
COURSE OUTLINE MATH 6420

INSTRUCTOR: WILL FELDMAN

1. Basics

General form of a PDE F (Dku, . . . , u, x) = 0 in U with boundary con-
ditions. Order of equation, linear (also semilinear, quasilinear and fully
nonlinear). Systems of equations.

1.1. Equations and applications. Transport, Laplace, Heat, Wave, Schrödinger.
Types of equations (parabolic, elliptic, hyperbolic/dispersive) and energy
concepts unifying.

1.2. Types of questions we ask about PDE. Well-posedness (exis-
tence, uniqueness (+stability)), Qualitative properties (regularity, special
solutions, scaling limits).

1.3. Conservation / balance laws. Field u(x, t) compute d
dt

∫
Ω u(x, t) dx.

1. Write the balance law with flux F and source s, 2. divergence theorem
and Ω arbitrary, 3. Relate flux (and maybe source term too) to original
field u to “close” the system via constitutive relation, this is some more
addition of the physics of the scenario. Continuity equation - flux bu. Heat
equation - energy conservation e = ρcu (density, specific heat, temperature),
heat flux Q = κ∇u (thermal conductivity), source term. Wave equation -
u is displacement, momentum conservation ρut, flux F = −k∇u (k is bulk
modulus).

2. Transport equation

2.1. constant coefficient. Start with constant b ∈ Rn

ut + b ·Du = 0 in Rn × (0,∞).

Notice that this is vanishing of a space-time directional derivative, define

z(s) = u(x+ sb, t+ s)

then

ż = ut + b ·Du = 0

so u is constant on lines parallel to (b, 1) in Rn × R. Draw picture. Now
initial value problem{

ut + b ·Du = 0 in Rn × (0,∞)

u(x, 0) = g(x).
1
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Note that (x+ sb, t+ s) hits the t = 0 plane at s = −t and y = x− tb so

u(x, t) = g(x− tb)
solves. Solutions translates in direction b. Derivation shows that any suffi-
ciently regular solution must be given by this formula, and if g ∈ C1 then
this formula solves. On the other hand, even if g is not C1 (it can even
be discontinuous!) the formula provides a (the only) reasonable candidate
solution. This is first example of weak solution.

2.2. non-constant coefficient. Now take b : Rn → Rn globally Lipschitz

ut + b(x) ·Du = 0 in Rn × (0,∞).

Look for some trajectories X(t) so that X(0) = x0

0 =
d

ds
u(X(t), t) = ut + Ẋ(t) ·Du

can satisfy if
Ẋ(t) = b(X(t)).

This is ODE flow! Draw a picture. So

u(x, t) = g(x0, t)

x0 is the initial data for ODE so that x = X(t;x0) = φt(x0) so x0 =
φ−1
t (x) = φ−t(x) i.e.

u(x, t) = g(φ−t(x), t)

2.3. non-homogeneous. Try the same idea but ż is non-zero now.

3. Laplace / Poisson equation

3.1. Fundamental solution. (Look for solution sharing the scaling invari-
ances of the equation). We will look for

u(x) = v(r)

note

∂r

∂xi
=

1

2
|x|−12xi = xi/r

so

uxi = v′(r)
xi
r

And uxixi = v′′(r)
x2
i

r2
+ v′(r)(

1

r
− x2

i

r3
)

so

∆u = v′′(r) +
(n− 1)

r
v′(r)

so

(log |v|)′ = 1− n
r

.

Fundamental solution is defined

Φ(x) =

{
− 1

2π log |x| n = 2
1

n(n−2)α(n)
1

|x|n−2 n ≥ 3
.
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Note |DΦ| ≤ C|x|1−n and |D2Φ| ≤ C|x|−n. Note that the Hessian has a
singularity at 0 which is apparently not integrable.

3.2. Solving Poisson equation in whole space. Observe that transla-
tions and linear combinations of Φ are also Laplace solutions (except at
singularities!). Define

u(x) =

∫
Rn

Φ(x− y)f(y) dy

for f ∈ C2
c (Rn) (regularity not so important). Then u ∈ C2 and −∆u = f .

Reminders about convolutions and divergence theorem!
Proof: 1. C2 apply difference quotients to f and use uniform convergence

of difference quotients to derivatives. 2. Apply Laplacian, split integral into
B(0, ε) and Rn \B(0, ε), estimate inner integral, integrate by parts in outer
integral estimate boundary term. 3. integrate by parts again in remaining
exterior term, use harmonicity, and finally compute last boundary term.

Interpret as −∆Φ = δ0!

3.3. The mean value formula. If u harmonic then

u(x) = −
∫
∂B(x,r)

udS = −
∫
B(x,r)

udy

proof: Define

φ(r) = −
∫
∂B(x,r)

u(y)dS(y) = −
∫
∂B(0,1)

u(x+ rz)dS(z)

take the derivative

φ′(r) = −
∫
∂B(0,1)

Du(x+ rz) · zdS(z)

go back to original y variable and note that this is integral of ∂u∂ν , then apply
divergence theorem. Evaluate∫

B(x,r)
u(y) dy =

∫ r

0

∫
∂B(x,s)

u(y)dS(y)ds.

Converse: If u is C2(U) and satisfies mean value property then u is harmonic.
Suppose ∆u 6= 0 somewhere in U , then use previous computation to find a
contradiction of MVP.

3.4. Mollification. The proof uses the idea of mollification. The function

η(x) =

{
ce
− 1

1−|x|2 |x| < 1

0 |x| ≥ 1

is C∞c (Rn). Choose the normalizing constant c so that
∫
Rn η(x) dx = 1.
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We define a recaled family ηε(x) = ε−nη(x/ε), this is called a family of
mollifiers. If we take

ηε ? f(x) =

∫
Rn

ηε(x− y)f(y) dy

then this family of functions is C∞ and we can typically show

ηε ? f → f as ε→ 0

with the notion of convergence depending on what functional space f lies
in. For example if f ∈ Lp(Rn) convergence will hold in Lp, if f ∈ Cc(Rn)
convergence will hold in uniform norm.

The proof always has the following basic structure (doing the Cc(Rn) case
as an example) using that

∫
ηε(x− y) dy = 1

ηε ? f(x)− f(x) =

∫
Rn

ηε(x− y)(f(y)− f(x))

and then using that ηε(x− y) = 0 for |y − x| ≥ ε and for |y − x| ≤ ε we use
the uniform continuity of f , |f(y)− f(x)| ≤ ω(|y − x|) ≤ ω(ε) so

|ηε ? f(x)− f(x)| ≤ ω(ε)

∫
Rn

ηε(x− y) dy = ω(ε)

etc etc. Make remark on derivative bound |Dkηε ? f | ≤ Cε−k‖f‖L1(B2ε)

3.5. Regularity of harmonic functions. If u ∈ C(U) satisfies the mean
value property for every ball B(x, r) ⊂ U then u is C∞ in U and, in partic-
ular, satisfies ∆u = 0 in U .

Now application to the MVP implies smooth: Let u as in the statement,
the mollification ηε ? uε, defined in Uε = {x ∈ U : d(x, ∂U) > ε}, is smooth
and

ηε ? u(x) =

∫
ηε(x− y)u(y) dy

=
1

εn

∫
B(x,ε)

η(
|x− y|
ε

)u(y) dy

=
1

εn

∫ ε

0

∫
∂B(0,r)

η(
r

ε
)u(x+ z) dS(z) dr

=
1

εn

∫ ε

0
η(
r

ε
)nα(n)rn−1u(x) dr

= u(x)

∫
B(0,ε)

ηε(y) dy = u(x)

So the mollification ηε ?u(x) = u(x) for all x ∈ Uε, i.e. u is C∞ in Uε. Since
ε > 0 was arbitrary u is smooth in U .

Make remark about bound on derivatives depending on distance to the
boundary.
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3.6. Interior regularity estimates. If u is harmonic in B(0, r) then

|Dαu(0)| ≤ C

r|α|
−
∫
B(0,r)

|u| dx.

Proof: Differentiate solid ball MVP, integrate by parts, bound by sup on
B(0, r/2). Bound sup on B(0, r/2) by L1 average on B(0, r) by MVP again.
Induction for general |α|.

Give minor spiel about why regularity is important: weak solution to clas-
sical solution, quantitative converge when consider sequences of solutions,
sequences of PDES (i.e. in a numerical method).

3.7. Liouville. Bounded harmonic functions in Rn are constant.
Proof: apply Lipschitz estimate on large ball.
Remark that regularity implies Liouville, but, in some sense, Liouville

also implies regularity.
Corollary: Bounded solutions of Poisson equation in Rn unique up to

constants.

3.8. Harnack Inequality. Positive harmonic function in B(0, 3) then

sup
B(0,1)

u ≤ C inf
B(0,1)

u.

Similar result for u positive and harmonic in U and K ⊂ U compact with
C = C(K,n).

Proof: Let x, y ∈ B(0, 1), then B(0, 3) ⊃ B(x, 2) ⊃ B(y, 1). Mean value
property

u(x) = −
∫
B(x,2)

u(z) dz ≥ 1

|B(x, 2)|
−
∫
B(y,1)

u(z) dz =
1

2n
u(y).

Notes: Harnack inequality by itself implies Hölder regularity, implies Li-
ouville, etc etc. Another expression of the interioa averaging affect of the
Laplace equation.

3.9. Maximum principle. Suppose u ∈ C(U) ∩ C2(U). Weak maximum
principle:

max
U

u = max
∂U

u

Strong maximum principle: If U is connected and there is x0 ∈ U with
u(x0) = maxU u then u is constant in U .

Same results for minima.
Proof 1: Use mean value property and show that {x ∈ U : u(x) = M} is

open and closed in U .
Introduce subharmonic/superharmonic, and strictly sub/super -harmonic.
Proof 2: Show that strictly subharmonic attains max on ∂U . Show that

subharmonic can be perturbed to strictly subharmonic.
Show that uniqueness for Dirichlet problem is a corollary of weak maxi-

mum principle. Show that strict positivity of non-negative harmonic func-
tions is a corollary of strong-maximum principle.
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3.10. Boundary value problems. State Dirichlet and Neumann prob-
lems. Mention mixed / Robin problems. Recall uniqueness via maximum
principle.

3.11. Energy methods. Start with uniqueness: suppose two solution u, v
and call w = u− v

0 =

∫
U
−w∆w dx =

∫
U
|Dw|2 dx.

Dirichlet’s principle: energy functional

I[u] =

∫
U

1

2
|Du|2 − uf dx

defined on the admissible class

A = {u ∈ C2(U) : u|∂U = g}
If u ∈ C2(U) solves the Dirichlet problem then

u = min
w∈A

I[w]

and conversely if u minimizes I over A then u solves the Dirichlet problem.
proof: 1. Let’s compute the derivative of I in direction ϕ ∈ C1

c (U)

〈DI[u], ϕ〉 :=
d

dt

∣∣∣∣
t=0

I[u+ tϕ] = · · · =
∫
U

(−∆u− f)ϕ.

So as an element of the dual of C0(U) DI[u] is represented by −∆u− f .
2. Convexity: since p 7→ 1

2 |p|
2 is convex on Rn

I[(1−t)u+tv] =

∫
U

1

2
|(1−t)Du+tDv|2−(1−t)uf−tvf dx ≤ (1−t)I[u]+tI[v].

Note that this also implies local version of convexity (I lies above it’s lin-
earization) by sending t→ 0: rewrite above inequality as

tI[v] ≥ tI[u] + (I[u+ t(v − u)]− I[u])

then divide by t and send t→ 0 to find

I[v] ≥ I[u] + 〈DI[u], v − u〉
if v − u is zero on ∂U then our previous formula for DI[u] applies.

3. Now suppose u solves the Dirichlet problem. Let w ∈ A. Since w − u
is zero on ∂U we know 〈DI[u], w − u〉 = 0 so convexity implies

I[w] ≥ I[u] +DI[u](w − u) = I[u].

i.e. u minimizes I over A.
4. Now suppose u minimizes I over A. Then

i(t) = I[u+ tϕ]

has a minimum at t = 0 for any ϕ ∈ C1
c (U). Then i′(0) = 0 and so

0 = i′(0) = DI[u](ϕ) =

∫
U

(−∆u− f)ϕ dx.
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Since ϕ ∈ C1
c (U) was arbitrary

−∆u = f pointwise in U.

3.12. Connection with stochastic processes. Consider an iid random
walk process Xt(x) started at x on a domain Λ ⊂ Zn which is killed when
it exits Λ. When at site x ∈ Λ the random walker chooses a neighbor y ∼ x
uniformly at random and steps to y. If y 6∈ Λ the process stops. More
precisely

P(Xt+1 = y|Xt = x) =
1

2d
1(y ∼ x).

Call ∂Λ to be the outer site boundary, τ(x) to be the first time that the
process started at x exits Λ. Then Xτ(x)(x) ∈ ∂Λ. The harmonic measure
ωx is the probability measure on ∂Λ defined by

ωx(E) = P(Xτ(x)(x) ∈ E).

The function u(x) = ωx(E) is discrete harmonic in Λ with Dirichlet data
u(x) = 1E on ∂Λ. Boundary data is clear (explain), equation follows from
the logic

ωx(E) = P(Xτ(x)(x) ∈ E) =
∑
y∼x

P(Xτ(y)(y) ∈ E)P(X1(x) = y) =
1

2d

∑
y∼x

P(Xτ(y)(y) ∈ E).

So

∆Zdu =
1

2d

∑
y∼x

(u(y)− u(x)) = 0.

By linearity general Dirichlet data can be solved by

u(x) =
∑
y∈∂Λ

g(y)ωx({y}).

Many of the things we have proved about harmonic functions are true of
discrete harmonic functions as well in some form, although the proofs can
be more difficult because we don’t have “continuous calculus”.

Now let’s think about the continuum case. Consider a Brownian motion
Bt(x) started from x ∈ Ω. As before we are interested in the distribution of
the location of the Brownian motion at the exit time from the domain

τ(x) = inf{t : Bt(x) 6∈ Ω}.
Given a subset E ⊂ ∂Ω we define harmonic measure (probability of Brown-
ian motion started at x to exit Ω through E)

ωx(E) = P(Bτ(x)(x) ∈ E).

Turns out that v(x) = ωx(E) solves the Dirichlet problem{
∆v = 0 in Ω

v(x) = 1E(x) on ∂Ω.

Boundary data is easy. We check ωx(E) is harmonic by checking the mean
value property: let x ∈ Ω and ∂B(x, r) ⊂ Ω, call σ to be the exit time from
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B(x, r) of the Brownian motion started at x. Note σ < τ . Also note that
by rotation invariance of Brownian motion Bσ(x) is uniformly distributed
on ∂B(x, r). So, by the strong Markov property of Brownian motion,

v(x) = −
∫
∂B(x,r)

v(y)dS(y).

Thus v is harmonic in U .
Again by linearity we can solve arbitrary Dirichlet problems

u(x) =

∫
∂U
g(y)dωx(y).

Examples: corner exit probability.

3.13. Green’s functions. Looking for solution formula for

−∆u = f in U with u = g on ∂U

analogous to what we did for the whole space problem.
Start out with the fundamental solution Φ(x) = cn|x|2−n. By Green’s

formula∫
U
u(y)∆yΦ(y−x)−Φ(y−x)∆u(y) dy =

∫
∂U
u
∂Φ

∂ν
(y−x)−Φ(y−x)

∂u

∂ν
dS(y)

and ∫
U
u(y)∆yΦ(y − x) dy = −u(x)

so

u(x) =

∫
∂U

Φ(y − x)
∂u

∂ν
− u(y)

∂Φ

∂ν
(y − x) dS(y) +

∫
U

Φ(y − x)(−∆u(y)) dy

This looks close to a representation formula for the solution of the Dirichlet
problem because we know −∆u(y) = f and we know u|∂Ω = g. However we
do not know ∂u

∂ν on ∂Ω. We would like to eliminate this term by choosing a
variant of the fundamental solution which satisfies a zero Dirichlet boundary
condition.

Define a corrector function φx(y) to solve

−∆φx = 0 in U and φx(y) = Φ(y − x) on ∂U

(note relies on existence for Dirichlet problem OR an explicit construction)
then we define the Green’s function

G(x, y) = Φ(y − x)− φx(y).

Then G(x, y) = 0 for y ∈ ∂U .
Note: By comparison principle in the domain U \B(x, ε) for small ε > 0

the function G(x, y) is non-negative in U .
Applying the previous Green’s theorem argument to G(x, y) instead of

Φ(y − x) we find the formula

u(x) = −
∫
∂U
u(y)

∂G

∂ν
(x, y) dS(y) +

∫
U
G(x, y)(−∆u(y)) dy.
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Note that given our previous discussion of harmonic measure

dωx(y) = −∂G
∂ν

(x, y) dS(y).

We also define the Poisson kernel of the domain U , P : U × ∂U → R

P (x, y) = −∂G
∂ν

(x, y).

So the general representation formula for the solution of the Dirichlet prob-
lem is

u(x) =

∫
∂U
P (x, y)g(y) dS(y) +

∫
U
G(x, y)f(y) dy.

NOTE: With f = 0 we see that P (x, y) is the Radon-Nikodym derivative
of the harmonic measure dωx(y) with respect to surface measure dS(y) on
∂U :

dωx(y) = P (x, y)dS(y).

[Symmetry of Green’s function] Fix x 6= y. Call

v(z) = G(x, z) and w(z) = G(y, z).

Then ∆v = δx and ∆w = δy, and both are zero on ∂U . Applying Green’s
identity

w(x)− v(y) =

∫
U
w∆v − v∆w dx =

∫
∂U
w
∂v

∂ν
− v∂w

∂ν
dx = 0

3.14. Green’s function for a half-space. Method of images, consider

G(x, y) = Φ(y − x)− Φ(y − x̃)

where
x̃ = (x1, . . . , xn−1,−xn).

Then

Gyn(x, y) = − 1

nα(n)
[
yn − xn
|y − x|n

− yn + xn
|y − x̃|n

and if y ∈ ∂Rn+ then
|y − x| = |y − x̃|

so

−∂G
∂ν

(x, y) = Gyn(x, y) =
2xn
nα(n)

1

|x− y|n
This is the half-space Poisson kernel. We check that

u(x) =
2xn
nα(n)

∫
∂Rn

+

g(y)

|y − x|n
dy

solves the Dirichlet problem in the half-space.
Theorem: If g ∈ Cc(∂Rn+) then u solves the Dirichlet problem.
proof: Note that for y ∈ ∂Rn+ the Poisson Kernel P (x, y) = −Gyn(x, y).

Since, for fixed y, G is harmonic in the x variable in Rn \ {y}. In particular,
when y ∈ ∂Rn+, we have P (x, y) harmonic in x in Rn+.

Need to check boundary values, typical approximate identities argument.
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3.15. Green’s function in the ball. Method of images again, using the
Kelvin inversion. For x ∈ Rn \ {0} define the inversion x̃ = x/|x|2.

We are going to use an image charge at x̃

G(x, y) = Φ(y − x)− Φ(|x|(y − x̃)).

Note that this is harmonic in B(0, 1)\{x}, we just need to check the bound-
ary condition for y ∈ ∂B(0, 1).

There |y| = 1 and

|x|2|y − x̃|2 = |x|2(|y|2 − 2y · x

|x|2
+

1

|x|2
) = |x|2 − 2y · x+ 1 = |x− y|2.

Now we have the Poisson formula for solution of Dirichlet problem in
B(0, 1)

u(x) =

∫
∂B(0,1)

−∂G
∂ν

(x, y)g(y) dS(y).

Need to find the kernel.

Φyi(y − x) =
−1

nα(n)

yi − xi
|x− y|n

[Φ(|x|(y − x̃))]yi =
−1

nα(n)

yi|x|2 − xi
(|x||y − x̃|)n

= − 1

nα(n)

yi|x|2 − xi
|x− y|n

.

the last equality holds if y ∈ ∂B(0, 1).
Then

∂G

∂ν
(x, y) =

∑
yiGyi(x, y) =

−1

nα(n)

1

|x− y|n
∑

yi(yi − xi − yi|x|2 + xi)

P (x, y) = −∂G
∂ν

(x, y) =
1

nα(n)

1− |x|2

|x− y|n
Poisson formula... etc. Poisson formula for B(0, r)

P (x, y) =
r2 − |x|2

nα(n)r

1

|x− y|n
for x ∈ B(0, r), y ∈ ∂B(0, r).

Give formula state result about boundary continuity.

3.16. Existence of solutions to the Dirichlet problem via Perron’s
method. The energy minimization can be used to show existence of so-
lutions to the Dirichlet problem, but it requires more sophisticated func-
tional analysis. There is a more elementary avenue to existence via Perron’s
method. This is also known as the method of sub and supersolutions, and it
generalizes well to equations satisfying a maximum principle.

It suffices to consider the homogeneous problem

−∆u = 0 in U and u = g on ∂U.

For this proof we will assume that g is continuous. That assumption is more
or less necessary for this approach.
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Consider the class of subsolutions of the Dirichlet problem

S = {v ∈ C(U) : −∆v ≤ 0 in U and v ≤ g on ∂U}.

The meaning of −∆v ≤ 0 is that v satisfies the sub-mean-value-property for
a sufficiently small ball around each point, this does make sense for
just continuous functions. If we had a solution u ∈ C2(U) ∩ C(U) then
u ∈ S, but also by maximum principle v ≤ u for any v ∈ S. That is u
would be the maximal subsolution of the Dirichlet problem. We will try to
construct u by finding the maximal subsolution.

Lemma: The maximum of two subharmonic functions is subharmonic.
Lemma: Comparison between sub and supersolutions.
Define

u(x) = max{v(x) : v ∈ S}.

The idea is to show that u solves the Dirichlet problem.
Note that the class of subsolutions is nonempty, min g is in it, and it

is bounded from above, max g is above every element of S by comparison
principle.

Harmonic lifts: Given a function v ∈ S and a ball B ⊂ U we define the
harmonic lift

vB(x) =

{
v(x) x 6∈ B∫
∂B PB(x, y)v(y) dy x ∈ B.

where PB is the (explicitly constructed) Poisson kernel for the ball B. Note
that by our results on the Poisson kernel v is continuous in U and harmonic
in B.

We also want to check the following: vB ≥ v, and vB is still subharmonic
in the entire U in particular vB ∈ S.
vB ≥ v follows from maximum principle in B.
Subharmonic: Given any x ∈ U we need to check sub-mean value property

on sufficiently small balls centered at x. Case 1: x ∈ B, then choose r > 0
small enough so that Br(x) ⊂ B and we have mean value property because
vB is harmonic there. Case 2: x ∈ U \ B, then sub mean value property
follows from sub mean value property for v and that vB ≥ v.

Lemma: The maximal subsolution u(x) defined above is harmonic in U .
Proof: Fix x0 ∈ U and let vn ∈ S be a sequence of subsolutions so that

vn(x0) ↗ u(x0). Without loss min g ≤ vn ≤ max g, the lower inequality is
guaranteed by taking max{vn,min g}. Let r > 0 sufficiently small so that
B(x0, r) ⊂⊂ U . Call wn = (vn)B(x0,r) the harmonic lifts of vn in that ball.
Then the wn are uniformly bounded still between min g ≤ wn ≤ max g.
Since they are harmonic in B(x0, r) and uniformly bounded by homework
problem 11 there is a subsequence (not relabeled) of wn converging uniformly
in B(x0, r/2) to some w which is harmonic in B(x0, r/2).

Our claim is that w = u in B(x0, r/2), at the moment we just know
w(x0) = u(x0) (why?).
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Let x1 ∈ B(x0, r/2) and let ṽn be a sequence of subsolutions with ṽn(x1)→
vn(x1). Then zn = max{vn, ṽn} are also subsolutions with zn(xj) → u(xj)
for j ∈ {0, 1} and we can perform the harmonic lift in B(x0, r) on zn as well
to get w̃n ≥ wn. By the same arguments (up to a subsequence) the w̃n con-
verge uniformly to a function w̃ ≥ w which is harmonic in B(x0, r/2) with
w̃(x0) = u(x0) and w̃(x1) = u(x1). However now we have a non-positive har-
monic function w−w̃ in B(x0, r/2) with w(x0)−w̃(x0) = 0. By strong max-
imum principle w ≡ w̃ in B(x0, r/2), in particular w(x1) = w̃(x1) = u(x1).

Since x1 ∈ B(x0, r/2) was arbitrary w ≡ u in B(x0, r/2) meaning u is
C∞ and harmonic in B(x0, r/2). Since x0 ∈ U was arbitrary same for whole
domain U .

Boundary barriers: We still need to check that u has the correct bound-
ary conditions. For this we use a barrier argument.

Definition 1. A function φ : U → R is a barrier for the Dirichlet problem
at x0 ∈ ∂U if

• φ(x0) = 0
• φ(x) > 0 for x ∈ Ω \ {x0}
• φ is superharmonic in Ω
• φ is continuous in Ω.

Lemma 2. If there is a barrier for the Dirichlet problem at x0 ∈ ∂U then
the Perron’s method solution u has

lim
U3x→x0

u(x) = g(x0).

In particular if U has boundary barriers at every boundary point then
u ∈ C(U) and u|∂U = g.

Proof: Let ε > 0, g is continuous so |g(x) − g(x0)| ≤ ε in Bδ(x0). Note
φ > 0 on U \Bδ(x0) so call m > 0 to be the minimum on that compact set.
Then define

ψ(x) = g(x0) + ε+ sup
U
|g(x)− g(x0)| 1

m
φ(x)

This barrier is harmonic in U , it is larger than g(x0) + ε ≥ g(x) on Bδ(x0)
and on ∂U \ Bδ(x0) it is larger than g(x). Thus ψ ≥ g on ∂U , since ψ is
harmonic in U it is a supersolution and so u ≥ ψ. (For the subsolution case

we would argue that ψ̃ is a subsolution so it is smaller than the maximal
subsolution u).

Thus lim supx→x0 u(x) ≤ lim supx→x0 ψ(x) = g(x0) + ε. Then send ε →
0. �

Barrier construction relies on exterior domain regularity. For example if
U has an exterior touching ball at x0 then U has a barrier at x0. If B(x1, r)
is the exterior touching ball at x0 take

φ(x) = r2−n − |x− x1|2−n

as the boundary barrier.
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If U has an exterior cone at x0 can also construct a boundary barrier in
radial coordinates as

φ(r, θ) = Θ(θ)rα

for an appropriate choice of α depending on the cone and the dimension and
Θ found by separation of variables.

3.17. Review.

• Fundamental solutions / Green’s functions
• Maximum principle
• Interior regularization (MVP, elliptic estimates, Harnack, Liouville)
• Energy minimization principle
• Connection with random walks

4. The heat equation

4.1. Fundamental solution. As before we start by exploiting invariances
of the equation to find a specific solution, in this case it is a space-time
scaling invariance and spatial rotation invariance. If u solves heat equation
then λαu(λx, λ2t) solves as well. We could search for a scaling invariant
solution u(x, t) = λαu(λx, λ2t) for all λ ∈ R, i.e. u(x, t) = t−αu( x

t1/2
, 1).

We will attempt to derive the correct scaling by writing a bit more gen-
erally

u(x, t) =
1

tα
v(
x

tβ
)

plugging into equation calling y = xt−β

αt−(α+1)v(y) + βt−(α+1)y ·Dv(y) + t−(α+2β)∆v(y) = 0

we want an equation which depends only on y which requires α+2β = α+1
i.e. β = 1/2 and α is still free to be chosen. Then

αv +
1

2
y ·Dv + ∆v = 0

and now looking for radial solutions v(y) = w(|y|)

αw +
1

2
rw′ + r1−n(rn−1w′)′ = 0

with r = |y| and ′ = d
dr . In order to make the first term a derivative we can

choose α = n
2 so

1

2
(rnw)′ + (rn−1w′)′ = 0

or
1

2
rw + w′ = a

if w and w′ → 0 as r →∞ then the constant of integration should be a = 0
so

w′ = −1

2
rw
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which we can integrate

w(r) = be−
r2

4

So we have found a solution of the heat equation

u(x, t) =
b

tn/2
e−|x|

2/4t

Fundamental solution:

Φ(x, t) =

{
1

(4πt)n/2 e
−|x|2/4t t > 0

0 t < 0.

The choice of constant is for the property∫
Rn

Φ(x, t)dx = 1 for all t > 0.

Formally speaking Φ(x, 0) = δ0.

4.2. Initial value problem. Solution of heat equation initial value prob-
lem {

∂tu−∆u = 0 in Rn × (0,∞)

u(x, 0) = g(x)

Lemma: 1. (Regularization) u ∈ C∞(Rn× (0,∞)), 2. u solves heat equa-
tion, 3. (Initial data) If g ∈ C(Rn) then initial data is achieved continuously.

proof: 1. Φ(x, t) is smooth for t > 0. 2. Φ solves heat equation for t > 0.
3. Typical approximate identities argument.

Point out infinite speed of propagation.

4.3. Non-homogeneous problem.{
∂tu−∆u = f(x, t) in Rn × (0,∞)

u(x, 0) = 0

Formal derivation via Duhamel’s formula

∂t(e
−∆tu) = f

so

u(t) = e∆tg +

∫ t

0
e∆(t−s)f(s) ds

gives a ansatz for the solution

u(x, t) =

∫ t

0

∫
Rn

Φ(x−y, t−s)f(y, s) dyds =

∫ t

0

∫
Rn

1

(4π(t− s))n/2
e
− |x−y|2

4(t−s) f(y, s) dyds.

Can use linearity to find solution with both initial data and inhomogeneity.
Lemma: 1. u is as regular as f allows e.g. if f ∈ C2,1 then u ∈ C2,1

(actually there is improvement but it is a bit more technical), 2. u solves
inhomogeneous heat equation. 3. Initial data 0 achieved continuously.

proof: 1. Differentiate under the integral putting derivatives on f . 3.
Just do L∞ bound on the convolution.
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2. Put derivatives on f initially, then split integral into part near t = 0
and part away from t = 0, integrate by parts in the t ≥ ε part of the integral.

4.4. Mean value property. The heat equation does have a “parabolic”
mean value property. It is not often used and not easy to generalize so we
will not do it in lecture, you can find it in Evans.

4.5. Maximum principle and uniqueness. Heat equation initial - bound-
ary value problem (IBVP) (Dirichlet data)

∂tu−∆u = f(x) in U × (0,∞)

u(x, 0) = g(x) in U

u(x, t) = h(x, t) on ∂U × (0,∞).

Natural space-time domains are of the form UT = U × (0, T ] called parabolic
cylinders. The parabolic boundary is defined

∂pUT = ΓT = UT \ UT = U × {t = 0} ∪ ∂U × [0, T ].

IBVP’s naturally assign boundary data on the parabolic boundary.
In considering uniqueness, as usual we can use linearity to reduce to

considering the case of zero boundary data.
Say that u ∈ C2,1(UT ) is a subsolution of the heat equation in a para-

bolic domain UT if

∂tu−∆u ≤ 0

(strict if inequality is strict). Supersolution is defined symmetrically. Note
we don’t have a weak formulation of this right now (it is possible but more
technically difficult than for Laplace).

Lemma 3. If u and v are respectively a subsolution and a supersolution in
a bounded parabolic domain UT = U × (0, T ] with u ≤ v on ∂pUT then u ≤ v
in UT .

Proof. 1. First consider the case when u is a strict subsolution and u < v
for (x, t) ∈ ∂pUT . Then consider the first time that u crosses v from below

t∗ = inf{.t > 0 : inf(v − u) ≤ 0}

by continuity there is a point x∗ ∈ U with

u(x, t∗) ≤ v(x, t∗) for x ∈ U and u(x∗, t∗) = v(x∗, t∗).

Note that x∗ ∈ U because u < v on ∂U×[0, T ]. Then w(x, t∗) = (v−u)(x, t∗)
has a spatial minimum at x∗ so

∆w(x∗, t∗) ≥ 0.

Also w > 0 for t < t∗ so

∂tw(x∗, t∗) = lim
h→0

w(x∗, t∗)− w(x∗, t∗ − h)

h
≤ 0.
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Thus

0 ≥ [∂tw −∆w](x∗, t∗) = [∂tv −∆v](x∗, t∗)− [∂tu−∆u](x∗, t∗) > 0

,using the supersolution / strict subsolution properties of v and u respec-
tively, which is a contradiction.

2. Now consider the case where the inequalities are not strict. In this
case we can take

uε(x, t) = u(x, t)− ε− εt

which has uε < u ≤ v on ∂pUT and

∂tuε −∆uε = ∂tu− ε−∆u ≤ −ε < 0

so uε is a strict subsolution which is strictly below u on ∂pUT and we can
apply the first part of the proof to find uε ≤ v in UT and then send ε → 0
to get the result. �

4.6. Maximum principle in Rn. Applying the previous argument in the
whole space is more difficult, we need some information to control the
growth of u at ∞ otherwise maximum principle can fail. For example re-
call that when we derived the fundamental solution we came up with a
solution u(x, t) = t−n/2w(|x|/t1/2), now we look for a solution of the form

u(x, t) = (−t)−n/2w(|x|/(−t)1/2) defined for t < 0 and going through the
derivative one finds that

w′ =
1

2
rw

resulting in a solution

u(x, t) =
1

(−t)n/2
e
|x|2
4(−t) for t < 0.

This solution is “non-physical” in the sense that it starts out small near the
origin at (say) time t = −1 and then grows creating a singularity t = 0.
This is caused by the large growth at ∞, energy is being pumped in from
∞ to create a singularity.

Actually the existence of such a positive singular solution allows us to
rule out non-uniqueness for solutions which grow more slowly at ∞ than
this special solution.

Other examples of this general principle (exercises):

• For Laplace equation ∆u = 0 in half space {xn > 0} with zero
Dirichlet data u(x′, 0) = 0 can use the harmonic function φ(x) = xn
to rule out sub-linearly growing solutions.
• For Laplace equation ∆u = 0 in strip domain {0 < xn < 1} with zero

Dirichlet data u(x′, 0) = u(x′, 1) = 0 can use the harmonic function
φ(x) = 1

2(n−1) |x
′|2 − 1

2(xn − 1
2)2 + 1

8 to rule out sub-quadratically

growing solutions.
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Lemma 4. Suppose that u ∈ C2,1(Rn × [0, T ]) solves

ut −∆u = 0 in Rn × (0, T ) and u(x, 0) = g

and satisfies the growth estimate

u(x, t) ≤ Aea|x|2

for some constants A, a > 0. Then

sup
Rn×[0,T ]

u = sup g.

Suffices to consider the case u(x, 0) ≤ 0 by considering u(x, t)− sup g.

Proof. Assume 4aT < 1 so that 4a(T +ε) = 1−γ for some fixed small ε > 0
and some γ > 0. Now the function

v(x, t) =
δ

(T + ε− t)n/2
e

|x|2
4(T+ε−t)

is a solution of the heat equation on [0, T ] with v(x, 0) ≥ 0 ≥ u(x, 0). On
the other hand for any R > 0 and x ∈ ∂B(0, R)

u(x, t) ≤ Aea|x|2 = AeaR
2

= Ae
(1−γ) R2

4(T+ε)

≤ Ae(1−γ) R2

4(T+ε−t)

= Ae
−γ R2

4(T+ε−t) e
|x|2

4(T+ε−t)

≤ A

δ
(T + ε)n/2e

−γ R2

4(T+ε−t) v(x, t) ≤ µv(x, t)

for µ ∈ (0, 1) and R ≥ R0(µ) > 1 sufficiently large depending on µ. Thus
by comparison principle in B(0, R)× (0, T ] (bounded domain) for each R ≥
R0(µ) we have u(x, t) ≤ µv(x, t) on Rn × (0, T ]. Since µ > 0 was arbitrary
u(x, t) ≤ 0 on Rn × (0, T ].

Finally if 4aT > 1 we simply apply the argument repeatedly on intervals
of length T1 = 1

8a . �

4.7. Energy methods. One thing we can do is uniqueness of IBVP by
energy argument 

∂tu−∆u = f(x) in U × (0, T ]

u(x, 0) = g(x) in U

u(x, t) = h(x, t) on ∂U × (0, T ].

If we have two solutions u and v then w = u− v solves
∂tw −∆w = 0 in U × (0, T ]

w(x, 0) = 0 in U

w(x, t) = 0 on ∂U × (0, T ].
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Compute time derivative of the L2 norm e(t) =
∫
U u

2 dx

d

dt

∫
U
u2 dx =

∫
U

2u∂tu dx =

∫
U

2u∆u dx =

∫
∂U

2u
∂u

∂ν
−2

∫
U
|Du|2 dx = −2

∫
U
|Du|2 dx.

Since the L2 norm at t = 0 is zero, it is also zero at all positive times (it is
non-negative and non-positive).

Could also compute time derivative of Dirichlet energy

d

dt

∫
U
|Du|2 dx =

∫
U

2Du·D∂tu dx =

∫
∂U

2∂tu
∂u

∂ν
dS−2

∫
U
ut∆u dx = −2

∫
U
|∆u|2 dx

where we used that u(x, t) = 0 for x ∈ ∂U and all t ∈ (0, T ] so ∂tu(x, t) = 0
as well on ∂U × (0, T ].

Theorem 5 (Backwards uniqueness). Suppose that u in C2(UT ) solves the
heat equation with u = 0 on ∂U × [0, T ] and

u(x, T ) = 0

then u ≡ 0 in UT .

Proof. Define e(t) =
∫
u2 dx as before we saw

ė(t) = −2

∫
U
|Du|2 dx

and

ë(t) = 4

∫
U
|∆u|2 dx.

On the other hand∫
U
|Du|2 dx = −

∫
U
u∆u dx ≤ (

∫
U
u2 dx)1/2(

∫
U

(∆u)2 dx)1/2

so
(ė(t))2 ≤ e(t)ë(t)

This is some kind of convexity statement.
If e(t) ≡ 0 we are done, otherwise there is an interval [t1, t2] with e(t) > 0

on [t1, t2) and e(t2) = 0. Note

f(t) = log e(t)

has

f̈(t) =
ë(t)

e(t)
− ė(t)2

e(t)2
≥ 0

so f is convex on (t1, t2] and e(t) is log convex and for any t1 < t < t2

f(λt1 + (1− λ)t) ≤ λf(t1) + (1− λ)f(t)

or
0 ≤ e(λt1 + (1− λ)t) ≤ e(t1)λe(t)1−λ

but now e(t) is bounded and continuous so we can send t↗ t2 to find

0 ≤ e(λt1 + (1− λ)t2) ≤ e(t1)λe(t2)1−λ = 0

�
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4.8. Connection with random walks/Brownian motion. Let’s recall
our setting from before of a simple random walker Xt(x) on Zn starting
from a point x. Each step Xt+1(x)−Xt(x) = ξt is independent of all other
steps and is distributed uniformly on the 2n neighbors of 0 which are ±ei
for 1 ≤ i ≤ n. Now instead of considering the exit probabilities we will just
look at the distribution

Kt(x, y) = P(Xt(x) = y) for x, y ∈ Zn.

Let’s check that Kt(x, y) solves a discrete heat equation in both variables,

Kt+1(x, y) = P(Xt+1(x) = y) =
∑
z∼y

P(Xt(x) = z)P(ξt = (y−z)) =
1

2d

∑
z∼y

Kt(x, z)

subtracting Kt(x, y) from both sides we get

Kt+1(x, y)−Kt(x, y) =
1

2d

∑
z∼y

(Kt(x, z)−Kt(x, y)) = ∆yKt(x, y)

we could have also computed

Kt+1(x, y) = P(Xt+1(x) = y) =
∑
z∼x

P(Xt(z) = y)P(ξ1 = (z−x)) = ∆xKt(x, y)+Kt(x, y)

to get the equation in the other variable.
The function Kt(x, y) is the discrete analogue of the heat kernel.
A general initial value problem for the heat equation corresponds to a

”payoff” problem at time zero (draw picture)

u(t, x) = Eg(Xt(x))

which can be represented in terms of the heat kernel

u(t, x) =
∑
y

g(y)P(Xt(x) = y) =
∑
y

Kt(x, y)g(y).

This is the discrete analogue of the heat kernel formula we saw before.
In the continuum case we study Brownian motion instead and

Kt(x,E) = P(Bt(x) ∈ E) =

∫
E

1

(2πt)n/2
e−|x−y|

2/2tdy

which you will recognize as the heat kernel (up to a change of variance).
Initial value problems for the heat equation can be interpreted then as

u(t, x) = Eg(Bt(x)) =

∫
Rn

g(y)Kt(x, y) dy

which we know solves the heat equation ut = 1
2∆u.

4.9. Regularity. See Evans for proofs. Statement: if u ∈ C2,1(UT ) solves
the heat equation then u ∈ C∞(UT ). There are analogues of elliptic es-
timates as well that show that scaling of derivative estimates in terms of
domain size / number of space/time derivatives.
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5. Wave equation

General ideas: time reversible, energy conserving, finite speed of propa-
gation.

Homogeneous wave equation is

utt −∆u = 0

sometimes the wave operator is called the D’Alembertian and written

�u = utt −∆u

Thinking of utt = ∆u as a second order linear ODE on function space we
expect that a natural initial data problem for the wave equation will involve
assigning data for both u(x, 0) and ut(x, 0).

5.1. Energy conservation (whole domain). Energy is kinetic plus po-
tential

E(t) =
1

2

∫
U
u2
t + |Du|2 dx.

Show that E′(t) = 0 with Dirichlet/Neumann data.

5.2. d’Alembert’s solution in n = 1. PDE can be “factored”

(∂t + c∂x)(∂t − c∂x)u = utt − c2uxx = 0.

This equation is much simpler in the characteristic coordinates ξ = x + ct
and η = x− ct since this says

∂2
ξηu = 0

i.e.

u(x, t) = F (ξ) +G(η) = F (x− ct) +G(x+ ct).

Note that this is a linear combination / superposition of a left moving trav-
elling wave and a right move travelling wave.

We just need to solve for F and G given some initial data problem

u(x, 0) = f(x) and ut(x, 0) = g(x).

Then

F (x) +G(x) = f(x) and cG′(x)− cF ′(x) = g(x).

This leads to the equations

F (x) +G(x) = f(x) and G(x)− F (x) =
1

c

∫ x

0
g(y) dy +A

so

F (x) =
1

2
f(x)− 1

2c

∫ x

0
g(y) dy − 1

2
A

and

G(x) =
1

2
f(x) +

1

2c

∫ x

0
g(y) dy +

1

2
A
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and

u(x, t) = F (x−ct)+G(x+ct) =
1

2
f(x−ct)+

1

2
f(x+ct)+

1

2c

∫ x+ct

x−ct
g(y) dy.

Example: triangle initial data.

5.3. Non-homogeneous problem n = 1. Duhamel’s formula

utt − uxx = h(x, t)

with zero initial data solution. Think of this as a linear ODE

d

dt

[
u
ut

]
=

[
0 1
∂2
x 0

] [
u
ut

]
+

[
0

f(x, t)

]
with operator

L =

[
0 1
∂2
x 0

]
.

By Duhamel (first component of solution) is

u(x, t) =

∫ t

0

(
eLt
[

0
f(·, s)

])
1

ds =

∫ t

0
u(x, t; s) ds

where u(x, t; s) solves

utt − uxx = 0 with u(x, 0) = 0 and ut(x, 0) = f(x, s).

i.e.

u(x, t) =

∫ t

0
u(x, t; s) ds =

∫ t

0

∫ x+cs

x−cs

1

2c
f(y, s) dy ds

5.4. Domain of dependence / region of influence. Draw backwards
light cone from (x0, t0).

Note that initial data problem u(x0, t0) depends only on values of initial
data inside (x0−ct, x0+ct). Note that inhomogeneous problem only depends
on the inhomogeneity inside the backwards light cone.

State a theorem to this effect (two different data that agree in backwards
light cone from (x0, t0) produce same solution in that backwards light cone).

State and prove the same theorem in all n ≥ 1 using the energy method
computing time derivative of energy inside the cone

E(t) =

∫
|x−x0|<ct

1

2
u2
t +

1

2
|Du|2 dx.

Conclude uniqueness.
Side note: Moving domain differentiation formula

d

dτ

∫
U(τ)

f(x, τ) dx =

∫
∂U(τ)

fV · ndS +

∫
U(τ)

∂τf(x, τ) dx.

Proof: Assume we can write

U(τ) = Φτ (U)
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where Φτ is the flow map for the ODE

Φ̇τ = V(Φτ )

and by Liouville formula

d

dt
|det(Φτ (x))| = (∇ · V )(Φτ (x))|det(Φτ (x))|

Then ∫
U(τ)

f(y) dy =

∫
U
f(Φ−1

τ (y))|det(Φτ (x))|dx

and
d

dτ

∫
U(τ)

f(y) dy =

∫
U
∇f(Φτ (x)) · d

dτ
Φτ (x)|det(Φτ (x))|dx

· · ·+
∫
U
f(Φτ (x))(∇ · V )(Φτ (x))|det(Φτ (x))|dx

=

∫
U
∇f(Φτ (x)) · ( d

dτ
Φτ (x)− V (Φτ (x)))|det(Φτ (x))|dx

· · ·+
∫
∂U
f(Φτ (x))V (Φτ (x)) · n|det(Φτ (x))|dS(x)

5.5. Reflection method in n = 1. Boundary value problem
utt − uxx = 0 in R+ × (0,∞)

u = g, ut = h on R+ × {t = 0}
u = 0 on {x = 0} × (0,∞).

Extend u, g, and h by odd reflection across x = 0 to ũ, g̃ and h̃. Get a
solution of wave equation on whole line and apply d’Alembert

u(x, t) =

{
1
2 [g(x+ t) + g(x− t)] + 1

2

∫ x+t
x−t h(y) dy x ≥ t > 0

1
2 [g(x+ t)− g(t− x)] + 1

2

∫ x+t
t−x h(y) dy 0 ≤ x ≤ t.

Intuition: initial data creates left and right moving waves, the left moving
wave reflects off of the boundary at x = 0 and moves right. Draw spacetime
picture.

5.6. Method of spherical means. Solution of the wave equation u in Rn
define

U(x; t, r) = −
∫
∂B(x,r)

u(y, t)dS(y).

Similar definitions for initial data

G(x; r) and H(x; r).

For a fixed x the spherical means U solve
Utt − Urr − n−1

r Ur = 0 in R+ × (0,∞)

U = G, Ut = H on R+ × {t = 0}
Ur = 0 on {x = 0} × (0,∞).
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PDE is called Euler-Poisson-Darboux equation.
Proof:
Same computation as in proof of MVT for harmonic functions we found

Ur =
r

n
−
∫
B(x,r)

∆u(y, t) dy.

Second derivative

Urr =

∫
∂B(x,r)

∆udS + (
1

n
− 1)−

∫
B(x,r)

∆u(y, t) dy

etc can compute higher derivatives and show that limit exists at r = 0.
From above

Ur =
r

n
−
∫
B(x,r)

∆u(y, t) dy =
r

n
−
∫
B(x,r)

utt dy =
1

nα(n)rn−1

∫
B(x,r)

utt(y, t) dy

so

rn−1Ur =
1

nα(n)

∫
B(x,r)

utt(y, t) dy

and

(rn−1Ur)r =
1

nα(n)

∫
∂B(x,r)

utt(y, t) dy = rn−1Utt.

5.7. Kirchoff’s formula. We will find a distinction between even and odd
dimensions, higher dimensions are more difficult so we will stick to n = 2
and n = 3 (physical dimensions). Start with n = 3 and define

Ũ = rU, etc.

We claim 
Ũtt − Ũrr = 0 in R+ × (0,∞)

Ũ = G̃, Ũt = H̃ on R+ × {t = 0}
Ũ = 0 on {x = 0} × (0,∞).

which leads to the formula for 0 ≤ r ≤ t

Ũ(x; r, t) =
1

2
[G̃(x; r + t)− G̃(x; t− r) +

1

2

∫ t+r

t−r
H̃(x; y) dy.

Then

u(x, t) = lim
r→0

Ũ(x; r, t)

r
= lim

r→0

[
G̃(r + t)− G̃(t− r)

2r
+

1

2r

∫ t+r

t−r
H̃(y) dy

]
= G̃′(x; t)+H̃(x; t).

This gives the equation

u(x, t) =
∂

∂t

(
−
∫
∂B(x,t)

tg(y)dS(y)

)
+ t−
∫
∂B(x,t)

h(y) dS(y).

further computation gives

u(x, t) = −
∫
∂B(x,t)

th(y) + g(y) +Dg(y)(y − x)dS(y)
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which is called Kirchhoff’s formula.
Make note of the domain of dependence of u(x, t)!

5.8. Method of descent. There is not a clean transformation from EPD
to wave equation in n = 2, however we can still use the 3−d formula! Given
initial data in n = 2 extend it to be defined in an “imaginary” third variable
with derivative zero in that direction. Precisely for f ∈ {u, g, h} define

f̄(x1, x2, x3, t) = f(x1, x2, t).

Then ū solves the wave equation in n = 3 with initial data (ḡ, h̄).
Write

−
∫
∂B̄(x̄,t)

ḡdS̄ =
1

4πt2

∫
∂B̄(x̄,t̄)

ḡdS̄ =
1

4πt2

∫
B(x,t)

g(y)(1 + |Dγ(y)|2)1/2dS̄

where γ(y) = (t2 − |y − x|2)1/2. Note

(1 + |Dγ(y)|2)1/2 = (1 + |x− y|2/(t2 − |x− y|2)1/2)1/2 = t(t2 − |x− y|2)1/2.

Finish computation.
End result

u(x, t) =
1

2

∫
B(x,t)

tg(y) + t2h(y) + tDg(y) · (y − x)

(t2 − |y − x|2
1/2

dy.

Conclude by discussing Huygen’s principle.
Also point out in Kirchhoff’s formula the appearance of Dg, solution may

not be as regular as the initial data (information about Dku will depend on
Dk+1g).

5.9. Frequency, group velocity, phase velocity, dispersion relations.
Given a PDE involving (x, t) space-time variables we refer to a solution u
as a travelling wave solution with speed c and profile v if

u(x, t) = v(x− ct).
In higher dimensions a solution of the form

u(x, t) = v(p · x− ct)
is called a plane wave or travelling wave travelling in the direction p/|p| with
wave speed c/|p|.

We have seen solutions of this form already in the transport and wave
equations, and we will see more. A particular form of travelling wave which
is quite important (given connection with the Fourier transform) is the ex-
ponential solution

u(x, t) = ei(k·x−ωt).

Here k ∈ Rd is called the wave number or wave vector (in n ≥ 2), ω is
the time frequency. The relationship

k 7→ ω(k)



COURSE OUTLINE MATH 6420 25

is called the dispersion relation and will be enforced by the equation. The
phase velocity is

vp(k) =
ω(k)

|k|

is the speed of propagation in the direction k/|k|. If the dispersion relation
is nonlinear the phase velocity will depend nontrivially on the wave number.
In this case the equation is called dispersive.

For example in the wave equation

utt − c2∆u = (−ω2 + c2|k|2)u = 0

so to solve the wave equation we must have

ω = ±c|k|.

The wave speed is |ω|/|k| = c no matter the choice of wave number/frequency
so the wave equation has a trivial dispersion relation.

For the Klein-Gordon equation (equation for wave function of relativistic
free quantum particle with mass m)

utt −∆u+m2u = 0

we plug in the same ansatz

0 = utt −∆u+m2u = (−ω2 + |k|2 +m2)u = 0

so the dispersion relation is

ω = ±
√
|k|2 +m2

which is nonlinear and the equation is called dispersive. Here small wave
number |k| i.e. slower spatial oscillation leads to a faster propagation speed

vp(k) =

√
1 +

m2

|k|2

In the Schrödinger equation from quantum mechanics (non-relativistic
free particle)

iut −∆u = 0

we find the dispersion relation

ω = |k|2

and

vp(k) = |k|

so the equation is dispersive and higher wave numbers propagate faster.
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5.10. Wave packets. Of course the exponential form of a wave solution is
very specific, in greater generality we prefer to look at wave packets or
wave groups one way to represent this idea is by linear combination of
pure phase waves

u(x, t) =

∫
Rn

ei(k·x−ω(k)t)a(k) dk.

This is a linear combination of solutions so, as long as our equation was
linear, it will solve as well. (Note: this is basically the same as solving the
PDE in general by Fourier transform which we will look at later).

To understand the propagation speed of this wave packet we look along
a space-time ray x = vt and send t→∞:∫

Rn

ei(k·x−ω(k)t)a(k) dk =

∫
Rn

eit(k·v−ω(k))a(k) dk = I(t; v).

The integrand is highly oscillatory as t→∞. It turns out that the dominant
term in the asymptotic expansion for I(t; v), the principal of stationary
phase, comes from wave numbers k for which 0 = Dk(k · v − ω(k)) =
v −Dkω(k) which leads to the definition of the group velocity

vg(k) = Dω(k).

(i.e. the wave numbers which are seen along the ray x = vt are those with
Dω(k) = v so we say that those wave numbers propagate with group velocity
v).

5.11. Quick primer on (non)-stationary phase. Oscillatory integral

I(t) =

∫
Rn

eitφ(x)a(x) dx.

We will consider the cases φ(x) = p · x linear and φ(x) = 1
2x

TAx qua-
dratic (model cases for phase functions φ which have Dφ 6= 0 and a single
stationary point Dφ(0) = 0). We will also just do 1− d case.

First case is non-stationary phase assume a is smooth and compactly
supported

I(t) =

∫
R
eitpxa(x) dx with p 6= 0.

In this case we integrate by parts putting derivatives onto a

I(t) =

∫
R

(
1

itp

)m
eitpx

(
∂

∂x

)m
a(x) dx

so
|I(t)| ≤ Ct−m.

Next case is existence of a stationary point of the phase function model
scenario

I(t) =

∫
R
eit

1
2
αx2a(x) dx with α 6= 0

with a smooth and supported in [−1, 1].
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6. Fourier methods

Fourier transform on f ∈ L2(Rn) ∩ L1(Rn) taking complex values

f̂(ξ) = F(f) =

∫
Rn

e−2πiξ·xf(x) dx

inverse Fourier transform

f̌(x) =

∫
Rn

e2πiξ·xf(ξ) dξ.

Intuitively can think of e2πiξ·x as an orthonormal basis of L2(Rn) over ξ ∈
Rn, FT computes the representation in the Fourier basis. This is not quite
sensible because the basis functions are not in L2. This is, however, true
when the domain is Tn instead of Rn (basis consists of complex exponentials
with ξ ∈ Zn).

(Plancherel) ∫
Rn

f(x)g(x) dx =

∫
Rn

f̂(ξ)ĝ(ξ)dξ

(Derivatives) Fourier transform diagonalizes differential operators

D̂αf(ξ) =

∫
Rn

e−2πiξ·xDαf(x) dx = (2πiξ)αf̂(ξ)

(Convolution)

(̂f ? g)(ξ) = f̂(ξ)ĝ(ξ)

(Translations / modulations)

̂f(x+ y) = e2πiξ·yf̂(ξ) and F(e2πiη·xf(x)) = f̂(ξ − η).

(Delta mass / pure mode)

F(e2πiη·x) = δη(ξ)

Fourier transform is a powerful tool especially for linear constant coeffi-
cient PDE.

6.1. Fundamental solution of heat equation. Say we are looking to
solve

ut −∆u = 0 for t > 0 with u(x, 0) = g(x).

Let’s take the Fourier Transform of this equation in the spatial variables
(only!)

ût − (2πiξ) · (2πiξ)û = ût + 4π2|ξ|2û = 0

and the initial data transforms

û(ξ, 0) = ĝ(ξ).

This is an ordinary differential equation for each ξ!

û(ξ, t) = e−4π2|ξ|2tĝ(ξ).

Then
u = F−1û = F−1(e−4π2|ξ|2t) ? g.
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Thus we need to compute the inverse Fourier transform of this Gaussian
which we can do one variable at a time

F−1(e−4π2|ξ|2t) =

∫
R
e2πiξx−4π2|ξ|2tdξ =

∫
R
e2πiξx−4π2|ξ|2tdξ

completing the square in the exponential

2πiξx− 4π2|ξ|2t = (2πiξt1/2 +
x

2t1/2
)2 − |x|

2

4t
so ∫

R
e2πiξx−4π2|ξ|2tdξ = e−|x|

2/4t

∫
R
e

(2πiξt1/2− x

2t1/2
)2
dξ

and with the remaining integral∫
Rn

e
(2πiξt1/2− x

2t1/2
)2
dξ =

1

2πt1/2

∫
R
e

(iy− x

2t1/2
)2
dy =

1

2πt1/2

∫
R
e−y

2
dy

(by moving the contour).

6.2. Schrödinger equation. Initial data g ∈ L2(Rn) complex valued{
iut + ∆u = 0 in Rn × (0,∞)

u(x, 0) = g(x)

Solution u is interpreted as quantum mechanical wave function. The mag-
nitude squared |u|2 is the probability density function for the location of the
particle.

Solution formula

u(x, t) =
1

(4πit)n/2

∫
Rn

ei|x−y|
2/4tg(y) dy

can find this by plugging in it into heat equation fundamental solution turns
out to work and solve Schrödinger equation. Expand the square in the
exponential and apply Plancherel to see that Schrödinger operator preserves
L2 norm. Can also do direct computation.

Notes: Schrödinger equation is time reversible.

6.3. More on wave packets. Consider a modulated plane wave initial data

u0(x) = ϕ(x)e2πik·x

where ϕ could be (for example) a Gaussian ϕ(x) = e−|x|
2/2 so that ϕ̂ is also

a Gaussian with variance ∼ 1. Actually it will be simpler to assume that
ϕ̂ is smooth and supported in a unit neighborhood of the origin in Fourier
space which we can guarantee by choosing ϕ̂ first and then taking the inverse
transform.

We are solving some linear PDE with dispersion relation

k 7→ ω(k)

i.e. e2πi(k·x−ω(k)t) solves the PDE for each wave number k (added in the
factors of 2π to match our Fourier transform.
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Then

u0(x) = F−1(û0) =

∫
Rn

e2πiξ·xϕ̂(ξ − k)dξ

and by linearity the solution of our PDE is

u(x, t) =

∫
Rn

e2πi(ξ·x−ω(ξ)t)ϕ̂(ξ − k)dξ.

Let

V = Dω({ξ : |ξ − k| ≤ 1}).

Then for any v 6∈ V

u(x, vt) =

∫
Rn

e2πit(ξ·v−ω(ξ))ϕ̂(ξ − k)dξ

the phase function ξ · v − ω(ξ) is non-stationary on the support of ϕ̂ so
u(x, vt) = O(t−m) for any m ≥ 1 as t → ∞. The non-trivial propagation
speeds of the wave packet are then limited to V .

7. Nonlinear first order equations

. We start with a general form of nonlinear equation

F (Du, u, x) = 0 in U ⊂ Rn with u = g on Γ ⊂ ∂U.

We start with general techniques, the method of characteristics, which gives
a classical solution but the solution may develop singularities outside of a
neighborhood of the boundary. Then will move to special types of equations
where we can use “physical principles” to define a notion of weak solution
which is global in time (Hamilton-Jacobi equations arising from dynamics /
control theory, Conservation laws arising from continuum mechanics).

We write F (p, z, x) and assume F is smooth with DpF = (Fp1 , . . . , Fpn),
DzF = Fz, and DxF = (Fx1 , . . . , Fxn).

Note one of the x variables could be a “time”.

7.1. Method of characteristics. . The idea is to find curves x(s) linking
interior points x to boundary points x0 ∈ Γ along which we can compute u
(by a system of ODE).

Let x(s) be a parametrized curve s ∈ I some parameter interval. Define

z(s) = u(x(s)) and p(s) = Du(x(s)).

We need to choose the curve in such a way that the ODE for (x, z, p) close.
The ODE for ẋ(s) =? is to be determined, given that we would find

ż(s) = Du(x(s)) · ẋ(s) = p(s) · ẋ(s) and ṗi(s) = D2
iju(x(s))ẋj(s).
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The latter equation is a bit worrisome because it involves second order
derivatives, but we can use the PDE to make some identity by differen-
tiating the PDE with respect to xi

0 = (F (Du, u, x))xi

=
∑
j

DpjF (Du, u, x)D2
iju+DzF (Du, u, x)Diu+DxiF (Du, u, x)

this allows us to eliminate second order terms the equation for ṗ if we set

ẋ(s) = DpF (p(s), z(s), x(s))

which reduces the p equation to

ṗ(s) = −DxF (p(s), z(s), x(s))−DzF (p(s), z(s), x(s))p(s)

summarizing we get the characteristic equations
ẋ(s) = DpF (p(s), z(s), x(s))

ż(s) = p(s) ·DpF (p(s), z(s), x(s))

ṗ(s) = −DxF (p(s), z(s), x(s))−DzF (p(s), z(s), x(s))p(s)

and for any solutions of this ODE system it is guaranteed that

F (p(s), z(s), x(s)) = 0 for x ∈ I.
The issue now is how to use these equations to solve PDE BVP.

7.2. Examples. (Linear equation, Transport/growth/decay equation)

F (Du, u, x) = b(x) ·Du+ c(x)u = 0

Then
F (p, z, x) = b(x) · p+ c(x)z

so
Fp = b(x) and Fz = c(x)

the equation for p will not be necessary for linear/semi-linear/quasi-linear
problems

ẋ = b(x), and ż = p(s) · b(x) = −c(x)z.

Note: one variable could be a time (x1, . . . , xn, t) then usually bn+1(x) ≡ 1
and the associated characteristics is ṫ = 1 identifying the parameter s with
the t variable (up to a translation).

Solve example{
x1ux2 − x2ux1 = u in U = {x1 > 0, x2 > 0}
u = g on Γ = {x1 > 0, x2 = 0} ⊂ ∂U.

(Quasi-linear equation) general quasi-linear first order equation has the
form

F (Du, u, x) = b(x, u(x)) ·Du(x) + c(x, u(x)) = 0.

Again the equations close without the p equation

Fp = b(x, z) and Fz = c(x, z)
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so

ẋ = b(x, z), and ż = p(s) · b(x, z) = −c(x, z).
Example: {

ux1 + ux2 = u2 in U = {x2 > 0}
u = g on Γ = {x2 = 0} = ∂U.

(Fully nonlinear) Solve example{
|Du| = 1 in U = {|x| > 1} ⊂ R2

u = x on ∂U.

7.3. Non-characteristic boundary data. Let x0 ∈ Γ ⊂ ∂U and we are
going to assume that

Γ ⊂ {xn = 0}
in a neighborhood of x0. This can be achieved by “flattening the bound-
ary” in a neighborhood of x0 which will transform the first order PDE into
another first order PDE (with complicated x dependent coefficients but the
same “linearity type”).

We need to choose goo initial conditions for the characteristic ODEs

p(0) = p0, z(0) = z0 and x(0) = x0.

Clearly we should choose z0 = g(x0). For p0 the boundary conditions fix the
tangential part, and the normal direction is fixed by the equation:

u(x′, 0) = g(x′) for |x′| � 1

so

p0
j = ∂ju(x0) = ∂jg(x0) for 1 ≤ j ≤ n− 1.

The final condition is

F (p0, z0, x0) = 0

provide n equations for the n unknowns in p0, the only issue is the nonlin-
earity of the final equation. The choice of p0 may (1) not exist, (2) exist but
not be unique, (3) exists and is unique. Not only this but we need to solve
for p0 in a smooth way in a neighborhood of x0 not just at x0. This suggests
we should be using the implicit function theorem.

Given (p0, z0, x0) admissible at x0 want to solve the following system for
|y − x0| � 1 {

qi(y) = ∂ig(y) (i = 1, . . . , n− 1)

F (q(y), g(y), y) = 0

with q(y) smooth

Lemma 6. There exists a unique solution q for y ∈ Γ sufficiently close to
x0 if

Fpn(p0, z0, x0) 6= 0.
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Proof : Implicit function theorem.
General non-characteristic condition

DpF (p0, z0, x0) · ν(x0) 6= 0.

Do some examples: b(x) ·Du+ c(x)u = 0 transport equation give various
scenarios.

Example: ∂x1u = 0 in R2 \B1 with boundary condition on ∂B1.

7.4. Local solvability.

Lemma 7. Assume that Fpn(p0, z0, x0) 6= 0. Then there is an open interval
I containing 0 and a neighborhood W of x0 in Γ ⊂ Rn−1 and a neighborhood
V of x0 in Rn so that for each x ∈ V there is a unique s ∈ I and. a unique
y ∈W so that

x = x(y, s).

The mapping x 7→ s, y are C2.

Proof. We have

Dx(x0, 0) = x0

can get the result from inverse function theorem if

det(Dx)(x0, 0) 6= 0.

Since x(y, 0) = y for y ∈ Γ

xjyi(x
0, 0) = δij for 1 ≤ j ≤ n− 1

and

xnyi(x
0, 0) = 0.

The equation gives

xjs(x
0, 0) = Fpj (p

0, z0, x0) for 1 ≤ j ≤ n

so

Dx(x0, 0) =

[
idn−1 Fp′(p

0, z0, x0)
0 Fpn(p0, z0, x0)

]
and the determinant is exactly Fpn(p0, z0, x0) 6= 0. �

Now we define

u(x) = z(y(x), s(x))

Theorem 8. The function u defined above is C2 and solves

F (Du(x), u(x), x) = 0 in V

with

u(x) = g(x) on Γ.

Proof. Somewhat involved computation, but this is exactly what we defined
the characteristic equations to do. �
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8. Conservation laws

We investigate nonlinear scalar conservation laws{
ut + F (u)x = 0 in R× (0,∞)

u(x, 0) = g(x).

Such equations arise as simplified models of gas dynamics. Method of char-
acteristics applies, but generally speaking the solution defined by character-
istics is only local, to extend to a global discontinuous solution we need to
understand more about the nonlinear equation.

8.1. Example of crossing characteristics. . Consider Burger’s equation{
ut + uux = 0 in R× (0,∞)

u(x, 0) = ±g(x)

with

g(x) =


1 x < −1

−x −1 < x < 0

0 x > 0.

The characteristic equations identify the parameter s with t and

ẋ = z, ż = 0.

The equation is quasi-linear so no p ODE is needed.
Then

z(t) = z(0) = g(x0) and x(t) = x0 + g(x0)t.

Draw picture and show characteristics etc.

8.2. Weak solutions and Rankine-Hugoniot condition. We are stuck
with discontinuous solutions so we need a way to “choose the right shock”.
The classical solution condition does not help us to specify because we are
interested in discontinuous potential solutions. Need a notion of weak solu-
tion.

First multiply PDE by ϕ compactly supported in R× [0,∞) and integrate

0 =

∫
R

∫ ∞
0

(ut+F (u)x)ϕ(x, t)dtdx = −
∫
R
uϕdx−

∫
R×[0,∞)

uϕt+F (u)ϕx dxdt.

So smooth solutions satisfy

0 =

∫
R
uϕdx+

∫
R×[0,∞)

uϕt + F (u)ϕx dxdt

for all test functions ϕ ∈ C∞c (R × [0,∞)). We define a weak solution to
be any bounded u satisfying this property.

Let’s try to understand what the weak solution condition specifies via a
simple scenario. Suppose that u is a weak solution on an open space-time
region V ⊂ R × (0,∞) and u is smooth on either side a a smooth curve
C, call V` the part of V left of C and Vr the part of V right of C. We are
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assuming that u is uniformly smooth up to the boundaries of V` and Vr, but
the values and derivatives may jump along that curve.

First take a test function ϕ which has compact support in V` (or Vr) then
integration by parts shows (using arbitrary ϕ in this class)

ut + F (u)x = 0 in the classical sense in V` and Vr.

Now test with ϕ that does not necessarily vanish along C∫
R×[0,∞)

uϕt+F (u)ϕx dxdt =

∫
V`

uϕt+F (u)ϕx dxdt+

∫
Vr

uϕt+F (u)ϕx dxdt

integrating by parts in each term on the right∫
V`

uϕt + F (u)ϕx dxdt = −
∫
V`

(ut + F (u)x)ϕ dxdt+

∫
C

(u`ν
t + F (u`)ν

x)ϕdS

where ν = (νx, νt) the the normal pointing outward from V` into Vr. Simi-
larly from the right we get∫

V`

uϕt + F (u)ϕx dxdt = −
∫
C

(urν
t + F (ur)ν

x)ϕdS

This leads to

0 =

∫
C

((u` − ur)νt + (F (u`)− F (ur))ν
x)ϕdS

for all test function ϕ so

(u` − ur)νt + (F (u`)− F (ur))ν
x = 0 on C.

Now suppose we can parametrize C by (γ(t), t) then (γ̇, 1) is a tangent vector
pointing in the vertical direction so if we rotate 90 degrees clockwise we will
get a normal vector pointing from left to right

(νx(t), νt(t)) =
1√

1 + |γ̇|2
(1,−γ̇)

which leads to

F (u`)− F (ur) = γ̇(u` − ur).
We notate [[F (u)]] = F (u`)−F (ur) the jump across the curve C and σ = γ̇
the speed of the shock C then the Rankine-Hugoniot condition relates
the shock speed to the jump values

σ =
[[F (u)]]

[[u]]
.

Examples: (1) Continue the previous example into a shock, (2) Riemann
problem with upward jump (show region empty of characteristics, show
shock and rarefaction possibilities, comment on the continuum of possible
weak solutions).
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8.3. Entropy condition. Recall that for a general scalar conservation law

ut + F (u)x = 0

the forward characteristics take the form

x(t) = x0 + F ′(g(x0))t.

We make an assumption to rule out crossing of characteristics backwards in
time. We call this an entropy condition in analogy with the thermodynamic
idea that entropy increases, one could perhaps view this as a definition of
the forward direction of time. There are more complicated formulations of
the entropy condition which are more physically / mathematically principled
but result in the same end result so for now we are just providing this simple
end condition on the characteristics.

The entropy condition is only relevant on shocks where it requires

σ` = F ′(u`) > σ > F ′(ur) = σr.

When F is uniformly convex the condition reduces simply to u` > ur (draw
picture with secant line and slopes).

Note: Weak solution plus entropy condition implies uniqueness, but there
will always be backwards non-uniqueness (show example of Riemann data
coming from moving shock or from condensing smooth data). Information
is lost when a shock forms, smooth solutions do have backwards uniqueness.

Example: Indicator function of [0, 1] as initial data.

8.4. Riemann’s problem. We consider shock type initial data

g(x) =

{
u` x < 0

ur x > 0

for the conservation law

ut + F (u)x = 0.

Here F will be assumed to be uniformly convex and C2.
Exploit the scaling invariance of the data/equation

x̄ = λx and t̄ = λt

if u solves RP then

uλ(x, t) = u(λx, λt)

solves as well. We look for a scaling invariant solution

uλ(x, t) = u1(x, t) for all λ > 0.

Taking λ = t finds

u(x, t) = u(x/t, 1) = ū(ξ)

with ξ = x/t. Geometrically u is constant on space-time rays through the
origin x = ξt.

When ū is continuous we call this a centered rarefaction wave.
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Find the equation for ū

0 = ut + F (u)x = ū′ξt + F ′(ū)ū′ξx = −ξ
t
ū′ + F ′(ū)ū′

1

t
so

(F ′(ū)− ξ

t
)ū′ = 0

that is either

ū′(ξ) = 0 or F ′(ū) = ξ

for each ξ ∈ R\{0}. If F ′ is invertible on an interval [a, b] in R, i.e. monotone,
i.e. F convex, then this equation is invertible and generates a continuous
rarefaction on that interval i.e. a solution

ū(ξ) =


(F ′)−1(a) ξ < a

(F ′)−1(ξ) a ≤ ξ ≤ b
(F ′)−1(b) x > b

Notice: when F ′ is monotone increasing this generates a continuous solution
of a Riemann problem for u` = (F ′)−1(a) < (F ′)−1(b) = ur. When F ′ is
monotone decreasing (i.e. F concave) this generates a continuous solution
of a Riemann problem with ur > u`.

Example: Traffic flow model 0 ≤ ρ ≤ ρm is density, ρm is maximum
density, traffic velocity is assumed to satisfy a law

v(ρ) = vm(1− ρ

ρm
).

The traffic flux is

F (ρ) = ρv(ρ) = vmρ(1− ρ

ρm
)

and the corresponding conservation law for total mass is

ρt + F (ρ)x = 0.

This flux is concave instead of convex. Shocks occur for upward jump initial
data, rarefactions for downward jumps.

Examples: Red light turns green initial data ρm to the left, 0 to the right.
Traffic jam ahead initial data, ρ` to the left ρm to the right.

9. Hamilton-Jacobi Equations

Hamilton-Jacobi equation IVP{
ut +H(Du) = 0 in Rn × (0,∞)

u(x, 0) = g(x).

This is a first order fully nonlinear PDE, the map H(p) : Rn → R is called
the Hamiltonian, often we will assume that H is convex although initial
discussion about characteristics does not require that.
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Note that in n = 1 HJ is like an anti-derivative of a scalar conservation
law. If w = ux then formally

wt +H(w)x = 0.

Hamilton-Jacobi equations generally will have shocks appear at the level
of the derivative, we will still need a notion of weak solution to continue
past these singularities. We will need again some “physical principle” to
select the correct solution extended the one given by characteristics. This
will come from a correspondence between the HJ equation and a problem
of optimal control.

9.1. Hamiltonian system of ODE. Consider a Hamilton-Jacobi equation
with H(p, x) also x dependence in the Hamiltonian. A classic example from
mechanics is H(p, x) = 1

2 |p|
2 + V (x). Characteristic equations are{
Xt = DpH(P,X)

Pt = −DxH(P,X).

You may recognize this as Hamilton’s formulation of classical mechanics.
Lagrangian formulation. Take L(v, x) : Rn × Rn → R a given smooth

function we call the Lagrangian or the running cost. We introduce the
action functional or cost functional on paths γ : [0, T ]→ Rn

I[γ] =

∫ T

0
L(γ̇, γ)dt.

Consider the problem of finding a path achieving the minimum

I[X] = min{I[γ] : γ(0) = x0, γ(T ) = x1, γ ∈ C2([0, T ])}

with x0 and x1 some fixed points in Rn. I.e. we are asking the question
“what is the least cost path between x0 and x1”.

Lemma 9 (Euler-Lagrange equations). If X minimizes above then X solves
the ODE BVP

− d

dt
(DvL(Ẋ,X)) +DxL(Ẋ,X) = 0 on 0 ≤ t ≤ T

with X(0) = x0 and X(T ) = x1.

Proof. Standard method, d
ε

∣∣
ε=0

I[X + εϕ] = 0 with ϕ ∈ C2
c ([0, T ]). �

Example 1: L(v, x) = 1
2m|v|

2 − V (x)
Example 2:

L(v, x) =

{
0 |v| ≤ 1

+∞ |v| > 1.
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9.2. Optimal control. Now we consider a problem of optimal control, min-
imize the running cost with a payoff at the final time

u(x, t) = inf

{∫ t

0
L(γ̇(s))ds+ g(y)|γ(0) = x, γ(t) = y

}
The function u is called the value function, g is called the payoff or termi-
nal cost. Optimizing trajectories still solve the same E-L equation but the
boundary condition at the final time t is changed to:

DvL(Ẋ(t)) +∇g(X(t)) = 0.

Draw a space-time picture to conceptualize what is happening with the
control problem, especially for T small.

Dynamic programming principle. The value function at time t0 is the
payoff for control from time t > t0 to time t0. (Again draw space-time
picture).

Lemma 10 (DPP).

u(x, t) = inf

{∫ t

t0

L(γ̇(s))ds+ u(y, t0)|γ(t0) = y, γ(t) = x

}
Proof. Part 1. Fix y and let γ0 : [0, t0] → Rn ε-optimal for u(y, t0). Then
define concatenated path

γ = γ0 + γ1

for γ1 : [t0, t]→ Rn starting at y and ending at x. Then

u(x, t) ≤
∫ t

0
L(γ̇(s))ds+ g(γ(0)) ≤ u(y, t0) +

∫ t

t0

L(γ̇1(s))ds+ ε.

Since ε > 0 was arbitrary, γ1 was arbitrary ending at y, and then y was
arbitrary we obtain one direction of the inequality.

Part 2. Let γ∗ be ε-optimal for u(x, t) then

u(x, t) ≥
∫ t

0
L(γ̇∗(s))ds+ g(γ(0))− ε

=

∫ t0

0
L(γ̇∗(s))ds+ g(γ∗(0)) +

∫ t

t0

L(γ̇∗(s))ds− ε

≥ u(γ∗(t0), t0) +

∫ t

t0

L(γ̇∗(s))ds− ε

≥ inf

{∫ t

t0

L(γ̇(s))ds+ u(y, t0)|γ(t0) = y, γ(t) = x

}
− ε

�

Hamilton-Jacobi equation. If the value function u turns out to be C1

then we can show that it solves the Hamilton-Jacobi equation. Note that u
is globally defined irrelevant of characteristics and we will interpret it as a
solution of the HJ equation even when it is not C1.
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Basically the HJ equation is the infinitesimal version of the dynamic pro-
gramming principle. The following proof is formal for now

u(x, t+ h) = inf

{∫ t+h

t
L(γ̇(s), γ(s))ds+ u(y, t)|γ(t+ h) = x, γ(t) = y

}
≈ inf

{∫ t+h

t
L(v, x)ds+ u(x− hv, t)|v ∈ Rn

}
+ o(h)

= u(x, t) + inf
v

[L(v, x)h+ u(x− hv, t)− u(x, t)] + o(h)

= u(x, t) + h inf
v

[L(v, x)−∇u(x, t) · v] + o(h)

= u(x, t)− h sup
v

[∇u(x, t) · v − L(v, x)] + o(h)

then we have showed formally sending h → 0 that u satisfies a Hamilton-
Jacobi equation

0 = ut + sup
v

[∇u(x, t) · v − L(v, x)] = ut + L∗(∇u, x).

The formula appearing on the left is called the Legendre-Fenchel transform.

9.3. Legendre-Fenchel Transform. . Given L : Rn → R convex and
superlinear

lim
|v|→∞

L(v)

|v|
= +∞

we define the Legendre-Fenchel Transform

L∗(p) = sup
p∈Rn
{p · v − L(v)}.

It will turn out that (L∗)∗ = L (when L is convex, otherwise it is the convex
envelope). This gives a relation between a general Hamilton-Jacobi equation
ut + H(Du, x) = 0 and a control problem with running cost L = H∗. For
this reason we will call L∗ = H.

The pair L and H = L∗ are called convex dual.

Lemma 11. The Hamiltonian H defined above is also convex and superlin-
ear and H∗ = L.

Proof. Note that

sup
p∈Rn
{p · v − L(v)}

is a supremum of linear functions so it is convex.
Choose v = λp/|p| as a test minimizer to get

H(p) ≥ λ|p| − max
B(0,λ)

L

Divide by |p| and send |p| → ∞ to get a lower bound on the growth.
Note

H(p) + L(v) ≥ p · v
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for all p, v ∈ Rn and so

L(v) ≥ sup
p
{v · p−H(p)} = H∗(v).

On the other hand

H∗(v) = sup
p
{v·p−H(p)} = sup

p
{v·p−sup

q
{p·q−L(q)}} = sup

p
inf
q
{p·(v−q)+L(q)}

since L is convex it is above its tangent plane at v so

L(q) ≥ L(v) + s · (q − v)

for some s so

H∗(v) ≥ sup
p

inf
q
{p·(v−q)+L(v)+s·(q−v)} ≥ inf

q
{s·(v−q)+L(v)+s·(q−v)} = L(v).

�

Note that, assuming differentiability, the condition for v∗(p) to optimize
in

H(p) = sup
v∈Rn
{p · v − L(v)}

is

p = DL(v∗(p)).

That is v∗(p) is the inverse of DL(v).
In that case

H(p) = p · v∗(p)− L(v∗(p))

and then

DH(p) = Dv∗(p · v∗(p)− L(v∗(p)))Dpv∗(p) + v∗(p) = v∗(p).

So DH(p) is the argument maximizer in the supremum, and DH and DL
are inverses of each other.

Example: L(v) = 1
2 |v|

2. H(p) = |p| (not superlinear).

9.4. Hopf-Lax formula.

Lemma 12. Value function when L(v, x) = L(v) and u0 Lipschitz continu-
ous satisfies the Hopf-Lax formula

u(x, t) = min
y∈Rn

{
tL(

x− y
t

) + u0(y)

}
Proof. Test with linear path for one direction, use Jensen’s inequality for
the other direction.

Proof that DPP implies solution of HJ equation is now rigorous at any
differentiable point of u. We can show also that u is Lipschitz continuous
and hence differentiable at almost every point. �
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Combining with the Dynamic Programming Principle: for any 0 < s < t

u(x, t) = min
y∈Rn

{
(t− s)L(

x− y
t− s

) + u(y, s)

}
Comparison principle for optimal control solution:

Lemma 13. If u0 ≥ v0 and u and v are corresponding value functions then
u(x, t) ≥ v(x, t).

Proof. Monotonicity of value function formula w.r.t. initial data. �

Time derivative bound:

Lemma 14. For h > 0

|u(x, t+ h)− u(x, t)| ≤ Ch

Proof. �

9.5. Origins of Hamilton-Jacobi equations. Level set motion. How
to describe the motion of an interface with a PDE? For example let’s consider
the problem of an oriented moving interface Γt which moves by normal
velocity

Vν(x) = c(x) for x ∈ Γt

where Vν(x) is the velocity of Γt in the outward normal direction. Let’s
suppose that we can represent Γt = ∂{u(x, t) > 0} for some u(x, t) called
a level-set function or level-set representation. This is more flexible than
assuming that Γt is a smooth graph, or a smooth embedding of an n −
1-dimensional manifold because topological changes in Γt do not need to
correspond to non-smoothness in u (show standard double well picture).

What does the equation for Γt say about u? If X(t) is a path with
X(t) ∈ Γt for all t > 0 the equation says that

Ẋ(t) · ν(X(t)) = c(X(t)).

Now consider, since X(t) ∈ Γt for all t we have u(X(t), t) ≡ 0 so

0 =
d

dt
u(X(t), t) = ∂tu+ Ẋ(t) ·Du(X(t), t).

Notice that since Γt is the zero level set of u we haveDu(x, t) = −νΓt(x)|Du(x, t)|.
Thus

0 =
d

dt
u(X(t), t) = ∂tu+Ẋ(t)·Du(X(t), t) = ∂tu−Ẋ(t)·νΓt(X(t))|Du| = ut−c(X(t))|Du|.

Since X(t) was arbitrary this leads to the equation

ut = c(x)|Du| for x ∈ ∂{u(x, t) > 0}.

There is no specification of u outside of its zero level set, but for simplicity
we can impose that this Hamilton-Jacobi equation just holds everwhere and
then it will certainly also hold on the zero level-set.
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In general this leads to the formula for the level-set velocity of a function
u(x, t)

Vν =
ut
|Du|

.

Large deviations principles. Consider the heat equation

ut =
ε

2
∆u with u(x, 0) =

1

α(n)
1B(0,1)(x).

Recall that we can interpret

u(x, t) = P(x+Wεt ∈ B(0, 1))

where Ws is a standard Brownian motion started at 0.
When x 6∈ B1 the event above is increasingly unlikely as ε→ 0. What we

can compute is

vε(x, t) = ε log uε(x, t).

This solves

vεt = ε
uεt
uε
, ∇vε = ε

∇uε

uε
, and ∆vε = ε

∆uε

uε
− ε |∇u

ε|2

(uε)2
= ε

∆uε

uε
− 1

ε
|∇vε|2

Thus

vεt −
ε

2
∆vε = ε

[
uεt
uε
− ε

2

∆uε

uε

]
+

1

2
|∇vε|2 =

1

2
|∇vε|2

resulting in the equation

vεt =
1

2
|Dvε|2 +

ε

2
∆vε with vε(x, 0) =

{
0 in B(0, 1)

−∞ in Rn \B(0, 1)

which is a viscous Hamilton-Jacobi equation. When ε → 0 we expect to
prove convergence to the Hopf-Lax solution of the HJ equation

vt =
1

2
|Dv|2 with v(x, 0) =

{
0 in B(0, 1)

−∞ in Rn \B(0, 1)

which, because the Hamiltonian is concave is a maximization problem

v(x, t) = max
y∈Rn

{
v0(y)− tL(

x− y
t

)

}
= max

y∈Rn

{
v0(y)− 1

2t
|x− y|2

}
= − 1

2t
d(x,B(0, 1))2

10. Similarity solutions

Just to give some idea on the interesting complications that can arise in
nonlinear second order equations we will look briefly at the porous medium
equation. In terms of techniques we will follow the idea of similarity solu-
tions, i.e. identifying the scaling invariances of the equation and then looking
for a scaling invariant solution. For linear equations this technique often led
to identification of the fundamental solution. For nonlinear equations we
cannot hope for quite that much, but scaling invariant solutions can still
play a very important role in understanding solutions in general.
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The porous medium equation arises in the modeling of fluid flow in porous
media. In that setting ρ : Rn → [0,∞) is the mass density which satisfies
the conservation law

ρt +∇ · (ρu) = 0

where u is the fluid velocity. The Darcy’s Law enforces a relationship be-
tween the fluid velocity and the pressure gradient

u = −1

ν
K∇p

where K is the permeability tensor, an n× n matrix, and ν is the fluid vis-
cosity. We will just take K = id and ν = 1 for simplicity. Then the pressure
is determined by the equation of state (derived from some thermodynamic
considerations)

p =
1

m− 1
ρm with m > 1

(now I am just choosing non-dimensional mathematical constants to work
out nicely). This leads to the Porous Medium Equation

ρt = ∇ · (ρ∇p) = ∇ · (ρρm−1) = ∆(ρm).

First we look for a scaling invariance by considering

ρλ(x, t) = λαρ(λβx, λt)

then

∂tρλ = λα+1∂tρ, ∇ρmλ = λmα+β∇ρm, and ∆(ρmλ ) = λmα+2β∆(ρm)

so

∂tρλ −∆ρmλ = λα+1∂tρ− λmα+2β∆ρm

which leads to the equation

α+ 1 = mα+ 2β.

Then we want to find a scaling invariant solution

ρ(x, t) = λαρ(λβx, λt) for all λ > 0.

Taking λ = 1/t we find

ρ(x, t) = t−αρ(t−βx, 1) = t−αv(t−βx).

Then calling y = t−βx the PME becomes

αv + βy ·Dv + ∆vm = 0

we then look for radial solutions v(y) = w(|y|) and find

αw + βrw′ + (wm)′′ +
n− 1

r
(wm)′ = 0.

Now if we set α = nβ, which together with the previous constraint implies

α =
n

(m− 1)n+ 2
and β =

1

(m− 1)n+ 2
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then this simplifies to

(rn−1(wm)′)′ + β(rnw)′ = 0

integrating this and using zero boundary conditions at infinity

rn−1(wm)′ + βrnw = 0

or

(wm)′ = −βrw

which, if w > 0, we can divide by w to get,

(wm−1)′ = −m− 1

m
βr

so

wm−1 = b− m− 1

2m
βr2 if w > 0.

Thus we find the formula

w(r) = (b− m− 1

2m
βr2)

1
m−1
+

plugging back in to the original formulation we find

ρ(x, t) =
1

tα
(b− m− 1

2m
β
|x|2

t2β
)

1
m−1
+

with

α =
n

(m− 1)n+ 2
and β =

1

(m− 1)n+ 2
.

This special solution is called the Barenblatt solution. (Draw picture). Note
that the positivity set has a finite speed of propagation, which is totally un-
like the linear heat equation. It plays a somewhat analogous role to the
fundamental solution, except that the equation is nonlinear so there is no
convolution formula which relates general solutions linear combinations of
Barenblatt profiles. Nonetheless the Barenblatt profile still plays a universal
role, in an appropriate limit it describes the long time asymptotic behavior
of arbitrary compactly supported non-negative initial profiles. Also the so-
lution is obviously not a classical solution, nonetheless we we want to regard
it as the correct solution of the nonlinear equation.

11. Weak derivatives and Sobolev spaces

To proceed further with the existence theory of general second order equa-
tions and boundary value problems it becomes necessary to get the func-
tional analytic framework right.
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11.1. Weak derivatives. We discussed the notion of distributional deriv-
ative already in the previous semester. The idea is to define derivative by
duality/integration by parts against smooth test functions. Given a locally
integrable function u we say that a distribution f is f = Dαu if

〈f, ϕ〉 = (−1)|α|
∫
Rn

u(x)Dαϕ(x) dx

for all test functions ϕ ∈ C∞c (U).
This formula always defines s distribution, we additionally say that f

is the α-th weak derivative of u if f is represented by a locally integrable
function i.e. ∫

Rn

f(x)ϕ(x) dx = (−1)|α|
∫
Rn

u(x)Dαϕ(x) dx

for all test functions ϕ ∈ C∞c (U). Actually, by a density argument, this also

will hold for just C
|α|
c (U) functions.

The uniqueness of the weak derivative is straightforward, use the formula
to show ∫

U
(f(x)− f̃(x))ϕ(x) dx = 0 for all ϕ ∈ C∞c (U).

Examples: |x|r has weak derivatives of all orders m > 0 so that r −m >
−n (required for local integrability). For example the Laplace fundamental
solution |x|2−n has weak derivatives of order 1 but not 2 (as we know the
Laplacian is a δ-distribution which is not represented by a locally integrable
function).

The Sobolev space W k,p is defined for 1 ≤ p ≤ ∞ and k ∈ N

W k,p(U) = {u ∈ L1
loc(U) : Dαu ∈ Lp(U) for all |α| ≤ k}.

The Sobolev norm is

‖u‖Wk,p(U) =
∑
|α|≤k

(∫
U
|Dαu|p dx

)1/p

and

‖u‖Wk,p(U) =
∑
|α|≤k

‖Dαu‖L∞(U).

The L2-based Sobolev spaces have an inner product structure and are often
call Hk = W k,2.

Example: Let xk be a countable dense subset of U and define∑
k

2−k|x− xk|−r

this is in W 1,p for r < n−p
p .

We call W k,p
0 (U) to be the closure of C∞c (U) in the W k,p(U) norm. Unlike

for the k = 0 case (i.e. Lp spaces) this will actually be a nontrivially distinct
subspace of W k,p, this is good news because we can meaningfully encode
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boundary conditions within the Sobolev context. To be precise, one can
show, the boundary trace map map T∂Uφ = φ|∂U extends from the smooth
functions to a continuous linear mapping (with respect to the W k,p norm)
into W k−1,p(∂U).

Nontrivial results: C∞c (U) is dense in W k,p(V ) for an V compactly con-
tained in U , If ∂U is smooth then C∞(U) is dense in W k,p(U).

Theorem 15. Assume U is bounded and ∂U is C1. Then there is a bounded
linear operator T : W 1,p(U)→ Lp(∂U)

‖Tu‖Lp(∂U) ≤ C(p, U)‖u‖Wk,p(U)

such that

Tu = u|∂U for u ∈W 1,p(U) ∩ C(U)

Proof. Using a smooth partition of unity can decompose u =
∑
ζju in com-

ponents which are supported in local neighborhood where ∂U is a local
graph. We just do the case when Γ = ∂U ∩B = {xn = 0} ∩B for some ball
B and u is zero on ∂B:∫

Γ
|u|pdx′ ≤

∫
xn=0

ζ|u|pdx′ = −
∫
B+

(ζ|u|p)xn dx = −
∫
B+

|u|pζxn+p|u|p−1(sgn(u))uxnζ dx

If ∂U is not flat do a standard change of variables to flatten the boundary.
�

Theorem 16. If U has C1 boundary then u ∈W 1,p
0 (U) if and only if Tu =

0.

11.2. Weak formulation of second order elliptic equations. Consider
the PDE operators

Lu = −∇ · (A(x)∇u) + b(x) · ∇u+ c(x)u

and

L′u = −Tr(A(x)D2u) + b(x) · ∇u+ c(x)u.

We will assume A, b, c ∈ L∞(U). These operators are called elliptic if

ξ ·A(x)ξ ≥ θ|ξ|2.

The first operator is said to be in divergence form, the second is said to be in
non-divergence form. Although there are possible transformations between
these forms it is often useful to consider them separately, divergence form
equations are well suited to integration by parts / variational techniques,
and non-divergence form operators are well suited to maximum principle
based techniques.

We will consider the Dirichlet problem

Lu = f +∇ · h in U and u = 0 on ∂U

with f, h ∈ L2. It turns out that this problem is very naturally posed in the
space H1

0 (U). In fact the trace theorem means that the boundary data is
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naturally included already in the space. However the operator Lu cannot
obviously be evaluated on H1

0 functions since it involves a second derivative.
Here is where the weak formulation comes in, if u were a smooth solution

then multiplying by a test function ϕLu = 0 pointwise in U and integrating
on U we would find

B[u, ϕ] =

∫
U
A(x)∇u · ∇ϕ+ b(x) · ∇uϕ+ c(x)uϕ dx =

∫
U
fϕ+ h · ∇ϕ dx.

This bilinear form is well defined on H1
0 (U). So we say u is a variational

solution of the PDE BVP if

B[u, ϕ] =

∫
U
fϕ+ h · ∇ϕ dx for all ϕ ∈ H1

0 (U).

Other boundary conditions can be studied as well, if g is the trace of
G ∈ H1(U) then w = u−G ∈ H1

0 (U) and solves

Lw = f − LG

note that the right hand side fits into the form established previously.
The existence of a solution to this problem would follow from the Riesz

Representation theorem if B were an alternative inner product on H1
0 . This

would require symmetry of B which we do not have, nonetheless there is an
alternative theorem which applies.

Theorem 17 (Lax-Milgram). Assume B : H ×H → R where H is a real
Hilbert space and B is bilinear satisfying (1) boundedness

|B[u, v]| ≤ C‖u‖‖v‖

and coercivity

c‖u‖2 ≤ B[u, u]

then for f any bounded linear functional on H there is a unique u ∈ H so
that

B[u, v] = 〈f, v〉 for all v ∈ H.

11.3. Variational problem. Remark that divergence form equations arise
in minimization of energy functionals like

I[u] =

∫
U

1

2
A(x)∇u · ∇u− f(x)u− h(x) · ∇u dx

for example over the admissible class

A = H1
0 (U).

The space H1(U) is very natural for the energy functional I.
Recall the Rayleigh quotient idea for the ground state eigenvalue of a

linear differential operator

λ0(U ;A) = inf
u∈H1

0 (U)

∫
U

1
2A(x)∇u · ∇u dx
‖u‖2

L2

.
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With A(x) = id the eigenvalues λ0(U) is the inverse of the Poincaré constant

‖u‖L2(U) ≤
1

2
λ0(U)−1/2‖∇u‖L2(U) for all u ∈ H1

0 (U).

Note that λ0(·) is monotone decreasing with respect to domain containment
because u ∈ H1

0 (U) is also in H1
0 (V ) for any V ⊃ U . This means that

λ0(U)−1/2 ≤ λ0(BR)−1/2

where R is the infimal radius so that U ⊂ BR(y) for some y. The Dirichlet
eigenvalue of a ball can be computed explicitly by separation of variables in
polar coordinates and scales like

λ0(BR) = R−2λ0(B1).

Another quick application of the Poincaré inequality

ut −∆u = 0 in U with u = 0 on ∂U

then
d

dt

∫
u2 dx = −2

∫
U
|Du|2 dx ≤ −λ0(U)

∫
U
u2 dx

which, by Gronwall, gives∫
U
u2 dx ≤

∫
U
u2

0 dxe
−λ0(U)t.

Note that this is sharp because the ground state eigenvector −∆ϕ0 = λ0ϕ0

gives a solution
v(x, t) = e−λ0tϕ0.

11.4. Method of eigenfunctions.

Theorem 18. Smooth domain U in Rn, −∆ has a sequence of Dirichlet
eigenvalues (w/ multiplicity)

0 < λ0 < λ1 ≤ λ2 ≤ · · ·
which accumulate only at +∞ and there is a corresponding sequence of eigen-
functions ϕk ∈ H1

0 (U) which solve (in the weak sense)

−∆ϕk = λkϕk

and (ϕk)
∞
k=1 form a basis for L2(U).

See chapter 6 of Evans for proofs.
Eigenfunction expansion is the generalization of Fourier methods to bound-

ary value problems. For example we can represent a solution of the heat
equation ut −∆u = 0

u(x, t) =
∑
k

ake
−λktϕk(x)

or the wave equation utt −∆u = 0

u(x, t) =
∑
k

ake
iλ

1/2
k tϕk(x).
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Can think term by term to gain some intuition about what these equations
are doing in the eigenfunction/Fourier basis.

11.5. Galerkin methods. Project the variational problem onto a finite
dimensional subspace of H1. For example if we are trying to solve for u ∈
H1

0 (U) with ∫
U
∇u · ∇φdx =

∫
U
fφ dx for all φ ∈ H1

0 (U)

we can choose some finite linearly independent collection wj for 1 ≤ j ≤ N
and then look for v ∈ span(w1, . . . , wj) so that∫

U
∇v · ∇widx =

∫
U
fwi dx for all 1 ≤ i ≤ N

or writing v =
∑
viwi(x)∑

j

∫
U
∇wi · ∇wjdxvj =

∫
U
fwj dx for all 1 ≤ j ≤ N

which is an N ×N linear system. If wj were an orthonormal basis of eigen-
functions the matrix would be identity. For practical purposes, if one did
not know the eigenfunctions, there are many other choices of bases.

12. Review

• The Laplace equation: Harmonic functions, mean value theorems,
maximum principles, energy minimization; Fundamental solution;
Boundary value problems; Green’s functions.
• Diffusion: The one-dimensional diffusion equation; Uniqueness: in-

tegral methods and maximum principles; Fundamental solution and
the global Cauchy problem; Random walks; Global Cauchy problem,
maximum principles; Energy methods; Some nonlinear problems:
traveling waves.
• Waves and vibrations: General concepts, e.g., types of waves,

group velocity, dispersion relations; One-dimensional wave equation,
waves on a string; The D’Alembert formula and characteristics; Clas-
sification of second-order linear equations; Multi-dimensional wave
equation, the Cauchy problem; Energy methods / uniqueness.
• First order equations: Scalar conservation laws and Hamilton-

Jacobi Equations: Linear transport equation and conservation
laws; Method of Characteristics; Weak solutions and shock waves;
Entropy solutions; Hamilton-Jacobi Equations; Lagrangian-Hamiltonian
duality; Control formulation and dynamic programming principle;
viscosity solutions.
• Variational formulation of elliptic problems: Sobolev spaces,

trace theorem, Linear operators and duality; Lax–Milgram theorem
and minimization of bilinear forms; Variational formulation of Pois-
son’s equation in higher dimensions.
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