−1 to be the principal matrix
solution started at time s. Assume that, for some C ≥ 2,

∥Π(t, s)∥op ≤ Ce−α(t−s) for t ≥ s ≥ 0.
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Perturbed linear systems

Next we consider the assumption on the perturbation term g(t, x)
in

ẋ = A(t)x + g(t, x) with x(0) = x0.

We assume that

|g(t, x)| ≤ b0|x | for all |x | ≤ δ.

With these two assumptions we can prove that, if |x0| ≤ δ/C and
b0C < α then

|x(t)| ≤ De−(α−b0C)t |x0| for t ≥ 0.

William M Feldman (Utah) MATH 6410 Fall 2024 50 / 110



Perturbed linear systems
Proof

Treating the term g as a perturbation the natural thing is to use
Duhamel

x(t) = Π(t, 0)x0 +

ˆ t

0
Π(t, s)g(s, x(s)) ds.

Let T = inf{t > 0 : |x(t)| ≥ δ} > 0 and estimate by triangle
inequality for 0 ≤ t ≤ T

|x(t)| ≤ ∥Π(t, 0)∥op|x0|+
ˆ t

0
∥Π(t, s)∥op|g(s, x(s))| ds

≤ Ce−αt |x0|+
ˆ t

0
Ce−α(t−s)b0|x(s)| ds.

Multiplying both sides by eαt we see an opportunity to apply
Grönwall to z(t) = eαt |x(t)|.
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Perturbed linear systems
Proof

Writing in terms of z(t) = eαt |x(t)|

z(t) ≤ C |x0|+
ˆ t

0
Cb0z(s) ds

and then applying Grönwall inequality

z(t) ≤ C |x0|eCb0t

or
|x(t)| ≤ C |x0|e−(α−Cb0)t .

In particular if |x0| ≤ δ/C then |x(t)| ≤ δ for all t > 0 and
T = +∞.
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Application to nonlinear systems

In the setting of a nonlinear system f with a linearly stable fixed
point at the origin, by Taylor’s theorem with remainder,

f (x) = Df (0)x + R(x)|x |

where the remainder term has the bound

|R(x)| → 0 as |x | → 0.
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Application to nonlinear systems

By the linear stability there are C ≥ 2 and α > 0 so that

∥eDf (0)t∥op ≤ Ce−αt for t ≥ 0.

Let δ > 0 sufficiently small so that |x | ≤ δ implies

|R(x)| ≤ 1

2
C−1α.

Then the system

ẋ = f (x) = Df (0)x + R(x)|x |

fits the assumptions of the linear perturbation theorem and

|x(t)| ≤ C |x0|e−
α
2
t for t > 0 as long as |x0| ≤ δ.
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Non-autonomous linear systems

William M Feldman (Utah) MATH 6410 Fall 2024 55 / 110



Non-autonomous linear systems

Consider the non-autonomous system

ẋ = A(t)x

for x ∈ Rn and A(t) a continuously varying n × n matrix.

For each standard basis vector ej = (0, . . . , 1, . . . , 0)T the vector
with 1 in the jth entry and the rest zeros, define ϕj to be the
solution of

ϕ̇j(t) = A(t)ϕj(t) with ϕj(0) = ej .

These solutions form a basis for the space of all solutions, for an
arbitrary initial data v ∈ Rn

x(t) = v1ϕ1(t) + · · ·+ vnϕn(t)

is a solution of the ODE with x(0) = v (superposition principle).
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Fundamental matrix

Define
Φ(t) = [ϕ1(t), · · · , ϕn(t)]

the matrix with the basis solutions ϕj(t) as the columns. Φ is
called a fundamental matrix / fundamental solution / principal
matrix solution for the ODE.

You can check Φ(0) = I and

x(t) = Φ(t)x0 is the solution of the ODE with x(0) = x0.

To solve from a different initial time t0

x(t) = Φ(t)Φ(t0)
−1x0.
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Variation of parameters / Duhamel again

The fundamental solution Φ associated with the homogeneous
system can be used also to solve inhomogeneous systems

ẋ = A(t)x + f (t).

The variation of parameters / Duhamel’s formula in this case is

x(t) = Φ(t)x0 +

ˆ t

0
Φ(t)Φ(s)−1f (s) ds.

Proof is a direct computation (and application of uniqueness), but
let’s see some motivated derivations too.
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Variation of parameters derivation

In this derivativation let’s make the ansatz that

x(t) = Φ(t)c(t) for some c with c(0) = x0,

which is where the name “variation of parameters” comes from.
Differentiating we find

ẋ(t) = Φ̇(t)c(t) + Φ(t)ċ(t) = A(t)Φ(t)c(t) + Φ(t)ċ(t)

which, in order that x(t) solve the inhomogeneous ODE, must
satisfy

A(t)Φ(t)c(t) + Φ(t)ċ(t) = A(t)Φ(t)c(t) + f (t)

or
ċ(t) = Φ(t)−1f (t).

This can be integrated in t to find c(t) and then x(t).
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Wronskian

Let Φ(t) = [ϕ1, . . . , ϕn] be a fundamental matrix associated with
the equation Φ̇ = A(t)Φ. The Wronskian is

W (t) := det(Φ(t)).

Then we have Liouville / Abel’s formula

Ẇ (t) = tr(A(t))W (t) and so W (t) = W (t0)e
´ t
t0
tr(A(s)) ds

.

Remark
Our previous formula for the evolution of the Jacobian determinant
det(Dϕt(x)) of the flow map of a nonlinear system is a special
case of Liouville / Abel’s formula (Dϕt(x) was a fundamental
matrix for a non-autonomous linear system).
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Liouville / Abel’s formula

We just apply Jacobi’s formula again

d

dt
W (t) = det′(Φ(t))[Φ̇(t)]

= det(Φ(t))tr(Φ(t)−1Φ̇(t))

= W (t)tr(Φ(t)−1A(t)Φ(t))

= W (t)tr(A(t))

ending by the cyclic property of trace.
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Application of Liouville / Abel’s formula

For example the Sturm-Liouville-type equation

ü + p(t)u̇ + q(t)u = 0.

Writing this as a first order system

d

dt

[
u
u̇

]
=

[
0 1

−q(t) −p(t)

] [
u
u̇

]
.

Since tr(A(t)) = 0 in this case we can find

W (t) = u1(t)u̇2(t)− u̇1(t)u2(t) = e−
´ t
0 p(s) dsW (0)

where u1 and u2 are any two solution of the ODE.
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Application of Liouville / Abel’s formula

In particular, if [u1(0), u̇1(0)] and [u2(0), u̇2(0)] are linearly
independent then

|W (t)| = |u1(t)u̇2(t)− u̇1(t)u2(t)| > 0 for all t > 0.

Immediately we can derive that if uj(t) = 0 at some time t then
u̇j(t) ̸= 0 (which also follows from uniqueness), and u2(t) ̸= 0.

Lemma
The zeros of u1 and u2 are interlaced.

Proof.
Suppose a, b are subsequent zeroes of u1. Then u̇1(a) and u̇1(b)
have opposite signs. Since W (a) = u̇1(a)u2(a) > 0 and
W (b) = u̇1(b)u2(b) > 0 then u2(a) and u2(b) must also have
opposite signs. That is, u2 has a zero on (a, b).
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Zero interlacement
Numerical solutions

ü + 1
20 u̇ + (1 + 1

2 cos(t))u = 0

with initial data for [u, u̇] chosen as [1, 0] and [0, 1].

0 2 4 6 8 10 12 14
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Order reduction

Liouville’s formula can also allow for explicit computations of
solutions in certain special cases, mainly for 2× 2 systems. For
example if you happen to know one solution y(t) of a 2× 2 system

ẋ = A(t)x

you can pick an initial data z(0) linearly independent from y(0)
and use Louville’s formula

det([y(0), z(0)])e
´ t
0 A(s) ds = y1(t)z2(t)− y2(t)z1(t)

solve this for (say) z2(t) in terms of z1(t) and then plug that into
the ODE

ż1(t) = A11(t)z1(t) + A12(t)z2(t)

to get a scalar ODE for z1 which may be explicitly solvable.
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Floquet Theory
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Linear systems with periodic coefficients

This leads us to consider systems of the type

ẋ = A(t)x

with A(t) a periodic function of time with minimal period T > 0
i.e.

A(t) = A(t + T ) for all t.
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Floquet theorem

Solutions of this equation will not generally be periodic, solutions
of constant coefficient equations grow exponentially eAtx0. Instead
we can find an exponential to “mod out” by making solutions
periodic.

Theorem (Floquet)

There is a matrix B and aT-periodic function P(t) with P(0) = I ,
possibly with complex entries, so that

Φ(t) = P(t)eBt .

Furthermore there is a matrix C and a 2T-periodic function P̃(t)
with P̃(0) = I , both with real entries, so that

Φ(t) = P̃(t)eCt .
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1-d case

In the case of a scalar equation we can solve explicitly

ẋ(t) = a(t)x(t) then x(t) = e
´ t
0 a(s) dsx0.

Define

ā =
1

T

ˆ T

0
a(s) ds and P(t) = e

´ t
0 a(s)−ā ds .

The function P(t) is periodic with period T and

x(t) = P(t)e ātx0.
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The monodromy matrix

Let Φ(t) be a fundamental matrix for the ODE ẋ = A(t)x . Note
that Φ(t + T ) solves

d

dt
(Φ(t + T )) = A(t + T )Φ(t + T ) = A(t)Φ(t + T )

so it is also a fundamental matrix. Define the monodromy matrix

M = Φ(0)−1Φ(T ).

Note that M is invertible by Liouville’s formula. Since Φ(t)M is a
matrix solution with the same initial data as Φ(t + T ) they agree
for all t

Φ(t + T ) = Φ(t)M.
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Floquet multipliers

The eigenvalues µ1, . . . , µn (possibly repeated and possibly
complex) of the monodromy matrix are called the Floquet
Multipliers. They are all nonzero because the monodromy matrix
is the product of nonsingular matrices and is therefore nonsingular.

Corresponding to each eigenvalue is an eigenvector wj (possibly
complex) and defining χj(t) = Φ(t)wj we find a solution with the
property

χj(t + T ) = Φ(t + T )wj = Φ(t)Mwj = µjΦ(t)wj = µjχj(t).

Evolving over multiple periods

χj(t + kT ) = µk
j χj(t)

which converges exponentially to zero if |µj | < 1 and converges
exponentially to ∞ if |µj | > 1.
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Floquet exponents

Define the Floquet exponents

γj =
1

T
log(µj)

where log is the complex logarithm of z = |z |e iarg(z)

log(z) = log |z |+ iarg(z).

The argument arg(z) is the angle of z from the positive real axis,
up to adding a factor 2πk . Note that even when all multipliers are
real, if any are negative then the corresponding exponent is
complex, i.e. if µj < 0 then

logµj = log |µj |+ iπ.
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Factorization into an exponential and a periodic function

With the Floquet exponents we can write

χj(t) = eγj tpj(t)

where pj is a T -periodic (possibly complex) function. To check the
periodicity

pj(t + T ) = χj(t + T )e−γj (t+T )

= χj(t)µje
−γj (t+T )

= χj(t)e
γjT e−γj (t+T )

= pj(t).
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Factorization into an exponential and a real periodic
function

If all eigenvalues µj are real we would like to factor by a real
exponential and a real periodic function, this is possible by
doubling the period. We write

χj(t) = e
t
T
log |µj |qj(t)

then

qj(t + T ) = χj(t + T )e−
1
T
log |µj |(t+T )

= χj(t)µje
− 1

T
log |µj |(t+T )

= χj(t)e
log(µj )−log |µj |e−

t
T
log |µj |

= sgn(µj)qj(t).
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Floquet theorem (back to matrices)

Now let’s return to the full matrix formulation. Recall that the
property of the monodromy matrix M = Φ(0)−1Φ(T )

Φ(t + T ) = Φ(t)M.

We can evolve the fundamental solution for any integer k ≥ 1
number of periods using the monodromy matrix

Φ(t + kT ) = Φ(t + (k − 1)T )M = · · · = Φ(t)Mk .

This already shows an exponential type behavior over multiple
periods, but we would like to see this with continuous time instead
of discrete period increments.
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Floquet theorem (back to matrices)

If we could find a matrix B with eBT = M then we would define

P(t) = Φ(t)e−Bt

and we need to check that this P is indeed T -periodic.
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Floquet theorem

To check the periodicity we look at

P(t + T ) = Φ(t + T )e−B(t+T )

= Φ(t + T )e−B(t+T )

= Φ(t)Me−BT e−Bt

= Φ(t)MM−1e−Bt

= P(t)

So we need a notion of matrix logarithm for invertible matrices to
make this argument go through.
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Matrix Logarithm

Given a matrix A we wish to find B so that

A = eB .

This could be called the matrix logarithm B = log(A). Since
matrix exponentials are always invertible we certainly need to
assume that A is invertible.

The matrix logarithm can be defined by fixing a branch of the
complex logarithm and then using its local power series expansion.
If the matrix A has real entries and all eigenvalues have positive
real part then there is a version of log(A) with all real entries.
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Matrix Logarithm

Re(z)

Im(z)

L

λ1
λ2

λ3
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Matrix Logarithm

More precise result:

Lemma
If the matrix A has real entries and all of its real eigenvalues have
positive real part (e.g. this is true for the square of any real
matrix) then there is a version of log(A) with all real entries.

First we claim that it is enough to compute the (real) logarithm of
the real Jordan canonical form J = Q−1AQ. If we can do this then
define

log(A) = Q log(J)Q−1

and we check

e log(A) = eQ log(J)Q−1
= Qe log(J)Q−1 = QJQ−1 = A.

So this is indeed a logarithm of A.
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Matrix Logarithm
Reduction to single block

Now we are working with a matrix in real Jordan canonical form,

J = diag(J1, . . . , Jm)

where each Ji is a Jordan block.

Suppose we can compute log(Ji ) for each of the Jordan blocks.
Then define

log(J) = diag(log(J1), . . . , log(Jm)).

Note that

diag(A1, . . . ,Am)
k = diag(Ak

1 , . . . ,A
k
m)

for any block diagonal matrix with square blocks Ai .
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Matrix Logarithm
Reduction to single block

We can check

e log(J) =
∞∑

k=0

1

k!
diag(log(J1), . . . , log(Jm))

k

=
∞∑

k=0

1

k!
diag(log(J1)

k , . . . , log(Jm)
k)

= diag(
∞∑

k=0

1

k!
log(J1)

k , . . . ,

∞∑

k=0

1

k!
log(Jm)

k)

= diag(e log(J1), . . . , e log(Jm))

= J.
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Matrix Logarithm
Single block with real eigenvalue

Consider a single k × k Jordan block with a real eigenvalue λ

J = λI + N

with N nilpotent of order k.

Writing J = λ(I + 1
λN) and inspired by the power series

log(1 + x) =
∞∑

j=1

(−1)j

j
x j converging for |x | < 1,

we define

log(J) = log(λ)I +
k−1∑

j=1

(−1)j

jλj
N j .

If λ > 0 this is a real matrix. Checking e log(J) = J is then a matter
of power series algebra.
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Matrix Logarithm
Single block with complex eigenvalue pair

Now consider a single 2k × 2k real Jordan block for a complex
conjugate eigenvalue pair ρ± iω

J = diag(D, . . . ,D) + N

with N nilpotent of order k and

D =

[
ρ −ω
ω ρ

]
.

We rewrite ρ± iω in the polar form ρ± iω = re±iθ and then

D = r

[
cos(θ) − sin(θ)
sin(θ) cos(θ)

]
.
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Matrix Logarithm
Single block with complex eigenvalue pair

In this form we recognize that

logD = log(r)I2×2 +

[
0 −θ
θ 0

]
.

Using the shorthand D̄ = diag(D, . . . ,D) we write

J = D̄(I + D̄−1N).

Using the commutation of D̄ and N, the matrix D̄−1N is still
nilpotent of order k. We can define the logarithm

log J = diag(logD, . . . , logD) +
k−1∑

j=1

(−1)j

j
D̄−jN j .
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Floquet theorem (again)

So we have now proven the Floquet theorem:

Theorem (Floquet)

There is a matrix B and aT-periodic function P(t) with P(0) = I ,
possibly with complex entries, so that

Φ(t) = P(t)eBt .

Furthermore there is a matrix C and a 2T-periodic function P̃(t)
with P̃(0) = I , both with real entries, so that

Φ(t) = P̃(t)eCt .
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Floquet stability

Since continuous periodic functions are bounded the stability of
the flow map Φ(t) = P(t)eBt is determined by the constant
coefficient matrix exponential eBt .

Corollary

If all Floquet exponents have negative real part (i.e. all Floquet
multipliers have |µj | < 1) then there are M and a positive so that

|Φ(t)x0| ≤ Me−at

i.e. 0 is asymptotically stable. If all Floquet multipliers have
|µj | ≤ 1 (i.e. all Floquet exponents have Re(γj) ≤ 0) and all
multipliers with |µj | = 1 have non-degenerate eigenspaces the the
system is stable i.e.

Φ(t)x0 is bounded for all t > 0 and all x0.
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A trick for showing instability

In general showing stability/instability requires integrating the
ODE over one period for the fundamental solution Φ(T ). For
2× 2 systems sometimes we can get away with knowing only one
solution by using the Wronskian / reduction of order trick. We will
see that later, let’s see a simple trick which will sometimes work
for general n × n systems.
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A trick for showing instability

Recall that, by Liouville’s formula,

det(M) =
det(Φ(T ))

det(Φ(0))
= e

´ T
0 tr(A(s)) ds

since the determinant is the product of the eigenvalues

det(M) = e
∑n

j=1 Tγj = e
´ T
0 tr(A(s)) ds .

So

Re(
n∑

j=1

γj) =
1

T

ˆ T

0
tr(A(s)) ds.

Thus if 1
T

´ T
0 tr(A(s)) ds > 0 then there is at least one Floquet

exponent with positive real part and the system is unstable for
t > 0.
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Hill’s equation

A general form of equation for which Floquet theory is useful is
Hill’s equation

ẍ + q(t)x = 0 with q a T -periodic function.

Originated by G.W. Hill in 1877 in a study of (linearized) stability
of the lunar orbit, attempting to explain motion of the lunar
perigee. Many other specific equations which fall under this form
as well (e.g. Mathieu equation). As a 2× 2 system becomes

d

dt

[
x
ẋ

]
=

[
0 1

−q(t) 0

] [
x
ẋ

]
.
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Hill’s equation

If Φ is the principal fundamental solution and M = Φ(T ) is the
monodromy matrix then, by Liouville’s formula,

det(M) = det(Φ(0)) = 1.

Thus the characteristic equation of M is, in terms of ∆ = 1
2 tr(M),

µ2 − 2∆µ+ 1 = 0

and the roots are
µ± = ∆±

√
∆2 − 1.
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Hill’s equation

Case 1: (∆2 > 1) In this case both

µ± = ∆±
√

∆2 − 1

are real and have the same sign σ = sgn(∆).

Since µ+µ− = 1 one multiplier is larger and one is smaller than 1
in absolute value.

There are two linearly independent solutions of the form

χ±(t) = e
1
T
log |µ±|tp±(t) with p±(t + T ) = σp(t).

Thus the system is unstable in this case.
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Hill’s equation

Case 2: (∆2 < 1) In this case there are two complex eigenvalues

µ± = ∆± i
√
1−∆2

with real part ∆ < 1. Both eigenvalues have complex modulus
|µ±| = 1.

There are two linearly independent solutions of the form

χ±(t) = e
1
T
iarg(µ±)tp±(t) with p±(t + T ) = p(t)

where arg is a branch of the complex argument.

Thus the system is stable (but not asymptotically stable) in this
case.
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Hill’s equation

Case 3: (∆2 = 1) In this case there is a single real eigenvalue

µ = ∆

and there are two solutions p± with

p±(t + T ) = σp±(t)

either T periodic or 2T periodic depending on the sign of ∆. Or,
if the multiplier is degenerate the two solutions have the form

p+(t) and p+(t) + tp−(t).

Thus the stability of the system depends on the degeneracy of the
multiplier.
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Hill’s equation stability

Theorem
Hill’s equation is stable if |∆| < 1 and unstable if |∆| > 1.
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Matheiu’s equation

Matheiu’s equation

ẍ + ω2(1 + ε cos(t))x = 0

arises in modeling the motion of a charged particle moving in the
electric field of a quadropole with an oscillating voltage.

Since stability depends strongly on ω and ε, and ω depends on the
particle mass this system can be used to filter ions by mass
(technically mass/charge ratio) .
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Matheiu’s equation96 3. Linear equations
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Figure 3.6. Numerically computed stability diagram for the Mathieu
equation with 0 ≤ ω ≤ 3 and −1.5 ≤ ε ≤ 1.5.

a certain region. This can be used to filter charged particles according to
their mass (quadrupole mass spectrometry).

Hill’s equation also can be used as a simple one-dimensional model in
quantum mechanics to describe a single electron moving in a periodic field
(cf. Problem 5.36). We will further investigate this problem in Section 5.6.

Problem 3.39. Consider
ẋ = a(t)Ax,

where a : R → R is periodic with period T and A is a constant two by two
matrix. Compute the Floquet exponent, and find P (t, t0) and Q(t0) in this
case.

Problem 3.40. Compute the monodromy matrix where A(t) is of period 1
and given by

A(t) =





(
α 1

0 α

)
, 0 ≤ t < 1

2 ,

(
α 0

1 α

)
, 1

2 ≤ t < 1,

α ∈ C.

Note that since A(t) is not continuous you have to match solutions at every
discontinuity such that the solutions are continuous (cf. Section 2.3).

For which values of α remain all solutions bounded? Show that the bound
found in Problem 3.31 is optimal by considering A(t/T ) as T → 0.

(Note that we could approximate A(t) by continuous matrices and obtain
the same qualitative result with an arbitrary small error.)

Problem 3.41. Show that any fundamental matrix solution U(t) of a pe-
riodic linear system can be written as U(t) = V (t) exp(tR), where V (t) is
periodic and R is similar to Q(t0).

Author's preliminary version made available with permission of the publisher, the American Mathematical Society

Figure: Stability diagram for Matheiu’s equation, shaded regions
|∆(ω, ε)| > 1 are unstable. Note that these branch from ω ∈ 1

2N where
|∆(ω, 0)| = | cos(2πω)| = 1.
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Periodic orbits of forced linear systems

Consider a time-periodic forced system

ẋ = A(t)x + b(t) (1)

where both A and b have period T (not necessarily the minimal
period for either).

Does this system have a T -periodic solution?

Theorem
If 1 is not a Floquet multiplier for the homogeneous system then
(1) has a T-periodic solution.
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Periodic orbits of forced linear systems

1. It is enough to find a solution with x(T ) = x(0). If we had such
a solution then x(t) and x(T + t) are both solutions of (1) with
the same initial data so, by uniqueness, they are the same.

2. We use Duhamel’s formula

x(T ) = Φ(T )x(0) +

ˆ T

0
Φ(T )Φ(s)−1b(s) ds.

In order for x(T ) = x(0) we would need then

(I − Φ(T ))x(0) =

ˆ T

0
Φ(T )Φ(s)−1b(s) ds

and plugging back in we see that if x(0) satisfies this equation
then x(T ) = x(0).
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Periodic orbits of forced linear systems

The equation

(I − Φ(T ))x(0) =

ˆ T

0
Φ(T )Φ(s)−1b(s) ds

is guaranteed to have a solution if I − Φ(T ) is invertible. This is
the case as long as

v − Φ(T )v ̸= 0 for v ̸= 0

i.e. Φ(T ) does not have 1 as an eigenvalue.
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One motivation: linearizing near a limit cycle

Consider a nonlinear autonomous equation

ẋ = f (x)

which has a non-trivial periodic orbit x with minimal period T

x(t + T ) = x(t) for all t ∈ R.

Consider now solutions which start at a point z0 near the trajectory
Γx . By making a time translation of x we can assume |z0 − x(0)| is
small. We write

z(t) = x(t) + εy(t)

and look for the equation solved by y(t).
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One motivation: linearizing near a limit cycle

We compute

ẏ(t) =
1

ε
(ż(t)− ẋ(t)) =

1

ε

(
f (x(t) + εy(t))− f (x(t))

)
.

Using the Taylor expansion centered at x(t) on the right

ẏ(t) = Df (x(t))y(t) + O(ε|y(t)|2).

If we ignore the higher order terms, which would need to be
justified, we would find a linear equation with a T -periodic
coefficient matrix A(t) = Df (x(t)), this is called the linearization.
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Degeneracy of the linearization

Now, if we can compute the associated monodromy matrix we can
classify the linear stability of the limit cycle x(t).

One thing to note is that the time translation symmetry of the
underlying periodic orbit x(t) always generates a periodic solution
of the linearization, and hence an eigenvalue 1 of the monodromy
matrix. Precisely this is

z(t) = ẋ(t)

which always solves

ż(t) = ẍ(t) =
d

dt
f (x(t)) = Df (x(t))z(t).
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Degeneracy of the linearization

This degeneracy caused by the time translations does not rule out
(linear) asymptotic stability of the periodic orbit as long as the
center subspace Ec for M is only 1-dimensional and the unstable
subspace Eu is trivial.

Vaguely explained reason: when y(0) ̸∈ Ec(0) may need to slightly
perturb the initial time to εt0 so that

ỹ0 = x(0) + εy(0)− x(εt0) ∈ Es(εt0).

We will really get into nonlinear stability later, this is just an idea.
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Contrived example

Let’s start with a simple, but contrived, example of a limit cycle.
In (r , θ) polar coordinates on the (x1, x2) plane

ṙ = r(1− r) and θ̇ = 1.

In these coordinates it is easy to see there is a 2π-periodic orbit
when r = 1 and we can guess that it is stable based on the stability
of the fixed point at 1 for the r equation. Still let’s transform to
(x1, x2) coordinates and try to apply Floquet Theory ideas.
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Contrived example

Transforming to (x1, x2) coordinates we find

ẋ1 = ṙ cos θ − r θ̇ sin θ

= r(1− r) cos θ − r sin θ

= (1− (x21 + x22 )
1/2)x1 − x2.

and similarly
ẋ2 = (1− (x21 + x22 )

1/2)x2 + x1.

The periodic solution of this equation is

ξ(t) =

[
cos(t)
sin(t)

]
.
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Contrived example

To compute the linearization we need Df (x)

Df (x) =

[
− x21

r + (1− r) −1− x1x2
r

1− x1x2
r − x22

r

]

Evaluating along the periodic solution, which is on the set r = 1,
we find

A(t) := Df (ξ(t)) =

[
− cos2(t) −1− cos(t) sin(t)

1− cos(t) sin(t) − sin2(t)

]

So the linearization around this periodic solution is the ODE

ẏ(t) = A(t)y(t).
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Contrived example

We know there is always one eigenvalue 1 of the monodromy
matrix and a periodic solution of the linearization corresponding to
the time translation symmetry

z(t) =
d

dt

[
cos(t)
sin(t)

]
=

[
− sin(t)
cos(t)

]
.

If y(t) is the solution with initial data [0, 1]T then
Φ(t) = [z(t), y(t)] is a fundamental solution and M = Φ(2π) is a
monodromy matrix. To find the other eigenvalue of M we write
out the characteristic polynomial

0 = λ2 − tr(M)λ+ det(M).
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Contrived example
We can compute the determinant of M using Liouville’s formula

det(M) = det(Φ(t))

= det(Φ(0))e
´ t
0 trA(s)ds

= e−2π

Since we also know that λ = 1 is one of the two roots of
det(M − λI ) is one we can solve for the trace

tr(M) = 1 + e−2π

and the other root
λ = e−2π.

The corresponding Floquet exponent is

γ =
1

2π
log(λ) = −1.
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Nonlinear stability of periodic orbits

We need some more concepts and will come back to this topic
later!
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