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Initial value problems

William M Feldman (Utah) MATH 6410 Fall 2024 2 / 21



Initial value problems

Initial value problem (IVP) for a first order system: find
x(t) : [0,T ] → Rn solving{

ẋ(t) = f (t, x(t)) for t ∈ (0,T )

x(0) = x0.
(1)

where f : [0,T ]× U → Rn is continuous, U ⊂ Rn open, and
x0 ∈ U.
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Following a vector field
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The fundamental questions

Mathematical theory of differential equations always starts with a
set of questions called well-posedness
▶ Existence: “Is there a solution?”

▶ Local (i.e. small interval around initial time)
▶ Global (all positive times)

▶ Uniqueness: “Is there only one solution?”
▶ Regularity of the dependence on the data.
▶ Regularity of the dependence on the equation.
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Qualitative features

Once we have understood the basics we can begin to ask more
refined questions and start to really understand the solutions of a
particular ODE.

▶ Long time / asymptotic behavior of solutions
▶ Dependence on the equation

▶ Bifurcation theory
▶ Perturbation theory
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Higher order equations

What about differential equations involving higher order
derivatives? Why just consider first order systems?

General abstract higher order ODE, look for y(t) solving{
F (y (k), . . . , y (1), y , t) = 0 for t > 0

y (j)(0) = y0,j for 0 ≤ j ≤ k − 1.
(2)

If ∂1F (y⃗0, 0) ̸= 0 then, by implicit function theorem, can solve for
y (k) (locally)

y (k)(t) = g(t, y(t), . . . , y (k−1)(t))
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Higher order equations (ctd...)

Now write
x(t) = (y(t), . . . , y (k−1)(t))T ∈ Rk

Which solves the first order system{
ẋ(t) = f (t, x(t)) for t > 0

x(0) = (y(0), y (1)(0), . . . , y (k−1)(0))T
(3)

with
f (t, x) = (x2, x3, . . . , xk−1, g(t, x1, . . . , xk))

T
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Examples and ideas
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Newton’s Equations

Particle of mass m > 0 at position x(t) moves in R under the
influence of a force field F : R → R and a kinetic frictional force
(coefficient µ ≥ 0) opposing motion

mẍ = −µẋ + F (x).

It is common to view this as a first order system by considering the
equation for (x , p) = (x ,mẋ) the position and momentum{

ẋ = 1
mp

ṗ = − µ
mp + F (x).

(4)
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Newton’s Equations

Newton’s equations have a conserved (µ = 0) / dissipated (µ > 0)
quantity. Multiply the ODE by ẋ

mẍ ẋ − ẋF (x) = −µẋ2

and note that the left hand side is a derivative

d

dt
(
p2

2m
+ V (x)) = −µẋ2 ≤ 0

where

V (x) = −
ˆ x

0
F (u) du.
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Newton’s Equations

This quantity is called the Hamiltonian

H(p, x) =
p2

2m
+ V (x)

When µ = 0 the solutions of Newton’s equations remain on level
sets of the Hamiltonian and the first order system has the
Hamiltonian form {

ẋ = ∂H
∂p (p, x)

ṗ = −∂H
∂x (p, x).
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Newtons equations: mass on spring

Ideal point mass m on a spring with constant k, rest state at 0,

H(p, x) =
p2

2m
+

1

2
kx2.

x

p
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Damped mass on spring

x

p
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Newtons equations: pendulum

Ideal point mass m hung on a string of length L, θ is the angle
from the vertical axis and p = mLθ̇ is the momentum

H(p, x) =
p2

2m
+mgL(1− cos θ).

x

p
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Damped pendulum

x

p
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Population dynamics

Most basic equation of population dynamics is the most basic ODE
of all

Ṅ = rN and N(0) = N0.

Models, for example, population growth of some species, nuclear
decay, etc. The number r is the reproduction / decay rate.

Slightly more sophisticated is the logistic growth model

Ṅ = rN(1− N/K ) and N(0) = N0.

Here K is the carrying capacity.
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Phase line analysis

Plot the positive/negative regions of f (N) = rN(1− N/K ) on R

K0

Solutions converge to critical point (zero of f and stationary
solution of the ODE) either 0 or K based on where initial data
sits. We will make this rigorous later.
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Population dynamics

Now if we add in “harvesting” to the logistic growth model

Ṅ = rN(1− N/K )− H and N(0) = N0

where H is the number of the population harvested per unit time.

For H < rK
4 there are two positive fixed points, which collide and

annihilate at H = rK
4 , called a saddle-node bifurcation.

H

N

rK
4

0

K

K/2
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Chemical reaction

Reversible synthesis/decomposition reaction between chemicals A
and B producing AB

A+ B
k1
⇌
k2

AB

forward reaction occurs with rate k1 backwards occurs with rate k2.

Call nX (t) to be the concentration of reactant X at time t, then
the densities evolve by the ODE system{

ṅAB = k1nAnB − k2nAB

ṅA = ṅB = k2nAB − k1nAnB .
(5)
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Chemical reactions: homework

Problem
Consider the chemical reaction system{

ṅAB = k1nAnB − k2nAB

ṅA = ṅB = k2nAB − k1nAnB .

▶ Show that nA − nB , nAB + nA, nAB + nB , and
nAB + 1

2(nA + nB) are all invariant quantities under the
evolution.

▶ Use this to rewrite the initial value problem as a single
equation for x(t) = nA(t) with parameters α = nA(0)− nB(0)
and β = nAB(0) + nA(0).

▶ Use phase line analysis to determine the long time behavior of
x(t).
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