MATH 6220 HOMEWORK 1

DUE DATE: FRIDAY, JANUARY 28 MONDAY, JANUARY 31

Final version. If you do not have access to the textbook for problems let me know and I can help.

Computations:

- 1. Find a number z so that $z^2 = i$. Write it in the form z = x + iy.
- 2. Stein & Shakarchi Chapter 1: 1,9,16(abcd), 25

Problems:

- 1. Stein & Shakarchi Chapter 1: 3, 4, 5, 7 (in part (b), denoting F_w the function from the problem, show also that F_{-w} is the inverse of F_w [Correction] F_w is its own inverse I misread the definition in the book), 23, 24
- 2. Prove that if $f : \mathbb{C} \to \mathbb{C}$ is C^2 , viewed as a function $\mathbb{R}^2 \to \mathbb{R}^2$, and f is holomorphic on \mathbb{C} then f' is holomorphic.
- 3. Let γ be a smooth curve in \mathbb{C} and f continuous, when does $\overline{\int_{\gamma} f(z)dz} = \int_{\gamma} \overline{f(z)}dz$? [Update] answer the following reworded question: Let γ be a smooth curve in \mathbb{C} when does $\overline{\int_{\gamma} f(z)dz} = \int_{\gamma} \overline{f(z)}dz$ for all f continuous?
- 4. Suppose that $f : \mathbb{D} \to \mathbb{C}$ is holomorphic and $|f'(z)| \leq M$ then $|f(z) f(0)| \leq M|z|$. Formulate and prove an analogous bound for |f(z) f(w)| when $f : \Omega \to \mathbb{C}$ where Ω is a general path-connected domain.
- 5. Show that if f is holomorphic on an open connected set $\Omega \subset \mathbb{C}$ and f'(z) = 0 in Ω then f is constant. What if Ω is not connected?
- 6. Show that there is a holomorphic function on $\mathbb{C} \setminus (-\infty, 0]$ which is equal to $z^{1/2}$ on the positive reals. Hint: use the result of Stein & Shakarchi Chapter 1 problem 9.