
HOMEWORK PROBLEMS MATH 6420

INSTRUCTOR: WILL FELDMAN

Each problem shows the date assigned. Problems are due approximately
one and a half weeks after the assignment date, each problem will have a
separate gradescope assignment which you can use to help keep track of
due dates. See the most up to date syllabus for more details about late
submissions etc.

Problem 1 (Jan 14). Solve the following initial value / initial boundary
value problems using the method of characteristics. I usually find it helpful
to draw a picture of the space-time domain and the characteristics.

(a) Let b ∈ Rn, c ∈ R find the general solution of,{
ut + b ·Dxu = cu (x, t) ∈ Rn × (0,∞)
u(x, 0) = g(x) x ∈ Rn.

Hint: Take the derivative of z(s) = u(x+sb, t+s) as we did in class,
just ż will not equal to zero now.

(b) Find the general solution of{
ut + xux = 0 in R× (0,∞)

u(x, 0) = g(x) in R.

Hint: Look for a path x(t) so that d
dtu(x(t), t) = 0 (instead of the

straight line paths from class).
(c) Let b > 0 find the general solution of,{

ut + bux = 0 for (x, t) ∈ (0,∞)× (0,∞)
u(x, 0) = f(x) and u(0, t) = g(t).

How would your solution change if b < 0.
Hint: Draw the space-time domain, draw the characteristics (lines

parallel to (b, 1)) and think about where they cross the boundary of
the space-time domain.

(d) Find the general solution of,{
ut + x1/2ux = 0 for (x, t) ∈ (0,∞)× (0,∞)
u(x, 0) = f(x) and u(0, t) = g(t)
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Problem 2 (Jan 14). Use the method of characteristics to solve the follow-
ing equation {

ut + x|x|ux = 0 (x, t) ∈ R× (0,∞)
u(x, 0) = f(x) x ∈ R.

After finding the general solution, suppose additionally that f(x) = 0 for
|x| ≤ r. Show that there is minimal time T (r) so that for any such f the
corresponding solution u satisfies u(·, t) ≡ 0 for all t ≥ T , calculate T (r).

Problem 3 (Jan 19). [Evans, 2nd edition, Ch. 2 Problem 5] Let U be a
bounded domain of Rn. We say u ∈ C2(U) is subharmonic if

−∆u ≤ 0 in U.

(a) Prove for subharmonic v that

v(x) ≤ 1

|B(x, r)|

∫
B(x,r)

v(y) dy for all B(x, r) ⊂ U.

(b) Prove that the weak maximum principle holds for subharmonic v ∈
C2(U) ∩ C(U).

(c) Let φ : R → R be smooth and convex. Assume u is harmonic and
v = φ(u). Prove that v is subharmonic.

(d) Prove v = |Du|2 is subharmonic whenever [EDIT] u is harmonic(you
can assume that |Du|2 is C2(U)).

Problem 4 (Jan 19). We say that u ∈ C(U) is weakly harmonic in U if for
every φ ∈ C∞c (U) ∫

U
u(x)∆φ(x) dx = 0.

Show that if u is weakly harmonic then u is C2 and harmonic.
Hint: Read Appendix C.5 in Evans on the topic of “Convolution and

smoothing”.

Problem 5 (Jan 21). Let U be a bounded domain of Rn and u ∈ C2(U) ∩
C(U) which is harmonic in U . Suppose that u(x0) = minU u = 0 at some
x0 ∈ ∂U . Suppose that U has an interior tangent ball at x0, that is there
exists x1 so that B(x1, r) ⊂ U and ∂B(x1, r) ∩ ∂U = {x0}. Prove that if u
is not constant then,

∂u

∂ν
(x0) < 0,

where ν is the outward unit normal to B(x1, r) at x0.

Note: I have not assumed enough to guarantee that the normal derivative
∂u
∂ν (x0) actually exists so take the problem statement to mean,

lim sup
h→0+

u(x0)− u(x0 − hν)

h
< 0.

Hint: First use strong maximum principle to conclude that u > 0 in U
or u is constant. If u > 0 in U try to show that u(x) ≥ c(|x−x1|2−n− r2−n)
in B(x1, r) \B(x1, r/2) for some small c > 0.
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Problem 6 (Jan 21). Let U be a bounded domain of Rn with C2 bound-
ary, in particular it has an interior tangent ball at every boundary point.
Using the result of the previous problem show that any two solutions of the
Neumann problem

(N)

{
−∆u = f in U
∂u
∂ν = h on ∂U

differ by a constant.

Problem 7 (Jan 21). Let U be a bounded domain of Rn and b : U → Rn
be continuous. Prove that there is at most one solution u ∈ C2(U) ∩ C(U)
of the Dirichlet problem,{

−∆u+ b(x) · ∇u = f(x) in U
u = g(x) on ∂U.

Hint: Prove a weak maximum principle for solutions of −∆u+b(x)·∇u =
0. You should try to follow the second method I used in lecture, first show
the maximum principle for strict subsolutions satisfying −∆u+b(x)·∇u < 0.
Next, for non-strict subsolutions (e.g. solutions), you will need to make a
perturbation like we did in class, using v(x) = δ|x|2 will not work anymore
though so you will need to find a better function to perturb by. I recommend
to look for a perturbing function v(x1) (as opposed to looking for something
radial).

Problem 8 (Jan 25). Evans, 2nd edition, Chapter 2, Problem 6.

Problem 9 (Jan 25). Evans, 2nd edition, Chapter 2, Problem 10.

Problem 10 (Jan 25). Suppose that u is harmonic in Rn and grows sub-
quadratically:

lim
R→∞

1

R2
sup
BR

|u(x)| = 0.

Show that u is linear on Rn.

Problem 11 (Jan 25). Show that the set

X = {u harmonic on B(0, 1) and |u| ≤ 1}

is compact in C(K) for any K ⊂ B(0, 1) compact. Show the same for

Y = {u harmonic and non-negative on B(0, 1) and u(0) ≤ 1}.

Note: More precisely show that for any sequence (un)∞n=1 in X (or Y )
and any compact K ⊂ B(0, 1) the sequence un has a uniformly convergent
subsequence and the limit is also harmonic. To find the subsequence you
will apply the Arzela-Ascoli theorem, you will need to use information about
harmonic functions to show that the assumptions of Arzela-Ascoli hold.
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Problem 12 (Jan 27). Consider the problem of minimizing the Dirichlet
energy

I[v] =

∫
U
|Dv|2 dx

over the admissible class

A = {v ∈ C2(U) : v|∂U = 0 and

∫
U
|v|2 dx = 1}.

Show that if u satisfies
I[u] = min

v∈A
I[v]

then u solves the Dirichlet eigenvalue problem with eigenvalue λ0 = minv∈A I[v]

(1)

{
−∆u = λu in U

u = 0 on ∂U.

Show that if λ1 is another eigenvalue of the Dirichlet Laplacian on U , i.e.
there exists a non-trivial solution of (1) with λ = λ1, then λ1 ≥ λ0.

Hint: Note that perturbations u+εϕ with ϕ ∈ C∞c (U) do not necessarily
satisfy the L2-integral constraint, instead try (u+εϕ)/‖u+εϕ‖L2(U). [EDIT:

Problem originally said C1 test functions, that was not intended.]

Problem 13 (Jan 27). Consider the energy

I[v] =

∫
U

1

2
|Dv|2 − fv dx

on the admissible class
A = C2(U).

Show that if u satisfies
I[u] = min

v∈A
I[v]

then u solves the Neumann problem{
−∆u = f in U
∂u
∂ν = 0 on ∂U.

Hint: First use test functions ϕ ∈ C∞c (U) (compactly supported in U),
then use general test functions in C∞(U). [EDIT: Problem originally said
C1 test functions, that was not intended.]

Problem 14 (Feb 2). Evans, 2nd edition, Chapter 2, Problem 9.

Problem 15 (Feb 2). Evans, 2nd edition, Chapter 2, Problem 10. [EDIT:
Mistakenly repeated problem.]

Problem 16 (Feb 2). Evans, 2nd edition, Chapter 2, Problem 11.
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Problem 17 (Feb 7). Let U a bounded domain in Rn and α ∈ (0, 1).
Suppose that u ∈ C2(U) ∩ C(U) solves{

−∆u = |u|α in U

u(x) = 0 on ∂U

Show that
sup
U
|u| ≤ C

where the constant C depends only on n, α and diam(U).
Hint: Evans Chapter 2, problem 6.

Problem 18 (Feb 7). This problem considers the stationary Schrödinger
operators L = −∆ +V (x) with zero Dirichlet data on a bounded domain U

(2)

{
−∆u+ V (x)u = 0 in U

u = 0 on ∂U

(a) Show by example (of domain and V (x)) that the maximum principle
can fail for the above PDE.

Hint: For the sake of making an example just consider dimension
n = 1 and an interval, think of eigenfunctions.

(b) Show that if sup |V (x)| ≤M there exists δ(M) so that if

diam(U) ≤ δ
then the only solution u ∈ C2(U) ∩ C(U) of (2) is u ≡ 0.

Hint: Similar idea to the proof of Evans Chapter 2, problem
6. Think of proving a bound for solutions of the Poisson equation
−∆u = f(x) in U with u = 0 on ∂U and then applying here.

(c) Show that if sup |V (x)| ≤M there exists δ(M) so that if

U ⊂ {0 < x1 < δ}
then the only solution u ∈ C2(U) ∩ C(U) of (2) is u ≡ 0.

Problem 19 (Feb 7). Show that if U ⊂ Rn is a connected unbounded
domain and u ∈ C2(U) ∩ C(U) solves

−∆u = 0 in U

u = 0 on ∂U

lim|x|→∞ u(x) = 0

then u = 0.
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Problem 20 (Feb 7). Show that if U ⊂ Rn is a bounded domain (connected)
and u, v ∈ C2(U) ∩ C(U) solve

−∆w + |Dw|2 = 0 in U

with
u ≤ v on ∂U

then u ≤ v in U . This is called a comparison principle which is a general-
ization of the maximum principle appropriate for nonlinear equations.

Hint: First assume that u is a strict subsolution −∆u + |Du|2 < 0 and
prove the result. Use the first and second derivative tests at the point where
max(v − u) is obtained. Then for the case −∆u+ |Du|2 = 0 try perturbing
u(x) + εφ(x) to make u a strict subsolution with φ(x) = e−cx1 .

Problem 21 (Feb 7). Consider the Dirichlet problem

(3)


−∆u = 0 in B(0, 1) \ {0}
u(x) = 0 on ∂B(0, 1)

u(0) = −1.

Show that if we define the maximal subsolution of this problem

u(x) := sup{v(x) : v is a subsolution of (3)}
then u ≡ 0.

Hint: Try using the fundamental solution to create a sequence of subso-
lutions which converge to 0.

Problem 22 (Feb 14). Evans, 2nd edition, Chapter 2, Problem 14.

Problem 23 (Feb 14). Evans, 2nd edition, Chapter 2, Problem 15.

Problem 24 (Feb 14). Let g : R→ R be a continuous function with

lim
x→−∞

g(x) = a and lim
x→+∞

g(x) = b.

Let u(x, t) be the solution of the heat equation on R× (0,∞) given by,

u(x, t) =

∫
R

Φ(x− y, t)g(y) dy with Φ(x, t) =
1√
4πt

e−x
2/4t.

Show that for every R > 0

sup
|x|≤R

|u(x, t)− a+ b

2
| → 0 as t→∞.
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Problem 25 (Feb 17). Show the following bounds on moments of the heat
kernel ∫

Rn
Φ(y, t)|y|pdy ≤ Ctp/2

for a constant C depending on p and the dimension.

Problem 26 (Feb 17). Let g : Rn → R be bounded and α-Hölder continuous
for some α ∈ (0, 1]

[g]Cα := sup
x 6=y

|g(x)− g(y)|
|x− y|α

< +∞.

Let u be the solution of the heat equation with initial data g, i.e. u(x, t) =∫
Rn Φ(x − y, t)g(y) dy where Φ is the heat kernel. Show that there is a

constant C depending only on the dimension n so that

sup
x,t
|∂tu|+

∑
i,j

sup
x,t
|∂2xixju| ≤ C[g]Cαt

α
2
−1.

We can use this estimate in the proof of Duhamel’s formula to reduce the
regularity requirement on f(x, t) to just uniformly bounded and uniformly
Hölder continuous in x, briefly explain why this works.

Hint: The result of the previous problem is useful. Notice also that∫
Rn Φ(x−y, t)dy = 1 for all t so 0 = ∂2xixj

∫
Rn Φ(x−y, t)dy = −

∫
Rn ∂

2
yiyjΦ(x−

y, t) dy and also 0 = ∂t
∫
Rn Φ(x− y, t)dy.

Problem 27 (Feb 23). Consider the heat equation IBVP set in a bounded
domain U {

ut −∆u = 0 in U × (0,∞)

u(x, 0) = g(x)

with g(x) ≥ 0. We will consider both Dirichlet and Neumann boundary
conditions:

(a) Show that under the Dirichlet condition u = 0 on ∂U × (0,∞) we
have

d

dt

∫
U
u(x, t) dx ≤ 0.

(b) Show that under the Neumann boundary condition ∂u
∂ν = 0 on ∂U ×

(0,∞)
d

dt

∫
U
u(x, t) dx = 0.

(c) Assume that u(x, t)→ u∞(x) as t→∞ in a sufficiently strong sense
to justify that (1) u∞ is a stationary solution of the heat equation
in U i.e. it is harmonic −∆u∞ = 0, (2) the Dirichlet/Neumann
boundary conditions on ∂U are still satisfied by u∞. In each case
(Dirichlet/Neumann) identify u∞ in terms of g.
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Problem 28 (March 15). Suppose that ρ(x, t) is a smooth solution of the
reaction-diffusion equation

ρt = ρxx + ρ(1− ρ) for t > 0 with 0 ≤ ρ(x, 0) ≤ 1

with ρ(x, t) is 1-periodic on R for all t ≥ 0. Show that 0 ≤ ρ(x, t) ≤ 1 for
all t > 0.

Problem 29 (March 15). Evans, 2nd edition, Chapter 2, Problem 19(d).

Problem 30 (March 15). Evans, 2nd edition, Chapter 2, Problem 23.

Problem 31 (March 15). Evans, 2nd edition, Chapter 2, Problem 24.

Problem 32 (March 16). Let A : Rn → Sn where Sn is the space of real
symmetric n × n matrices. Suppose that 0 ≤ A(x) ≤ Λ in the sense of
matrices, i.e. ΛI −A and A are non-negative definite. Show that there is at
most one smooth solution of the wave type equation,{

utt −∇ · (A(x)∇u) = f(x, t) in Rn × (0,∞)
u(x, 0) = φ(x), ut(x, 0) = ψ(x) in Rn.

Hint: You should show a finite speed of propagation property as we did
in class. One of the key elements is to select a backwards light cone with
a large enough propagation speed. Note that it is not possible to do this
by looking at the energy on all of Rn (why?). You may find it useful to
prove the following inequality for all vectors v, w ∈ Rn (which uses just that
A(x) ≥ 0),

2〈A(x)v, w〉 ≤ 〈A(x)v, v〉+ 〈A(x)w,w〉.



HOMEWORK PROBLEMS MATH 6420 9

Problem 33 (March 18). In one dimension one can prove from D’Alembert’s
formula that the solution of the wave equation with intial data (u, ut) =
(φ, 0) satisfies the bound

(4) sup
x,t
|u(x, t)| ≤ sup

x
|φ(x)|.

Consider the initial value problem for the wave equation in R3:

(5)

{
utt −∆u = 0 in R3 × (0,∞)

u = φ, ut = ψ on R3 × {t = 0}.

We will show that a uniform in time estimate on the supremum norm (similar
to (4) in dimension 1) cannot hold for solutions of the wave equation in R3.
Heuristically speaking, initially small (in supremum norm) disturbances can
be arranged to concentrate at some future time resulting in very large local
oscillations.

(a) Let us first consider a situation with φ and ψ smooth and supported
in B(0, 1). Prove that u(x, t) is supported in the annulus B(0, t +
1) \B(0, t− 1) and,

sup
x
|u(x, t)| ≤ C 1

t2
(sup
x
|φ(x)|+ t sup

x
|Dφ(x)|+ t sup

x
|ψ(x)|),

for some constant C.
(b) Show that if u is a solution of the wave equation for t ∈ (0,∞) and

T > 0 then

v(x, t) = u(x, T + t) + u(x, T − t) solves the wave equation in R3 × (0, T )

with v(x, 0) = 2u(x, T ) and vt(x, 0) = 0.
(c) For every ε > 0 small and M > 0 large give an example of a com-

pactly supported initial data for the wave equation in R3 so that
supx |φ|, supx |Dφ| ≤ ε, ψ(x) = 0 but there is a positive time T (ε)
so that supx |u(x, T )| ≥M .

Remark: This problem is an example of a more general principle. For
a time reversible equation, if certain initial data leads to decay in time of
some norm of the solution, then also there must be initial data which leads
to growth in time of that norm.

Problem 34 (March 30). Evans, 2nd edition, Chapter 3, Problem 5.

Problem 35 (March 31). Consider the transport equation

ut + a(x, t) · ∇u = 0.

Prove that if u is a C1 solution and β : R → R is an arbitrary C1 function
then β(u(x, t)) is a solution as well.
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Problem 36 (March 31). Find the characteristics for the problem,

ut =
1

2
((ux)2 + x2)

with the initial condition u(x, 0) = x. The solution will not be defined for
|t| ≥ π/2. Explain that from the behavior of the characteristics.

Problem 37 (April 4). Consider the solution of Burger’s equation with
smooth initial data u0,{

ut + uux = 0 in R× (0,∞)

u(x, 0) = u0(x) in R.

Suppose that u′0 is bounded in R.

(1) Compute, in terms of u0, the first time t∗ (possibly +∞) when char-
acteristics cross.

(2) Derive a necessary and sufficient condition on u0 so that t∗ = +∞
and therefore Burger’s equation has a smooth solution for all t > 0.

Problem 38 (April 4). Consider the following scalar conservation law{
ut + f(u)x = 0 in R× (0,∞)

u(x, 0) = −x in R.

Show that if f ′′(z) ≥ θ > 0 for all z ∈ R then infx∈R ∂xu(x, t) → −∞ in a
finite time.

Problem 39 (April 4). (Evans 2nd edition, Chapter 3 problem 19) Assume
that f(0) = 0 and u is a continuous integral solution of{

ut + f(u)x = 0 in R× (0,∞)

u(x, 0) = u0(x) in R,

and u has compact support in R× [0, T ] for each T > 0, prove that,∫
R
u(x, t) dx =

∫
R
u0(x) dx

for all t > 0.
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Problem 40 (April 7). The general existence and uniqueness theory for
scalar conservation laws of the form,

(6) ut + F (u)x = 0 in R× (0,∞)

is based on the idea of entropy solutions. Let η be a smooth convex function,
we call this an entropy, define the entropy flux q by,

q(u) :=

∫ u

0
η′(v)F ′(v) dv.

The pair (η, q) is called an entropy pair.

(a) Show that if uε is a smooth solution of the viscous approximation to
the conservation law,

uεt + F (uε)x = εuεxx in R× (0,∞)

and (η, q) is an entropy pair then,

(7) η(uε)t + q(uε)x ≤ εη(uε)xx in R× (0,∞).

Since we expect the physically relevant solutions of (6) to arise as limits of
the viscous approximation we expect that (7) should hold in some form for
the (correct) solutions of (6). This motivates the definition of an entropy
solution:

Definition 1. Say u ∈ L∞(R× (0,∞)) is an entropy solution of (6) if u is a
weak solution of (6) and for every entropy pair (η, q) and every non-negative
test function ϕ compactly supported in R× (0,∞),

(8)

∫
R×(0,∞)

η(u)ϕt + q(u)ϕx dxdt ≥ 0.

(b) Show that if u is an entropy solution of (6) in a region V of space-
time and u is smooth on either side of a smooth parametrized curve
(a shock) C = {(γ(t), t) : t ∈ I ⊂ R} with u, ut, and ux uniformly
continuous in the regions V` and Vr to the left and right of C then
the shock satisfies the Lax entropy condition,

f ′(u`(γ(t), t)) ≥ γ′(t) ≥ f ′(ur(γ(t), t)) for all t ∈ I.
Here u` and ur are the left and right limits of u along C respectively.

Hint: First show that (8) implies a kind of Rankine-Hugoniot con-
dition for η(u). Then choose a good entropy/entropy flux pair.

(c) Show that if u is an entropy solution of (6) s.t. u(x, t) has compact
support in x for each t > 0, with initial data u(x, 0) = u0(x) then
for every p ≥ 1,∫

R
|u(x, t)|p dx ≤

∫
R
|u0(x)|p dx for all t > 0.

Give an example of a weak solution of Burger’s equation for which
this inequality does not hold.
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Problem 41 (April 12). Evans, 2nd edition, Chapter 3, Problem 20.

Problem 42 (April 12). Evans, 2nd edition, Chapter 3, Problem 9.

Problem 43 (April 12). Evans, 2nd edition, Chapter 3, Problem 10.

Problem 44 (April 12). Evans, 2nd edition, Chapter 3, Problem 13.

Problem 45 (April 12). Evans, 2nd edition, Chapter 3, Problem 14.

The remaining problems are optional and do not need to be
turned in. They are just some of my recommendations for learning
the material from the last week of the class.

Problem 46. Evans, 2nd edition, Chapter 5, Problem 7.

Problem 47. Evans, 2nd edition, Chapter 6, Problem 4.

Problem 48. Evans, 2nd edition, Chapter 6, Problem 5.


