MATH 6220 HOMEWORK 2

DUE DATE: FRIDAY, FEBRUARY 11

Final version. If you do not have access to the textbook for problems let me know and I can help.

Problems:

- 1. Homotopy.
 - (a) Prove that any star-shaped region is simply connected. A region Ω is called star-shaped if there is a point $z_0 \in \Omega$ so that for any $z \in \Omega$ the line segment $[z_0, z] \subset \Omega$.
 - (b) Show that $\mathbb{C} \setminus (-\infty, 0]$ is simply connected.
 - (c) Give two non-homotopic simple closed curves in $\mathbb{D} \setminus \{0\}$ which contain the point $\frac{1}{2}$.
- 2. Stein & Shakarchi, Chapter 2, Exercises 5, 6, 7, 9
- 3. Show that if $f : \mathbb{C} \to \mathbb{C}$ holomorphic has at most polynomial growth:

$$|f(z)| \le A + B|z|^{\alpha}$$
 for all $z \in \mathbb{C}$

for some $A, B, \alpha \in [0, \infty)$ then f is a polynomial.

- 4. Prove that if f is entire and $\lim_{|z|\to\infty} |f(z)| = +\infty$ then f is a polynomial. [**HINT**: Look at $g(w) = \frac{1}{f(1/w)}$, use the result of problem 5, and look at the power series expansion around w = 0.]
- 5. Show that if $f : \mathbb{D} \to \mathbb{C}$ is continuous and holomorphic in $\mathbb{D} \setminus \{1/2\}$ then f is holomorphic in \mathbb{D} . [EDIT: To be clear: f is continuous in the entire disc \mathbb{D} including 1/2.]
- 6. Show that if f is holomorphic in a domain Ω and $D_r(z_0) \subset \Omega$ then

$$f(z_0) = \frac{1}{2\pi r} \int_{C_r(z_0)} f(\zeta) d|\zeta|.$$

Also show that

$$f(z_0) = \frac{1}{\pi r^2} \int_{D_r(z_0)} f(\zeta) dA(\zeta)$$

where the integral dA is the standard Lebesgue area integral in \mathbb{C} as identified with \mathbb{R}^2 . [EDIT: Typos corrected]

7. Show that the family

 $\mathcal{F} = \{ f : \Omega \to \mathbb{C} | f \text{ holomorphic on } \Omega \text{ and } |f| \le M \}$

is compact as a subset of $C(K) = \{f : K \to \mathbb{C} : \text{continuous}\}$ for any K compact in Ω . [HINT/EDIT: Statement is unclearly phrased instead show the following: Show that every sequence in \mathcal{F} has a

subsequence which converges uniformly on K a function in C(K) which is holomorphic in int(K).]

8. Show that the family

 $\mathcal{F} = \{ f : \Omega \to \mathbb{C} | f \text{ holomorphic on } \Omega \text{ and } \int_{\Omega} |f|^2 dA \leq M \}$

is compact as a subset of $C(K) = \{f : K \to \mathbb{C} : \text{continuous}\}$ for any K compact in Ω . [HINT/EDIT: Statement is unclearly phrased instead show the following: Show that every sequence in \mathcal{F} has a subsequence which converges uniformly on K a function in C(K) which is holomorphic in $\operatorname{int}(K)$.]

- 9. Given an open set $\Omega \subset \mathbb{C}$ show that Ω has an exhaustion by compact sets, i.e. a family K_n of compact subsets of Ω so that $K_1 \subset K_2 \subset \cdots$ and $\Omega = \bigcup_{n=1}^{\infty} K_n$. (Try to make a simple construction)
- 10. Say that a sequence $f_n \in C(\Omega)$ converges *locally uniformly* in Ω to a function f if

$$\sup_{K} |f_n - f| \to 0 \text{ as } n \to \infty$$

for all K compact in Ω . Find a metric for this topology. **Hint:** $\rho(a,b) = \frac{d(a,b)}{1+d(a,b)}$ is a metric when d is.

- 11. Show that the family of holomorphic function \mathcal{F} from problem 7 is compact in the topology of local uniform convergence on Ω .
- 12. Stein & Shakarchi, Chapter 2, Exercise 10.