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INSTRUCTOR: WILL FELDMAN

1. Basics

Stein and Shakarchi Ch 1

1.1. Complex plane. Real and Imaginary parts, complex addition, mul-
tiplication, geometry, triangle inequality, complex conjugate, Re(z) = z+z̄

2

etc, complex magnitude, 1/z = z̄/|z|2, polar form z = reiθ where r = |z|,
θ = arg(z), and Euler’s formula eiθ = cos θ + i sin θ, complex multiplication
as homothety.

1.2. Topology of C. Notion of convergence, Cauchy sequences, C is com-
plete, notation for discs Dr(z0), circles Cr(z0), unit disk D, unit circle ∂D,
open, closed, bounded, compact (closed and bounded iff sequentially com-
pact iff open cover compact ... nested intersection property may be useful
later), connected set, equivalence of connected and path connected for open
sets in C.

1.3. Holomorphic functions. Continuity (same as for functions on R2),
Holomorphic at z0 if the difference quotients converge, limit is called the
derivative, function is holomorphic on Ω open if it is complex differentiable
at every point, on C closed if there is Ω open containing C on which it
is holomorphic, on all of C entire. f(z) = z and any polynomial p(z) =
a0 + a1z + · · · + anz

n. f(z) is holomorphic on C \ {0} and f ′(z) = −1/z2.
f(z) = z̄ is NOT holomorphic. Useful also to write differentiability as

f(z0 + h)− f(z0)− ah = hψ(h)

where ψ is defined for small enough |h| and ψ(h) → 0 as h → 0. Also can
write this as = o(h) (with this as the precise defn). Proposition: (f + g)′ =
f ′ + g′, (fg)′ = f ′g + g′f , if g(z0) 6= 0 then (f/g)′ = (f ′g − g′f)/g2, if
f : Ω → U and g : U → C are holomorphic then (g ◦ f)′(z) = g′(f(z))f ′(z)
for z ∈ Ω.

In particular polynomials are holomorphic and complex derivatives have
the known formulae.

1.4. Cauchy-Riemann equations. Compute f ′(z) two ways with h =
h1 ∈ R and h = ih2 with h2 ∈ R, find ∂xf = 1

i ∂yf and

∂xu = ∂yv and ∂yu = −∂xv.
1
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Also note that ∂2
xu = ∂y(−∂yu) = −∂2

yu so u is harmonic (assuming suffi-
cient regularity for now).

Define the differential operators

∂

∂z
=

1

2
(
∂

∂x
+ i

∂

∂y
) and

∂

∂z̄
=

1

2
(
∂

∂x
− i ∂

∂y
)

Then if f is holomorphic then

∂f

∂z̄
= 0 and f ′(z) =

∂f

∂z
= 2

∂u

∂z

also jacobian formula for F (x, y) = (u(z), v(z))

det(DF (x, y)) = |f ′(z)|2.
Note that sign is always positive so Df is orientation preserving, anti-
holomorphic functions reverse orientation.

det(DF ) =
∂u

∂x

∂v

∂y
− ∂u

∂y

∂v

∂x
= |f ′(z)|2

CONVERSE: If u and v are C1 and satisfy CR equations then f(z) = u+ iv
is holomorphic.

1.5. Power series. ez =
∑
zn/n!, note by triangle ineq |ez| ≤ e|z| which

implies absolute summability for all z ∈ C. Geometric series
∑N zn =

1−zN+1

1−z converges in |z| < 1 to the function 1/(1−z) holomorphic in C\{1}.
Note that if power series converges absolutely at z0 then it also converges

absolutely for all z with |z| ≤ |z0|.
Theorem: Given series

∑
anz

n there is 0 ≤ R ≤ ∞ called radius of
convergence so that for |z| < R power series converges absolutely, for |z| > R
diverges, and formula

R =
1

lim sup |an|1/n
Proof: Call L = 1/R and let ε > 0 so that (L+ ε)|z| = r < 1 then

|an||z|n = (|an|1/n|z|)n ≤ ((L+ ε)|z|)n = rn

for n sufficiently large. Since this geometric series is absolutely summable
we get convergence.

If |z| > R similar argument shows that there is a subsequence of terms
so that |an||z|n →∞ which means that the partial sums cannot be Cauchy
and hence cannot converge.

Trigonometric functions

cos z =
∑

(−1)nz2n/(2n)! and sin z =
∑

(−1)nz2n+1/(2n+ 1)!

and

cos z =
1

2
(eiz + e−iz) and sin z =

1

2i
(eiz − e−iz)

also reverse formulae eiz = cos z + i sin z and e−iz.
Note for a function given by a power series f(z) = f(z̄).
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Differentiating term by term: Note if fn(z)→ f(z) uniformly this does not
generally imply that the derivatives f ′n(z) → f(z) (at least in real variable
problems!). For power series it is true inside the radius of convergence. If we

establish that fn(z)−fn(z0)
z−z0 converges to f(z)−f(z0)

z−z0 uniformly then the result
is true.

Apply to power series using an − bn = (a− b)(an−1 + an−2b+ · · ·+ bn−1)

|
∞∑
N

an
(z0 + h)n − zn0

h
| =≤

∞∑
N

n|an||z0|n−1

this is n
|z0| |an||z0|n but the coefficient bn = n

|z0| |an| has the same radius of

convergence since

lim sup b1/nn = lim supn1/n|z0|−1/n|an|1/n = 1/R.

Corollary: Power series are infinitely differentiable, derivatives are the
termwise derivative power series, and the radii of convergence of all deriva-
tives are the same.

Can also center power series at z0. A function is called analytic at z0 if it
has a power series representation at z0 in a positive radius neighborhood. It
turns out that holomorphic and analytic on an open domain Ω are equivalent!

1.6. Integration on curves. It is useful to distinguish between the one-
dimensional objects with orientation in C and their parametrizations.

Parametrized curve is a map z(t) : [a, b] → C, called smooth if z is C1

on [a, b] and z′(t) 6= 0 (one-sided difference quotients at a, b). Recall issue
with z′ = 0. Called piecewise smooth if z is continuous and [a, b] can be
partitioned into (almost) disjoint closed subintervals on which z is smooth.

Two parametrized curves z on [a, b] and w on [c, d] are equivalent if there
is a strictly monotone increasing and smooth change of variables t : [c, d]→
[a, b] and

w(s) = z(t(s)).

The condition t′(s) > 0 guarantees that z and w have the same orientation.
An equivalent family of smooth parametrized curves is an (oriented) curve

γ in C. Piece-wise smooth curves are defined similarly. γ− is the same curve
with reverse orientation, can also write −γ.

Endpoints of curve are z(a) and z(b) (independent of parametrization).
Curve is closed if endpoints are the same. Curve is simple if no self-
intersections.

For example Cr(z0) is an un-oriented curve a positive (counter-clockwise)
parametrization is

z(t) = z0 + reit t ∈ [0, 2π]

negative (clockwise) oriented parametrization

z(t) = z0 + re−it t ∈ [0, 2π].
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The integral on a piece-wise smooth curve is∫
γ
f(z) dz =

∫ b

a
f(z(t))z′(t)dt

where we need to justify that the definition does not depend on choice of
parametrization: with w(s) = z(t(s)) as before dt = t′(s)ds so change of
variables formula gives∫ b

a
f(z(t))z′(t)dt =

∫ d

c
f(w(s))z′(t(s))t′(s)ds =

∫ d

c
f(w(s))w′(s) ds.

The length of a piecewise smooth curve is defined

length(γ) =

∫ b

a
|z′(t)| dt = sup

P

N∑
i=0

|z(ti+1)− z(ti)|.

Path length integral ∫
γ
f(z)d|z| =

∫ b

a
f(z(t))|z′(t)|dt

Path integration is linear, changes sign under orientation reversal, natural
bound

|
∫
γ
f(z) dz| ≤ (sup

γ
|f |)length(γ).

More generally

|
∫
γ
f(z) dz| ≤

∫
γ
|f(z)| d|z|

1.7. Primitives. A function f on a domain U has a primitive F if F is
holomorphic on U and F ′(z) = f(z).

Lemma: If F is a primitive for f continuous then∫
γ
f(z) dz = F (w2)− F (w1)

for any curve γ beginning at w2 and ending at w1.
In particular if f has a primitive on U then∫

γ
f dz = 0

for any closed curve γ in U .
Note: NOT every holomorphic function on a domain U has a primitive

on U , e.g. 1/z on D \ {0}.
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1.8. Goursat’s theorem. If Ω is an open set in C, f is holomorphic in Ω
and T is a triangle whose interior is also contained in Ω then∫

T
f(z) dz = 0

We use the following property of compact sets: if K1 ⊃ K2 ⊃ · · · is a
nested collection of compact sets then ∩Kj is nonempty. If the diameter
diam(Kj)→ 0 then the intersection is a singleton.

Remark: the proof technique also works for rectangles but it is easier to
derive the rectangle case from the triangle case than vice versa.

Derive the same result for rectangles by splitting into two triangles.
Idea: reduce to zooming in, holomorphic functions look locally linear for

zoomed in case, linear functions have a primitive and satisfy the theorem.
Why is it not true for C1 functions.

1.9. Local existence of primitives. A holomorphic function on an open
disc has a primitive on that disc.

Proof: Define primitive by integrating from 0 to z along right angle path
γz. Use Goursat to write F (z + h) − F (z) =

∫
η f(z) dz where η is the line

segment from z to z + h. Use f continuous write f(w) = f(z) + ψ(w) and
compute.

Corollary (Cauchy’s theorem) The integral of a holomorphic function in
a disc on any closed curve in that disc is zero.

1.10. Homotopy. Two parametrized curves in a set U are homotopic if
there is a map ψ(t, s) : [a, b] × [0, 1] → U continuous in s and piecewise
smooth in t for each s so that

ψ(t, 0) = γ and ψ(t, 1) = η.

Describe as continuous deformation of curves, draw pictures (1) two paths,
(2) circle around missing point.

For non-closed paths we will include in the definition that homotopy fixes
end points. For closed paths we will include in the definition that homotopy
preserves the property of being closed.

Definition generalizes to oriented curves, creates an equivalence relation
on curves in U .

Homotopy form of Cauchy’s theorem: if f holomorphic in U and γ and η
are homotopic in U then ∫

γ
f(z)dz =

∫
η
f(z) dz

I.e. contour integral is homotopy invariant, constant on homotopy equiva-
lence classes. Proof: 1. do case of nearby curves, 2. reduce to case of nearby
curves by the homotopy

Note: If γ is a closed curve homotopic to a point then
∫
γ f(z) dz = 0.

Define U is simply connected if it is connected and every closed curve is
homotopic to a point. Non-examples: annulus, set minus several points.
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If U is simply connected then
∫
γ f(z)dz = 0 for every closed curve γ

contained in U .
Examples: Convex implies simply connected.
Holomorphic functions on simply connected domains have a primitive:

define primitive by integrating on arbitrary path from fixed base point, use
Cauchy’s theorem to show the definition is good.

1.11. Cauchy’s integral formula. Statement f holomorphic in D(z0, r)
then

f(z) =
1

2πi

∫
C

f(ζ)

ζ − z
dζ.

-Note f(ζ)/(ζ − z) not holomorphic on the inside of disc so no contradic-
tion.

-Keyhole contour with parameters ε > 0 and δ > 0. Fix ε > 0 and send
δ → 0 to show equality of outer and inner integrals.

-Write
f(ζ)

ζ − z
=
f(ζ)− f(z)

ζ − z
+
f(z)

ζ − z
and use holomorphicity so first term converges to f ′(z) as ζ → z.

Holomorphic implies infinitely many complex derivatives and

f (n)(z) =
n!

2πi

∫
C

f(z)

(ζ − z)n+1
dζ.

Proof: If f holomorphic in a neighborhood of z0 can choose a circle Cr(z0)
so that f is holomorphic in neighborhood of C. For z in that disc take
Cauchy integral formula

f(z) =
1

2πi

∫
C

f(ζ)

ζ − z
dζ = f(z) =

1

2πi

∫
C

f(ζ)

(ζ − z0)− (z − z0)
dζ =

1

2πi

∫
C

f(ζ)

ζ − z0

1

1− z−z0
ζ−z0

dζ

and expand the geometric series.
COROLLARY OF PROOF: If f is holomorphic in Dr(z0) then the power

series expansion for f centered at z0 has radius of convergence at least r.
In particular holomorphic in an open set U is equivalent to analytic in U .
COROLLARY: If f has a primitive in a disc Dr(z0) then f is holomorphic

in Dr(z0)
COROLLARY: (Morera’s theorem) If

∫
T f(z) dz = 0 for all triangles T

in a disc Dr(z0) then f has a primitive and is holomorphic in Dr(z0).
Cauchy inequalities

|f (n)(z)| ≤ n!

2πRn
sup
Dr(z)

|f |

Liouville Theorem- bounded entire imples constant by Cauchy inequality
for n = 1.

Every non-constant polynomial has a root in C: if not 1/P would be a
bounded holomorphic function (since polynomials go to ∞ at ∞).
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Every degree n ≥ 1 polynomial has exactly n roots in C and P (z) =
an(z − z1) · · · (z − zn).

proof: P has a root z1 then consider expanding each term by binomial
formula

P (z) = P (z − z1 + z1) = bn(z − z1)n + bn−1(z − z1)n + · · ·+ b1(z − z1) + b0

with bn = an, must be b0 = 0 since P (z1) = b0 = 0. Thus P (z) = (z −
z1)Q(z) where Q has degree n− 1. Induction.

If f holomorphic on connected Ω vanishes on a set E with an accumulation
point then f is zero. (More generally, unique continuation, f is determined
by its values on any set with an accumulation point, just think about f − g
for any two functions with the same values on E).

proof: 1. Show that if z0 = 0 is an accumulation point of {f = 0} then
f = 0 in a neighborhood of z0. 2. Consider U = {f = 0}o this is open by
definition, but also closed by the part 1, thus U is open and closed in Ω and
f is constant in Ω (connected).

Proof of 1: Power series expansion in Dr(z0), if all coefficients are zero
done. Otherwise

f(z) = am(z − z0)m(1 + g(z)) with am 6= 0

where g(z) → 0 as z → 0. But then |f(z)| ≥ |am|/2|z − z0|m on suffi-
ciently small disc around z0 implying no zeros except at z0, contradicts the
accumulation point property.

1.12. Laurent series in an annulus. Consider an annulus A = DR(0) \
Dr(0) a function f which is holomorphic on A. Annuli are, of course, not
simply connected.

By the homotopy form of Cauchy’s theorem∫
∂DR(0)

f(z) dz =

∫
∂Dr(0)

f(z) dz.

Applying Cauchy’s formula argument with f(ζ)/(ζ − z) we find:

f(z) =
1

2πi

∫
∂DR(0)

f(ζ)

ζ − z
dζ − 1

2πi

∫
∂Dr(0)

f(ζ)

ζ − z
dζ =: fin(z) + fout(z).

Now expand the geometric series in each formula

fin(z) =
∞∑
n=0

[
1

2πi

∫
∂DR(0)

f(ζ)

ζn+1
dζ]zn

power series converges in DR(0).
Outer series factor out z instead of ζ in denominator

fout(z) =
1

2πi

1

z

∫
∂Dr(0)

f(ζ)

1− ζ
z

dζ =
1

2πi

1

z

∫
∂Dr(0)

f(ζ)(
∞∑
n=0

ζnz−n)dζ

power series converges OUTSIDE of Dr(0).
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1.13. Sequences of holomorphic functions. Remind about Morera’s
theorem.

-Uniform limit of sequence of holomorphic functions is holomorphic (Ap-
ply Morera’s theorem).

-Under above assumption the sequence of derivatives also converges uni-
formly on compact subsets of Ω. Prove that

sup
K
|F ′| ≤ 1

d(K,C \ Ω)
sup

Ω
|F |

using Cauchy integral formula. Apply this to F = fn − f .

1.14. Integrals. If F (z, s) : Ω × [0, 1] → C is holomorphic in Ω for each
s ∈ [0, 1] and continuous on Ω× [0, 1] then

f(z) =

∫ 1

0
F (z, s) ds

is holomorphic in Ω.
Proof: Riemann sums

fn(z) =
1

n

n∑
k=1

F (z,
k

n
)

are holomorphic functions in Ω. Want to show that fn → f uniformly on
any compact subset K ⊂ Ω. In which case f is holomorphic as well.

Since K is compact F is uniformly continuous on D × [0, 1] so for any
ε > 0 there is δ > 0 so that |F (z, s) − F (z, t)| ≤ ε when |t − s| ≤ δ. Take
1
n ≤ δ and then

|fn(z)− f(z)| =
∑
|
∫ (k+1)/n

k/n
F (z,

k

n
)− F (z, s)ds| ≤

∑ 1

n
ε = ε.

1.15. Runge’s approximation theorem. Approximation of general holo-
morphic functions on compact sets by rational functions / polynomials.
Mention relation with Weierstrass polynomial approximation. Note that 1/z
can’t be approximated by polynomials on the unit circle (would contradict∫
∂D

dz
z = 2πi). Condition will be exactly “no holes” that Kc is connected.

Theorem: Any holomorphic function f on a compact set K can be uni-
formly approximated on K by rational functions with singularities in KC .
If KC is connected then f can be uniformly approximated by polynomials.

Call Ω ⊃⊃ K the open set where f is holomorphic.
Lemma: There is a finite collection of line segments (γj)

n
j=1 in Ω \K so

that

f(z) =
n∑
j=1

∫
γj

f(ζ)

ζ − z
dζ.

Let ρ = 1√
2
d(K,Ωc) > 0 and let Q be the collection of lattice cubes

ρ(j + [0, 1]d) over j ∈ Z2 with side length ρ. For any Q ∈ Q call ∂Q to be
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the boundary of Q oriented counter-clockwise. Note by choice of ρ if Q ∈ Q
intersects K then Q ⊂ Ω.

Call QK the set of ρ lattice cubes which intersect K. If z ∈ K is not in
the union ∪∂Q then∫

∂Q

f(ζ)

ζ − z
dζ =

{
f(z) z ∈ Q
0 else.

for Q ∈ QK

Note that z (as above) is in exactly one Q because the interiors of Q ∈ Q
are disjoint.

Call F = ∪Q∈QKQ. The boundary ∂F is a finite union of axis parallel
line segments (γj)

n
j=1.

Notice that ∑
Q∈QK

∫
∂Q

f(ζ)

ζ − z
dζ = f(z)

but any line segment of a cell boundary ∂Q which is not in ∂F is integrated
over twice in opposite directions so

f(z) =
n∑
j=1

∫
γj

f(ζ)

ζ − z
dζ

Lemma: If γ is a line segment contained in Ω \K then
∫
γ
f(ζ)
ζ−z dζ can be

approximated uniformly on z ∈ K by rational functions with singularities
on γ.

Proof: Write

g(z) =

∫
γ

f(ζ)

ζ − z
dζ =

∫ 1

0

f(γ(t))

γ(t)− z
γ′(t)dt

since d(γ(t),K) > 0 for t ∈ [0, 1] the integrand F (z, t) above is continuous
on K×[0, 1] and (by compactness) uniformly continuous. Thus the Riemann
sums

1

n

n∑
k=1

f(γ(k/n))

γ(k/n)− z
γ′(k/n)→ g(z)

uniformly on K as n → ∞. Each Riemann sum is a rational function with
poles on γ.

Moving the poles to infinity when Kc is connected:
Lemma: Let R > 0 so that Ω ⊂ DR(0). If z0 ∈ C \DR(0) then 1

z−z0 can
be uniformly approximated on K by polynomials.

proof:

1

z − z0
= − 1

z0

1

1− z
z0

=

∞∑
n=0

− zn

zn+1
0

which converges uniformly on any compact subset of DR(0).
Moving a pole slightly:
Lemma: Let z0 ∈ C \K then 1

z−z0 can be uniformly approximately on K

by rational functions with pole at z1 for any |z1 − z0| < d(z0,K)/4.
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proof:

1

z − z0
=

1

z − z1 − (z0 − z1)
=

1

z − z1

1

1− z0−z1
z−z1

=
∞∑
k=0

(z0 − z1)k

(z − z1)k+1

and note for z ∈ K

|z−z1| ≥ |z−z0|−|z0−z1| ≥ d(z0,K)−d(z0,K)/4 = 3d(z0,K)/4 ≥ 3|z0−z1|

so
|z0 − z1|
|z − z1|

≤ 1

3
on z ∈ K

and so the geometric series converges uniformly on K.
Lemma: SupposeKc is connected and z0 ∈ Kc then 1

z−z0 can be uniformly
approximately on K by polynomials.

proof: Let DR(0) ⊃ K and z1 ∈ C\DR(0). Because Kc is path connected
there is a smooth path γ ⊂ Kc from z0 to z1. Since the image of γ is compact
there is r > 0 so that

d(z,K) ≥ r for z ∈ γ.
Choose a sequence of points w0, . . . , wn ∈ γ with w0 = z0 and wn = z1 and
|wk+1 − wk| ≤ r/4. Then 1

z−wk can be uniformly approximated by polyno-

mials in 1
z−wk+1

and by induction 1
z−z0 can be approximated by polynomials

in 1
z−z1 .

Finally 1
z−z1 can be uniformly approximated on K by polynomials so we

are done.

1.16. Schwarz reflection. Symmetry principle: If f+ and f− are holomor-
phic in Ω+ ⊂ H and Ω− = Ω̄− and continuous up to I ⊂ R and agree on I
then f is holomorphicin Ω = Ω+ ∪ I ∪ Ω−.

Proof: Morera’s theorem divide up triangles crossing the real axis.
Reflection: (For f defined in Ω+ and taking real values along I = Ω ∩R)

Check that f(z̄) is holomorphic by showing power series expansion near
every point of Ω−.

Note: This is even reflection of real part, and odd reflection of imaginary
part.

1.17. Zeros and poles. Zero of order m > 0 if f(z) = (z− z0)mg(z) and g
holomorphic does not vanish in a neighborhood of z0.

Lemma: A nonconstant holomorphic function which vanishes at z0 ∈ Ω
has a zero of finite order.

Pole of order m > 0 if f(z) = (z − z0)−mg(z) where g holomorphic and
does not vanish in a neighborhood of z0.

In particular 1/f is holomorphic near z0 and has a zero of order m.
Simple pole/zero if m = 1.
Lemma: If f has a pole of order m at z0 then f(z) = a−m(z − z0)−m +

· · ·+ a−1(z − z0)−1 +G(z) with G holomorphic near z0.
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proof: Write f(z) = (z − z0)−mg(z) with g holomorphic and non-zero
near z0. Write the power series expansion of g valid in a positive radius
neighborhood:

f(z) = (z − z0)−mg(z) = (z − z0)−m(A0 +A1(z − z0) + · · · )
with A0 6= 0.

The negative terms in the Laurent series are called the principal part,
the residue of the pole at z0 is defined

Res(f, z0) = a−1

The importance of the residue is that (z − z0)−m has a primitive in C \ {0}
for any m > 1 so for any small circle centered at z0∫
Cr(z0)

f(z) dz =

∫
Cr(z0)

P (z) dz =

∫
Cr(z0)

Res(f, z0)
1

z − z0
dz = 2πiRes(f, z0).

where P (z) is the principal part of the Laurent series of f at z0.
If f has a pole of order m at z0 then

Res(f, z0) = lim
z→z0

1

(m− 1)!

(
d

dz

)m−1

(z − z0)mf(z).

(Note case of simple pole is particularly simple.

1.18. Residue formula. Suppose f holomorphic in an open set containing
a closed disc D with boundary circle C except for a pole at z0 ∈ D then∫

C
f(z) dz = 2πiRes(f, z0).

Use keyhole contour and previous set up with principal part of the Laurent
expansion.

Generalize to (1) multiple poles, (2) general “toy contours”.
Example computations ∫ ∞

−∞

1

1 + x2
dx = π

Example ∫ ∞
−∞

eax

1 + ex
dx =

π

sin(πa)

(contour is a rectangle boundary of [−R,R]× [0, 2π]) pole of f(z) = eaz

1+ez at
z = iπ.

1.19. Singularities. A function f is said to have an isolated singularity at
z0 if f is defined and holomorphic in a punctured neighborhood Dr(z0)\{z0}.
An isolated singularity is said to be removable if f can be extended to be
holomorphic in a neighborhood of z0.

Theorem: (Riemann removable singularity theorem) If f has an isolated
singularity at z0 and f is bounded in a punctured neighborhood of z0 then
the singularity is removable.
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proof: Integrate f(ζ)/(ζ − z) on a keyhole contour excising z0 and z 6= z0

to show

f(z) =
1

2πi

∫
Cr(z0)

f(ζ)

ζ − z
dζ = G(z).

The function G(z) is holomorphic on Dr(z) and extends f .
Corollary: If f has an isolated singularity at z0 then f has a pole at z0 if

and only if |f(z)| → ∞ as z → z0.
proof: If f(z) has a pole at z0 then 1/f has a zero at z0 so |f(z)| → ∞ as

z → z0. If |f(z)| → ∞ as z → z0 then 1/f is bounded near z0 and hence has
a removable singularity at z0, since |1/f | → 0 as z → z0 the only continuous
extension of g = 1/f at z0 is by g(z0) = 0. Thus f has a pole at z0.

Types of isolated singularities

• Removable (f bounded near z0)
• Pole
• Essential singularity

The function e1/z has an essential singularity at z = 0, note that as z
approaches zero along R left limit is 0 right limit is ∞, along the imaginary
axis limits are bounded.

Theorem: (Caseroti-Weierstrass) If f has an essential singularity at z0

then the image of Dr(z0) \ {z0} is dense in C for all r > 0.
Proof: Suppose otherwise, if a δ neighborhood of w is missed consider

g(z) = 1/(f(z) − w) which is bounded and so has a removable singularity
at z0. Then f(z) − w is either bounded or has a pole at z0 (in the case
g(z0) = 0).

Stronger results exist (Big Picard): Under the same hypothesis f attains
every value in C infinitely many times with at most one exception. This will
come later in the class.

1.20. Meromorphic functions. A function f is called meromorphic on a
domain Ω in the complex plane if there is a sequence of points {z1, . . . , zn}
with no limit points in Ω and such that f is holomorphic on Ω \ Z and f
has poles at the points of Z.

We can also discuss meromorphic functions on the extended complex plane
C∗ = C∪{∞}. Neighborhoods of∞ in the extended plane are complements
of closed discs {|z − z0| > r}. If f is holomorphic in a (punctured) neigh-
borhood of ∞ and the function F (z) = f(1/z) has a removable singularity
at zero then we say that f is holomorphic at infinity. If F has a pole at 0
then we say f has a pole at infinity, and same for essential singularity.

By this means we can define a meromorphic function on C∗:
Lemma: Any meromorphic function on C∗ is a rational function.
proof: f(1/z) has either a pole or a removable singularity at 0 and hence

is holomorphic in a punctured neighborhood of 0, i.e. f is holomorphic in a
neighborhood of ∞ meaning f can only have at most finitely many poles in
the extended plane z1, . . . , zn.
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We will subtract the principal part at each pole and then apply Liouville’s
theorem to what is left. Near each pole zk we can write

f(z) = Pk(z) + gk(z)

where gk is holomorphic near zk and Pk(z) is a polynomial in 1/(z − zk), in
particular a rational function. Similarly we can write

f(1/z) = P∞(z) + g∞(z)

where P∞ is a polynomial in 1/z and g is holomorphic at 0. Then define

H(z) = f(z)− P∞(1/z)−
n∑
k=1

Pk(z)

where P∞(1/z) is a polynomial and Pk(z) are polynomials in 1/(z − zk).
Now H is entire and H(1/z) is also bounded in a punctured neighborhood
of the origin. In particular H is entire and bounded and hence constant by
Liouville.

Note one consequence: rational functions are determined by their prin-
cipal parts at their poles. Rational functions with poles at {z1, . . . , zn}
(possibly repeated, possibly ∞) is a vector space of dimension n+ 1.

1.21. Riemann sphere. . Very brief intro will think more about it later.
The extended plane C∗ = C∪{∞} can be thought of as a sphere. Show the
stereographic projection.

1.22. Argument principle. Eventually we want to talk about

log f(z) = log |f(z)|+ iarg(f(z))

the argument function is multi-valued so we will need to treat this carefully.
However the logarithmic derivative is a well defined meromorphic function

d

dz
log f(z) =

f ′(z)

f(z)

(This must be the derivative of any branch of log f(z) based on the identity

elog f(z) = z) which has poles at the zeros of f .
The contour integral on a curve γ∫

γ

f ′(z)

f(z)
dz

can be interpreted as the change of the argument along the curve γ.
If f has a zero at z0 of order m then

f(z) = (z − z0)mg(z)

and
f ′(z)

f(z)
=

m

z − z0
+
g′(z)

g(z)

where g′/g is holomorphic near z0 since g is nonzero there.
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Similarly at a pole f(z) = (z − z0)−mh(z)

f ′(z)

f(z)
=
−m
z − z0

+
h′(z)

h(z)
.

Thus the residue of f ′/f at a zero or pole of f is

Res(f, z0) = m

where m ∈ Z is the order of the zero / negative order of the pole.
(Argument Principle): If f is meromorphic in Ω and D is a disk contained

in Ω with C = ∂D oriented counter-clockwise then

1

2πi

∫
C

f ′(z)

f(z)
dz = Nz −Np

where Nz is the number of zeros of f in D and Np is the number of poles in
D (both counted with multiplicity).

Corollary: same result holds for toy contours.
This is an example of a topological invariant. Any curve which is homo-

topic to C in the complement of the set Z ∪ P of zeros and poles of f will
also have the same argument integral.

Let’s define a related notion now of winding number the number of times
a closed curve γ winds around a point z

Wγ(z) =
1

2πi

∫
γ

1

ζ − z
dζ

For example if γ(t) = e2πikt for t ∈ [0, 1] can explicitly compute Wγ(0) = k.
Note, by residue theorem, if γ is a positively oriented toy contour (in

particular simple closed) then Wγ(z) = 1 for all z inside of γ.
Lemma: If γ is a piecewise smooth closed curve in C and z 6∈ γ then

Wγ(z) ∈ Z. Further Wγ(z) is constant on connected components of the
complement of γ, and zero on the unbounded component of the complement
of γ.

proof: Parametrize γ over [0, 1] and consider

G(t) =

∫ t

0

γ′(s)

γ(s)− z
ds

then G is continuous and differentiable (except at finitely many points).
Consider

H(t) = (γ(t)− z)e−G(t)

which has then

H ′(t) = γ′(t)e−G(t)−(γ(t)−z)G′(t)e−G(t) = γ′(t)e−G(t)−(γ(t)−z)γ′(s)(γ(t)−z)−1e−G(t) = 0.

So since γ is closed

(γ(0)− z)e−G(0) = H(0) = H(1) = (γ(1)− z)e−G(1)

or

1 = e−G(0) = e−G(1)
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so G(1) is a multiple of 2πi. (Note this proof is using that 1/(ζ − z) is the
derivative of a logarithm so integrating on a closed curve the result must be
zero modulo 2πi).

Note that Wγ is continuous and integer valued on each connected com-
ponent of the complement of γ and Wγ(z)→ 0 as z →∞.

Can interpret argument principle as the number of times f(γ) winds
around 0 note that∫

f(γ)

1

w
dw =

∫ 1

0

1

f(γ(t))
f ′(γ(t))γ′(t)dt =

∫
γ

f ′(z)

f(z)
dz

(Rouche’s theorem) Suppose that f and g are holomorphic on an open
set containing a toy contour γ and its inside U and

|f(z)| > |g(z)| on γ

then f and f + g have the same number of zeros on U .
Proof: (Draw a picture of f(γ) winding around 0 and the affect of per-

turbing by g). The proof is by continuation we claim that

ft(z) = f(z) + tg(z)

has the same number of zeros inside of U for all t ∈ [0, 1]. Note that

N(t) =
1

2πi

∫
γ

f ′t(z)

ft(z)
dz

since |g(z)| < |f(z)| − δ on γ

|ft(z)| ≥ |f(z)| − t|g(z)| ≥ δ for all t ∈ [0, 1]

so ft(z) is jointly continuous in (t, z) on [0, 1]× γ and so we can argue that
N(t) is continuous in t, more specifically

|N(t)−N(s)| = 1

2πi
|
∫
γ

(t− s)g′(z)
ft(z)

+f ′s(z)
fs(z)− ft(z)
ft(z)fs(z)

dz| = 1

2πi
|
∫
γ

(t− s)g′(z)
ft(z)

+f ′s(z)
(t− s)g(z)

ft(z)fs(z)
dz|

However by argument principle N(t) is integer valued so N(t) must be con-
stant on [0, 1] meaning N(0) = N(1).

Examples: Fundamental theorem of algebra via Rouche, prove z5+3z3+7
has all zeros in |z| < 2, ez − z in the unit disk.

(Open Mapping Theorem): If f is holomorphic and nonconstant in a
region Ω then f is open (images of open sets are open).

Proof: Let w0 = f(z0) be in the image of f we want to show that a
neighborhood of w0 is in f(Ω) as well. Let w near w0 (to be specified) and
consider g(z) = f(z)− w.

Write
g(z) = (f(z)− w0) + (w0 − w) = F (z) +G(z)

F has a zero of some order m ≥ 1 at z0 (finite order since f nonconstant).
Then F (z) = (z − z0)mH(z) with H holomorphic and nonzero in a neigh-

borhood Dr(z0) so |F (z)| ≥ δ > 0 on ∂Dr(z0). So if 0 < |w − w0| < δ then
|G(z)| < |F (z)| on ∂Dr(z0) so by Rouche’s theorem F + G has the same
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number of zeros as F in Dr(z0) (which is m ≥ 1). Thus w is in the image
f(Dr(z0)).

(Maximum modulus principle): If f is holomorphic in a domain Ω and
non-constant then |f | cannot attain its maximum in Ω.

Proof: If |f(z0)| = maxΩ |f(z)| for some z0 ∈ Ω then by the open mapping
theorem Dr(f(z0)) ⊂ f(Ω) but there is a point in Dr(f(z0)) with strictly
larger magnitude that f(z0), f(z0) + r

2f(z0)/|f(z0)|.
Corollary: Holomorphic functions on compact sets attain their maximum

on the boundary of the set.
(Cautions about unbounded sets)

1.23. Complex Logarithm. As we have discussed in passing if we want
to define the logarithm of a complex number z = reiθ it is natural to define

log z = log r + iθ

the problem is that θ is unique only up to integer multiples of 2π.
However locally near any z0 6= 0, fixing a particular value of θ0, we can

extend log z to be defined as a holomorphic function in a neighborhood.
Different choices of the base value θ0 will result in different values of the
logarithm differing by 2πi, these are called branches of the argument or of
the logarithm.

Theorem: If Ω is simply connected with 1 ∈ Ω and 0 6∈ Ω there there is
a branch of the logarithm F (z) = logΩ(z) so that (1) F holomorphic on Ω,

(2) eF (z) = z on Ω and F (r) = log(r) whenever r is real and near 1.
Proof: Construct logΩ z as the primitive of 1

z based at 1. Need to check

that ze−F (z) = 1, do this by computing derivative.
Comment about spiral like domain for why logarithm may not be real on

the entire positive real axis.
Principal branch of the Logarithm defined on C \ (∞, 0] argument takes

values in (−π, π)

log(z) = log r + iθ

Proof that this is the same as the logarithm defined before: integrate from
1 to r along the real axis then integrate along an arc to reiθ.

Note logarithm can fail to satisfy log(z1z1) = log(z1) + log(z2) check with

e2πi/3.
Taylor series expansion for principal branch

log(1 + z) = z − z2

2
+
z3

3
− · · ·

find by integrating taylor series of 1
1+z term by term. Both have the same

derivative and agree at z = 1.
Fractional powers: Ω is a simply connected domain containing 1 and not

0 and logΩ z is the branch of the logarithm defined on Ω with log(1) = 0
then can define

zα = eα log z
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check that 1α = 0 and (z1/n)n = 1
Theorem: If f is a nowhere vanishing holomorphic function on a simply

connected domain Ω then there is a holomorphic function g on Ω so that

f(z) = eg(z)

This is a branch of log f(z).
proof: Fix z0 and any value c0 with ec0 = f(z0). We define the logarithm

by integrating the logarithmic derivative f ′(z)
f(z)

g(z) =

∫
γz

f ′(z)

f(z)
dz + c0

Compute the derivative of f(z)e−g(z).

Contour integral of
∫∞

0
log(x)
x2+a2

.
Riemann surface M : connected complex manifold of dimension 1: con-

nected Hausdorff topological space, every point on M has a neighborhood
which is homeomorphic to the open unit disc in C, and there is an atlas of
local charts (i.e. an open cover of M by Uα which each come with a chart
ϕα : Uα → Vα which is a homeomorphism from an open subset of C) and
the transition maps τα,β = ϕ−1

α ◦ ϕβ : Vα → Vβ are all holomorphic.
Specifics of this definition will not really be used, for us this is mainly an

issue of intuition about analytic continuation.
Examples:
- Subsets of C - The Riemann sphere. - Riemann surface of the logarithm

- Riemann surface of z1/2 - Riemann surface of z1/3

1.24. Full Laurent series. Topic was not in the book but let’s mention it:
Function f has isolated singularity at 0, think of essential singularity case
(only one we have not studied yet). Do the Laurent series expansion in an
annulus

f(z) =

∫
DR(z0)

f(ζ)

ζ − z
dζ −

∫
Dr(z0)

f(ζ)

ζ − z
dζ = F (z)−Gr(z).

Note that F (z) and f(z) are independent of r for |z − z0| > r so Gr(z)
must be as well. Expand F (z) as a power series z convergent in DR(z0).
Expand Gr(z) in a power series in 1

z convergent in |z − z0| > r. Call the
coefficients an(r) for n ≤ −1. Note coefficients cannot depend on r because
Gr(z) = Gr′(z) on |z − z0| ≥ max{r, r′} so

0 =

−1∑
−∞

(an(r)− an(r′))(z − z0)n on |z − z0| > max{r, r′}.

Multiply by (z−z0) and send z →∞ to find a−1(r) = a−1(r′), then proceed
to a−2 etc.

Uniqueness of Laurent series expansion: Given a series expansion

f(z) =
∑
k

akz
k
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converging in a punctured neighborhood D(0, r) \ {0} simple compute

1

2πi

∫
∂D(0,r)

z−k−1f(z) dz = ak.

2. Conformal mappings

A conformal mapping f : U → V is a bijective holomorphic func-
tion. If there is a conformal mapping between U and V we say the sets are
conformally equivalent. Note that this is indeed an equivalence relation
because:

Lemma. If f : U → V is conformal then f ′(z) 6= 0 for all z ∈ U and the
inverse of f defined on V is holomorphic.

Proof: If f ′(z0) = 0 then f(z) = a(z − z0)m + G(z) for some m ≥ 2
and then apply Rouche’s theorem on a small disk. (Exactly proof of open
mapping theorem).

Conformal mappings are angle preserving if two curves γ and η intersect
at z0 then f◦γ and f◦η intersect at f(z0) and the angles between the tangent
vectors agree. Euclidean inner product (z, w) = Re(zw̄) and the cosine of
the angle between two vectors is (z, w)/|z||w|.

2.1. Disk and upper half-plane. Conformal equivalence of disk D and
upper half plane H = {Im(z) > 0}.

Explicit mappings

φ(z) =
i− z
i+ z

and ψ(w) = i
1− w
1 + w

.

The mapping φ is conformal H→ D and ψ is its inverse.
Note both maps are holomorphic on their domains. ψ has a singularity

at −1 which gets mapped to ∞ (which is on the boundary of the upper half
space viewed as a subset of the Riemann sphere. (Point out that disk and
upper half space are both half spheres under the stereographic projection).

Note that any point in H is closer to i than to −i so |φ(z)| < 1 on H.
Also ψ maps D to H again by direct computation

Im(ψ) = Re(
1− w
1 + w

) = Re(
(1 + w̄)(1− w)

(1 + w̄)(1 + w)
) =

1− |w|2

|1 + w|2

Finally φ(ψ(w)) = w so φ is onto D and similarly ψ is onto H.
Also point out boundary behavior by evaluating on boundaries.

2.2. More examples. Translations, dilations/rotations, mapping sector

{|arg(z)| < π/2n} to right half plane via zn, inverse mapping via z1/n,
point out the boundary behavior at a corner. Logarithm maps upper half
plane to strip domain, maps upper half disc to half-strip domain.

Mapping upper half disc to quarter-plane via f(z) = 1+z
1−z (multiply num/denom

by 1− z̄ and compute real/imaginary parts) with inverse g(w) = w−1
w+1 .

Mapping from slit disk to disk, pictures: square root, rotate, map to
quarter plane, square, map to disc.
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2.3. Automorphisms of the disk and Schwarz Lemma. Schwarz Lemma:
Let f : D→ D holomorphic with f(0) = 0 then (i) |f(z)| ≤ |z| for all z ∈ D,
(ii) If for some z0 6= 0 |f(z0)| = |z0| then f is a rotation, (iii) |f ′(0)| ≤ 1 and
if equality holds then f is a rotation.

proof: Expand in power series f(z) = a1z + a2z
2 + · · · . So f(z)/z is

holomorphic in D. Then |f(z)/z| ≤ 1
r on |z| = r. By maximum modulus

principle |f(z)/z| ≤ 1
r for |z| ≤ r. Sending r → 1 gives the first result. For

the second result if |f(z)/z| attains its maximum at an interior point then
it is constant meaning f is a rotation. Finally for the third part notice that
limz→0 f(z)/z = f ′(0) so we get |f ′(0)| ≤ 1. If |f ′(0)| = 1 then g(z) = f(z)/z
attains its maximum modulus at 0 which again would imply f is a rotation.

A conformal map of Ω to itself is called an automorphism. The set Aut(Ω)
is a group under the operation of map composition with the identity map
being the group identity.

For the unit discs rotations are automorphisms as are the maps

ψα(z) =
α− z
1− ᾱz

For α ∈ D.

We saw on HW 1 that these maps are bijections of D to itself with ψα ◦ψα =
id. Can think of ψα as defined by the property that it is an automorphism
of D which exchanges α and 0.

In fact rotations and these Blaschke factor exchanges are the only disk
automorphisms: If f is a disk automorphism then

f(z) = eiθψα(z)

for some θ ∈ R and some α ∈ D.
Proof: Since f is an automorphism there is a unique α such that f(α) = 0.

Precompose with ψα so that f fixes the origin

g(z) = (f ◦ ψα)(z)

and we can apply Schwarz Lemma

|g(z)| ≤ |z|
and also to g−1

|g−1(w)| ≤ |w|.
However this implies with w = g(z)

|z| ≤ |g(z)|
so |g(z)| = |z| for all z ∈ D and so by Schwarz Lemma g is a rotation.

f(ψα(z)) = eiθz

and then plugging in z = ψα(w) we find

f(w) = eiθψα(w)

using ψα is its own inverse.
Note: Corollary is “Any disk automorphism which fixes the origin is a

rotation”.
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2.4. Riemann Mapping Theorem. Observations: conformal maps take
simply connected regions to simply connected regions, the disk cannot be
conformally equivalent to C because of Liouville’s theorem.

Theorem: If Ω is proper and simply connected and z0 ∈ Ω then there is
a unique conformal map φ : Ω→ D so that φ(z0) = 0 and φ′(z0) > 0.

We will consider the class of all injective holomorphic maps from Ω to
D and then maximizing |f ′(z0)| will turn out to suffice to make the map
surjective. (Think in rough analogy to Schwarz Lemma). The key issue
here is how to show that there EXISTS an injective holomorphic map which
achieves the supremal value for |f ′(z0) in this class.

2.5. Montel and Hurwitz Theorem. Let Ω be a domain in C. A family
F of holomorphic functions is called normal if every sequence in F has a
subsequence converging uniformly on compact subsets of Ω. The limit does
not need to be an element of F . In real analysis terminology we would say
that this family is precompact in the topology of local uniform convergence
on Ω.

We say that a family F is uniformly bounded on compact sets of Ω if for
all K ⊂⊂ Ω there is B so that

|f | ≤ B for all f ∈ F .

Theorem (Montel): If F is a family of holomorphic functions which is
uniformly bounded on compact subsets of Ω then: (i) F is equicontinuous
on compact subsets of Ω, (ii) F is a normal family.

Proved on homework 2.
Theorem (Hurwitz): If Ω connected and fn injective on Ω converge locally

uniformly on Ω to f then f is either injective or constant.
Proof: Assume f is not constant, and f(z1) = f(z2). Look at gn(z) =

fn(z)− fn(z1) which have exactly one zero at z1. Then use argument prin-
ciple on a small circle around z2 to show that g cannot have a zero at z2.

2.6. RMT proof. . Step 1: Simply connected proper domain is conformal
to an open subset of D. Define a branch of the logarithm ef(z) = z − α
where α 6∈ Ω. The map is injective by using the formula z − α = ef(z) =
ef(w) = w − α. Fixing a w ∈ Ω the value f(w) + 2πi cannot be taken on Ω,
actually |f(z)− (f(w)+2πi)| is bounded from below on Ω. Again follows by

applying the formula z − α = ef(z) = ef(w)+2πi = w − α, also to a sequence
with f(zn)→ f(w) + 2πi. Then take

ϕ(z) =
1

f(z)− (f(w) + 2πi)
.

Step 2. Assume Ω ⊂ D and contains 0 and define

F = {f : Ω→ D : f holomorphic, injective, and f(0) = 0}

Take a sequence maximizing |f ′(0)| over F (supremum is at least 1 due
to identity being in F). Apply Montel and Hurwitz to show there is a
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uniformly convergent subsequence and the limit is an element of F achieving
the supremum.

Step 3. Suppose the constructed f is not surjective, f(Ω) = Ũ ⊂ D but

there is α ∈ D \ Ũ (Ũ is simply connected). Construct another map with
larger derivative at 0. First map by ψα so U = ψα(f(Ω)) misses 0. Then

define a branch g(w) = e
1
2

log(w) of the square root on U . Then create a new
map

F = ψg(α) ◦ g ◦ ψα ◦ f
Check that F ∈ F .

Then
f = ψ−1

α ◦ h ◦ ψ−1
g(α) ◦ F = Φ ◦ F

where Φ is a self-map of the disc with Φ(0) = 0 which is not injective because
h is not injective. Thus |Φ′(0)| < 1 be Schwarz Lemma and

f ′(0) = Φ′(F (0))F ′(0) = Φ′(0)F ′(0)

so |f ′(0)| < |F ′(0)| which is a contradiction.

2.7. Fractional linear transformations. Give a, b, c, d ∈ C with ad−bc 6=
0 we call

F (z) =
az + b

cz + d
to be a fractional linear transformation (mapping would be trivial if
the determinant mentioned were zero). We have already seen examples of
this type, sub-families which make up the conformal self-maps of D and H.

Each transformation F is associated with a matrix[
a b
c d

]
with nonzero determinant. Note that multiplication of each matrix entry by
λ ∈ C\{0} gives rise to the same mapping so we could add the normalization
ad− bc = 1.

Vice versa if two matrices give rise to the same transformation they must
be multiples of each other.

Note

F ′(z) =
ad− bc

(cz + d)2

This function has a pole at −d/c but is nonzero on C \ {−d/c}. Thus F is
locally conformal away from the pole.
F has an inverse

w =
az + b

cz + d
then

czw + dw = az + b

and

z =
dw − b
−cw + a
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i.e. the matrix [
d −b
−c a

]
which is actually the matrix inverse (when the determinant is normalized to
be 1).

Thus F is a conformal map from C \ {−d/c} to C \ {a/c}.
This becomes much more intuitive if we allow ourselves to view F as a

conformal self-map of the Riemann sphere / extended complex plane, i.e.
C∗ = C ∪ {∞}.

Then we view

F (∞) = a/c if c 6= 0

F (∞) =∞ if c = 0

and

F (−d/c) =∞ if c 6= 0.

Then we view F as a meromorphic bijection of C∗ with itself, which we may
also view as a conformal mapping of the sphere.

Note that fractional linear transformations are made up of compositions
of translations, inversions and dilations/rotations.

Fractional linear transformations have a lot of nice properties:
Theorem: Fractional linear transformations map straight lines and circles

in C∗ onto straight lines and circles.
A straight line on C∗ is simply a straight line in C union with the point

at infinity. It is helpful to think of straight lines as circles through ∞. Then
the statement is simply that fractional linear transformations map circles to
circles.

Proof: FLT are compositions of translations, inversions and rotations/dilations
so we just need to check the property for each of these. The only one which
is not obvious is inversions.

Consider the map z 7→ 1/z = u+ iv with

u(x) =
x

x2 + y2
and v(x) =

−y
x2 + y2

.

The equation of a straight line or circle in the (u, v)-plane has the form

A(u2 + v2) +Bu+ Cv = D

for some real numbers A,B,C,D not all zero.
Plugging in the values of (u, v) in terms of (x, y) we find

A+Bx− Cy = D(x2 + y2)

which is also the equation of a line or circle. Thus the inverse image of a
circle is a circle under inversion (which is its own inverse). Lines are mapped
to circles through 0, circles through zero are mapped to lines and remaining
circles are mapped to circles.
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Fixed points of FLT are just z0 such that F (z0) = z0. If ∞ is a fixed
point of a FLT F then F is linear: if c 6= 0 then F (∞) = a/c which is not
infinity unless c = 0.

FLT can be determined by their behavior on 3 points,
Theorem: Given any (z1, z2, z3) distinct on the extended plane and (w1, w2, w3)

distinct there is a unique FLT with

F (zi) = wi

Proof: Suppose F and G are both FLT mapping zj → wj then F ◦ G−1

fixes (z1, z2, z3) so we can just show
Lemma: If F is a FLT with three fixed points then F is identity.
Proof: First suppose z3 = ∞ then F (z) = az + b. If z1 ∈ C is a fixed

point then az1 + b = z1 so (1− a)z1 = b. If a 6= 1 then z1 = b/(1− a) is the
only possible fixed point in C. If a = 1 then z + b has a fixed point if and
only if z = 0 in which case F is identity.

If ∞ is not a fixed point so c 6= 0 then

az + b

cz + d
= z

and

cz2 + (d− a)z − b = 0

the equation has at most two roots so F has at most two fixed points (roots
from quadratic formula).

Finding the map explicitly: first figure out how to send (z1, z2, z3) 7→
(0,∞, 1)

z 7→ z − z1

z − z2

has the correct behavior for z1, z2 then

ϕ(z) =
z3 − z2

z3 − z1

z − z1

z − z2

is the unique FLT sending (z1, z2, z3) to (0,∞, 1). The quantity

(z1, z2; z3, z4) =
z3 − z2

z3 − z1

z4 − z1

z4 − z2

is known as the cross-ratio.
If F is the FLT mapping (z1, z2, z3) 7→ (w1, w2, w3) then

F (z) = ϕ−1
(w1,w2,w3)(ϕ(z1,z2,z3)(z))

so

ϕ(w1,w2,w3)(F (z)) = ϕ(z1,z2,z3)(z)

i.e.
F (z3)− F (z2)

F (z3)− F (z1)

F (z4)− F (z1)

F (z4)− F (z2)
=
z3 − z2

z3 − z1

z4 − z1

z4 − z2

the cross-ratio is preserved by fractional linear transformations. (This should
not be memorized, simply remember how to map to (0, 1,∞))
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3. Entire functions

(Following Stein-Shakarchi Chapter 5) Questions: Zero sets, growth at
infinity, factorization based on the zeros.

3.1. Jensen’s formula. . Number of zeros of polynomial is exactly related
to the polynomial growth rate at infinity.

Theorem: Let Ω be a domain containing DR and f holomorphic on Ω,
f(0) 6= 0 and f vanishes nowhere on CR. If z1, . . . , zN are the zeros of f
counted with multiplicity then

| log f(0)| =
∑

log
|zk|
R

+
1

2π

∫ 2π

0
log |f(Reiθ)|dθ

Proof: If f1 and f2 satisfy the theorem then f1f2 also does because the
formula log(ab) = log a+ log b holds for positive real inputs and the zero set
of f1f2 is the union of the two zero sets.
f(z) = g(z)Π(z−zj) where g is holomorphic and non-vanishing so we can

prove the result for nonvanishing g and for monomials.
First for g nonvanishing: g has a holomorphic logarithm on a nbhd of DR

so g(z) = eh(z) and |g(z)| = eRe(h(z)) so log |g(z)| = Re(h(z)). Since <(h(z))
is harmonic it satisfies the mean value property

Re(h(0)) =
1

2π

∫ 2π

0
Re(h(z))dθ.

For a factor z − w for some fixed w ∈ DR need to show

log |w| = log
|w|
R

+
1

2π

∫ 2π

0
log |Reiθ − w|dθ.

or

0 =
1

2π

∫ 2π

0
log |eiθ − w

R
|dθ

so it suffices to show∫ 2π

0
log |eiθ − a|dθ = 0 for |a| < 1

or ∫ 2π

0
log |1− aeiθ|dθ = 0

(changing variables θ → −θ). The function F (z) = 1−az does not vanish on

D so it has a holomorphic logarithm F (z) = eH(z) there and log |F | = Re(H)
and F (0) = 1 so log |F (0)| = 0 so MVT again

0 = Re(H(0)) =
1

2π

∫ 2π

0
log Re(H(eiθ))dθ.

That completes the proof of Jensen’s formula.
This is going to give us a way to connect values of f with the number of

zeros of f in a given disc:
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Lemma: ∫ R

0
n(r)

dr

r
=
∑

log

∣∣∣∣Rzk
∣∣∣∣ .

where n(r) is the number of zeros of f inside of DR.
proof: note∑

log

∣∣∣∣Rzk
∣∣∣∣ =

∑∫ R

|zk|

dr

r
=
∑∫ R

0
1|zk|>r

dr

r
=

∫ R

0

∑
k

1r>|zk|
dr

r

3.2. Functions of finite order. Let f entire if

|f(z)| ≤ AeB|z|ρ for all z ∈ C

we say that f has order of growth ≤ ρ and the order of growth of f is

ρf = inf ρ

over all ρ so that f has order at most ρ.
Theorem: If f is entire with order of growth ≤ ρ then

n(r) ≤ Crρ

for large r and if zk 6= 0 are the zeros of f then for all s > ρ∑
k

1

|zk|s
< +∞.

Proof: Without loss we can assume f(0) 6= 0 (otherwise divide by the z`

order of the zero) only affects n(r) by a constant and doesn’t change the
order).

Then apply Jensen’s formula in the form∫ R

0
n(x)

dx

x
=

1

2π

∫ 2π

0
log |f(Reiθ)|dθ − log |f(0)|

and take R = 2r∫ 2r

r
n(x)

dx

x
≤ 1

2π

∫ 2π

0
log |f(Reiθ)|dθ − log |f(0)|

since n is increasing ∫ 2r

r
n(x)

dx

x
≥ n(r) log 2

while
1

2π

∫ 2π

0
log |f(Reiθ)|dθ ≤ 1

2π

∫ 2π

0
log |AeBRρ |dθ ≤ Crρ.

For the second part of the theorem∑
|zk|−s =

∑
j

∑
2j≤|zk|<2j+1

|zk|−s ≤
∑
j

2−jsn(2j+1) ≤ C
∑
j

2−js2(j+1)ρ < +∞
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Examples: f(z) = sinπz which has |f(z)| ≤ eπ|z| also f has simple zeros
at each n ∈ Z and ∑

n6=0

1

|n|s
< +∞

if and only if s > 1.
f(z) = cos(z1/2) defined by the power series

∞∑
n=0

(−1)nzn/(2n)!.

Then f(z) is entire and |f(z)| ≤ e|z|
1/2

has order of growth 1/2 zeros at
((n+ 1/2)π)2 summable exactly for s > 1/2.

3.3. Infinite products. Next goal is to try to find a factorization formula
by the zeros of an entire function in the case when f is not just a polynomial.

Given a sequence an ∈ C we say that the product
∏∞
n=1(1+an) converges

if the limit of the partial products exists:

lim
N→∞

N∏
n=1

(1 + an).

Lemma: If
∑
|an| < ∞ then the product

∏
(1 + an) converges and the

limit is zero if and only if one of the factors is zero.
Since

∑
|an| converges |an| < 1/2 for sufficiently large n, in fact we can

assume it is true for all n by factoring out a finite product. Then we can
use the standard power series definition for log(1 + z) which converges in
D(0, 1) so

N∏
1

(1 + an) =

N∏
1

elog(1+an) = eBN

where

BN =

N∑
n=1

bn with bn = log(1 + an).

By fundamental theorem of calculus

| log(1 + z)| ≤ max
|w|≤1/2

1

|1 + w|
|z| ≤ 2|z|

so |bn| ≤ 2|an| and BN converges to some B. The limit is nonzero because
it is eB, so the limit could only be zero if one of the finitely many terms we
cut off before was zero.

Products of holomorphic functions: If Fn are holomorphic on a domain Ω
and |Fn(z)− 1| ≤ cn and

∑
cn < +∞ then the product

∏
Fn(z) converges

uniformly on Ω to a holomorphic function F and if Fn does not vanish for
any n then

F ′(z)

F (z)
=
∑ F ′n(z)

Fn(z)
.
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Proof: Write Fn(z) = 1 + an(z) with |an| ≤ cn

|eBN − eB| ≤ max{eBN , eB}|BN (z)−B(z)| ≤ max{eBN , eB}
∞∑
N

cn

so we actually get a uniform estimate of the convergence from the tails of
the dominating series

∑
cn.

Call

GN (z) =
N∏
1

Fn(z)

the GN → F uniformly on Ω so on any compact K ⊂ Ω the G′N converge
uniformly to F ′ since GN are uniformly bounded from below on K

G′N
GN
→ F ′

F
unif on K.

Compute G′N/GN .

3.4. Weierstrass product theorem. Theorem: Given any sequence an of
complex numbers with an → ∞ there is an entire function f vanishing at
z = an and nowhere else (counted with multiplicity), furthermore any other

such entire function can be written f(z)eg(z) with g entire.
If f1 and f2 both satisfy then f1/f2 has removable singularities at the an

and does not take the value 0. Therefore it has a global logarithm.
We cannot simply take the product

zm
∏
n

(1− z

an
)

where m is the order of the zero of f at 0 because the infinite product will
not converge in general.

We define the canonical factors

E0(z) = (1− z) and Ek(z) = (1− z)ez+z2/2+···+zk/k.

Lemma: If |z| ≤ 1/2 then |1−Ek(z)| ≤ c|z|k+1 with constant c independent
of k.

Note that the power series in the exponential is a partial sum for the
power series of − log(1− z) centered at z = 0.

Ek(z) = elog(1−z)+z+z2/2+···+zk/k = e
∑∞
k+1 z

`/`

which has

|
∞∑
k+1

z`/`| ≤ |z|k+1
∞∑
k+1

|z|`−k−1/` ≤ |z|k+1
∑

2−j = 2|z|k+1.

In particular it has magnitude at most 1 and so

|1− e
∑∞
k+1 z

`/`| ≤ 2e|z|k+1.
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Given zero of order m at the origin the Weierstrass product factorization
is

f(z) = zm
∏

En(z/an).

We need to just check that the product converges in D(0, R) for each R > 0
and has the correct zeros.

Let z ∈ D(0, R) and split the zeros an by an ∈ D(0, 2R) or not. The first
collection is finite, and the finite product

zm
∏

|an|<2R

En(z/an)

has the desired properties in D(0, R). The remainder has

|1− En(z/an)| ≤ 2|z/an|n+1 ≤ 2−n

and so the infinite product ∏
|an|≥2R

En(z/an)

converges uniformly in D(0, R) to a holomorphic function which does not
vanish on that disk (since none of the factors take the value zero there).

3.5. Hadamard product theorem. The issue with the Weierstrass prod-
uct theorem

f(z) = eg(z)zm
∏

En(z/an)

is that the factors En have order of growth n which also keeps growing as
one goes out further in the product. For functions of finite order we can
refine the result and bound the order of the factors En which are necessary
in the product factorization.

Theorem: Suppose f has order of growth ρ0 and k = floor(ρ0). Then

f(z) = eP (z)zm
∏

Ek(z/an)

where P is a polynomial of degree at most k.
Recall that ∑

an 6=0

|an|−s < +∞

for any s > ρ0. Thus we can repeat the proof of Weierstrass product theorem
to show that for |an| ≥ 2R > R > |z| we have |z/an| ≤ 1/2 so

|1− Ek(z/an)| ≤ 2|z/an|k+1 ≤ 2|z|k+1|an|−k−1

and so ∑
|an|≥2R

|1− Ek(z/an)| ≤ 2|z|k+1
∑
|an|≥2R

|an|−k−1 < +∞
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and so the infinite product ∏
|an|≥2R

Ek(z/ak)

converges uniformly to a holomorphic function on D(0, R) with no zeros on
D(0, R). This shows that

h(z) = zm
∏

Ek(z/an)

is an entire function with zeros exactly at an and a zero of order m at the
origin. The remaining thing is to understand

f(z)

h(z)
= eg(z).

The aim is to show that for any k + 1 > s > ρ0

|h(z)| ≥ Ae−B|z|s on |z| = rm

for some sequence of radii rm →∞ (we need this freedom because the result
would be false on radii where h has a zero, we need to choose the radius to
avoid the zeros of f by a sufficiently large margin). In that case we would
combine with the growth order of f to find

eRe(g(z)) =

∣∣∣∣f(z)

g(z)

∣∣∣∣ ≤ A′eB′|z|s on |z| = rm

so

Re(g(z)) ≤ B′|z|s on |z| = rm

with sequence rm → ∞. This implies that g is a polynomial of order at
most floor(s) = k by a Liouville type argument.

To achieve the needed lower bounds of the product h(z) we will need some
Lemmas.

Lemma: The canonical factors satisfy

|Ek(z)| ≥ e−c|z|
k+1

if |z| ≤ 1/2

and

|Ek(z)| ≥ |1− z|e−c
′|z|k if |z| ≥ 1/2.

Proof: Recall

Ek(z) = e−
∑∞
k+1 z

n/n = ew

for |z| ≤ 1/2 so

|Ek(z)| = |ew| ≥ e−|w|

and |w| ≤ |z|k+1(
∑

2−n/(n+ k + 1)) ≤ 2|z|k+1.
For the second part

|Ek(z)| = |1− z||ez+z
2/2+···+zn/n| ≥ |1− z|e−|z+z2/2+···+zk/k| ≥ |1− z|e−|z|k .

Lemma: For any s with ρ0 < s < k + 1 we have

|
∏

Ek(z/an)| ≥ e−c|z|s
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except possibly when z belongs to the union of discs centered at an of radius
|an|−k−1.

Proof: Divide product∏
Ek(z/an) =

∏
|an|≤2|z|

Ek(z/an)
∏

|an|>2|z|

Ek(z/an)

and argue separately.
For the “outside” zeros

|
∏

|an|>2|z|

Ek(z/an)| ≥
∏

|an|>2|z|

e−c|z/an|
k+1

= e−c|z|
k+1

∑
|an|>2|z| |an|−k−1

But∑
|an|>2|z|

|an|−k−1 =
∑

|an|>2|z|

|an|−s|an|s−k−1 ≤
∑

|an|>2|z|

|an|−s|2z|s−k−1 = C|z|s−k−1.

using the summability of |an|−s (via Jensen’s Lemma and corollaries earlier).
For the “inside” zeros

|
∏

|an|≤2|z|

Ek(z/an)| ≥
∏

|an|≤2|z|

|1− z/an|
∏

|an|≤2|z|

e−c|z/an|
k

and ∏
|an|≤2|z|

e−c|z/an|
k

= e−c|z|
k
∑
|an|≤2|z| |an|−k

and∑
|an|≤2|z|

|an|−k =
∑

|an|≤2|z|

|an|−s|an|s−k ≤
∑

|an|≤2|z|

|an|−s|2z|s−k = C|z|s−k.

The first term causes us to need to stay away from the zeros an assuming
that z is not in any disc around an an of radius |an|−k−1 we have∏

|an|≤2|z|

|1− z/an| =
∏

|an|≤2|z|

|an − z
an

| ≥
∏

|an|≤2|z|

|an|−k−2

and

(k + 2)
∑

|an|≤2|z|

log |an| ≤ (k + 2)n(2|z|) log 2|z| ≤ c|z|ρ log 2|z| ≤ c|z|s

if we take ρ0 < ρ < s and |z| ≥ 1.
Corollary: There exists a sequence of radii rm →∞ on which

|
∏

Ek(z/an)| ≥ e−c|z|s for |z| = rm.

Proof: Take N suff large so that
∑

n≥N |an|−k−1 < 1/2. Then between
any two consecutive large integers L and L + 1 there must exist a radius
L ≤ r ≤ L + 1 which does not intersect the union of the forbidden circles.
Otherwise the union of the radii [|an|−|an|−k−1, |an|+ |an|−k−1] would cover
[L,L + 1] which is not possible because the sum of their lengths is strictly
smaller than 2 ∗ 1/2.



COURSE OUTLINE MATH 6220 31

4. Analytic continuation

Given a holomorphic function f on Ω when can it be extended to be holo-
morphic on a larger set? What kind of uniqueness statements can we make
about the extension? Think of the logarithm, extending “along” different
curves can result in different values.

4.1. Examples of analytic extension. In general the first question of
when can f be extended to be holomorphic on a larger set is very difficult!
It is better to use special structure in specific cases. For example recall
the Schwarz reflection principal. Other examples would include analytic
extension of ζ or Γ which rely on special formulae.

4.2. Analytic continuation along a path. We start by re-analyzing our
notion of function. Recall that every function f is really a triplet (f,Ω, R)
where Ω is the domain and R is the range (for us these will still just be
subsets of C). Technically when we change either the domain or the range
we are also changing the function. Of course it is often useful to realize
that there are natural equivalence relations under some of these operations.
For example we don’t lose much by considering (f,Ω, f(Ω)), (f,Ω,C), and
(f,Ω, R) for any f(Ω) ⊂ R ⊂ C to be equivalent. On the other hand
the dependence of the function on its domain is quite relevant in complex
analysis.

Define: (g,Ω′) extends (f,Ω) if Ω ⊂ Ω′ and f = g on Ω.
Example: A holomorphic function (f,Ω) which has two distinct holomor-

phic extensions (g,Ω1) and (h,Ω2), i.e. Ω1 and Ω2 overlap outside of Ω and
the extensions differ. (Natural example is logarithm extended around 0 in
opposite directions).

Define: A function element is a pair (f,Ω) where Ω is a domain and f
is a holomorphic function on Ω. For a given function element (f,Ω) define
the germ of f at a ∈ Ω, denoted [f ]a, to be the set of all function elements
(g,D) such that a ∈ D and f(z) = g(z) in a neighborhood of a.

Notes: If (f,Ω) is a function element and (g,D) ∈ [f ]a then (f,Ω) ∈ [g]a.
So [f ]a is an equivalence class of function elements, it is not a function
element itself. The terminology “germ” is from botany, it is the “germ”
from which something (more general than just a function) will grow. The
germs [f ]a and [g]b are not comparable when a 6= b.

Define: Let γ : [0, 1] → C be a curve and suppose that for each t ∈ [0, 1]
there is a function element (ft,Ωt) so that

(1) γ(t) ∈ Ωt

(2) For each t there is δ > 0 so that |t − s| < δ implies that γ(s) ∈ Ωt

(automatic from continuity / openness) and

[fs]γ(s) = [ft]γ(s)

Then we say that (f1,Ω1) is the analytic continuation of (f0,Ω0) along the
curve γ.
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Again think of the logarithm, give examples.
Important content of (b) : ft(z) = fs(z) whenever |s−t| < δ s.t. γ(s) ∈ Ωt

and z is in the connected component of Ωt ∩ Ωs containing γ(s).
Showing the existence of an analytic continuation along a particular curve

is hard in general, we use specific information about a particular function
to do that. What we can make generalities about is uniqueness criteria of
the analytic continuation if some exist (when are the analytic continuations
along two different curves the same).

Proposition: Let γ be a path from a to b and (ft,Ωt) and (gt,∆t) be two
analytic continuations along γ so that [f0]a = [g0]a. Then [f1]b = [g1]b.

(Or, more simply, f1 = g1 in a neighborhood of b).
Proof: We will show that

T = {t ∈ [0, 1] : [ft]γ(t) = [gt]γ(t)}

is both open and closed in [0, 1]. Note T is nonempty since 0 ∈ T so if we
show T is clopen then T = [0, 1].

Open: Fix t ∈ T ∩ [0, 1]. There is δ > 0 so that |s− t| < δ and s ∈ [0, 1]
implies γ(s) ∈ Ωt ∩∆t and

[fs]γ(s) = [ft]γ(s) and [gs]γ(s) = [gt]γ(s)

Let U be the open subset of Ωt ∩∆t which contains γ([s, t]). Since t ∈ T we
know ft(z) = gt(z) in a nbhd of γ(t) and so also in U . Thus [ft]γ(s) = [gt]γ(s)

and so

[fs]γ(s) = [ft]γ(s) = [gt]γ(s) = [gt]γ(s).

Since |s− t| < δ was arbitrary we find T open.
Closed: Let t be a limit point of T , let δ > 0 so that |s − t| < δ and

s ∈ [0, 1] implies γ(s) ∈ Ωt ∩∆t and

[fs]γ(s) = [ft]γ(s) and [gs]γ(s) = [gt]γ(s).

There is some s ∈ T ∩ (t− δ, t+ δ) so taking this s let U be the connected
component of γ((t − δ, t + δ)) in Ωt ∩∆t. Since γ(s) ∈ U and fs = gs in a
neighborhood of γ(s) we have fs = gs in U . But also ft = fs and gt = gs in
U so ft = gt in U and in particular in a neighborhood of γ(t).

Definition: If γ is a path from a to b and (ft,Ωt) is an analytic continuation
on γ then the germ [f1]b is defined to be the analytic continuation of [f0]a
along γ.

By the previous proposition any two function elements which continue
a function element from [f0]a along γ must agree in a neighborhood of b
meaning that they are in the same germ [f1]b. Also note that the choice of
domains Ωt in the continuation does not change the value of [f1]b. These
make the above definition unambiguous.

Definition: If (f,Ω) is a function element then the complete analytic func-
tion obtained from (f,Ω) is the collection F of all germs [g]b for which there
is a point a ∈ Ω and a path γ from a to b so that [g]b is the continuation of
[f ]a along γ.
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(Note: the point a is not important because Ω is connected so given a
continuation from a to b there is also one from any other point of Ω to b via
concatenation.)

Example: Create a complete analytic function out of log(z) defined ini-
tially in a neighborhood of 1.

4.3. Monodromy theorem. What if we continue [f0]a = [g0]a along two
different curves γ and η. In general, of course, [f1]b and [g1]b are not the
same. Think of non-homotopic paths around zero for the logarithm.

Intuitively homotopy becomes a relevant criterion.
Definition: Given a function element (f,∆) and a domain Ω ⊃ ∆ say

that (f,∆) admits unrestricted continuation on Ω if for any path γ in Ω
with initial point in ∆ there is an analytic continuation of f along γ.

Theorem: Let (f,∆) be a function element and Ω ⊃ ∆ a region on which
(f,∆) admits unrestricted analytic continuation. Let a ∈ ∆, b ∈ Ω and γ,
η be paths in Ω from a to b and [f1]b and [g1]b be analytic continuations
of [f0]a along γ and η respectively. If γ0 and γ1 are homotopic in Ω then
[f1]b = [g1]b.

This will be an open/closed argument using the homotopy to continuously
move one analytic continuation to the other. Similar to when we proved the
homotopy version of Cauchy’s theorem. Thus the main important technical
point will be to show the analytic continuation along two nearby curves gives
the same germ at the end point.

In this direction we start by analyzing the radius of convergence of the
power series expansion along a continuation.

Lemma: Let γ : [0, 1] → C be a path and (ft,∆t) be an analytic contin-
uation along γ. Let R(t) be the radius of convergence of the power series
expansion of ft about zt = γ(t). Either R(t) ≡ +∞ or R(t) is continuous.

Corollary: R(t) is bounded from below on [0, 1].
Proof: If R(t) = +∞ for some t then ft can be extended to be an entire

function g. In that case fs(z) = ft(z) in Ds so fs can be extended to
be entire as well and R(s) = +∞. (Apply previous lemma since (g,C) is
another continuation of ft along the same curve).

Otherwise R(t) < +∞ for all t ∈ [0, 1]. Fixing a t let

ft(z) =
∑

an(t)(z − γ(t))n

be the power series expansion of ft about γ(t), note that ft can be extended
to be analytic on B(γ(t), R(t)) if it was not already. Let δ > 0 sufficiently
small so that |s−t| < δ implies γ(s) ∈ ∆t∩D(γ(t), R(t)) and, by the analytic
continuation, [fs]γ(s) = [ft]γ(s). Also fs can be extended to D(γ(s), R(s))
and ft ≡ fs in D(γ(s), R(s)) ∩ D(γ(t), R(t)). This means that fs can be
extended analytically to D(γ(s), R(s)) ∪D(γ(t), R(t)) which means that

R(s) ≥ inf{|z − w| : w ∈ ∂D(γ(t), R(t))} ≥ R(t)− |γ(s)− γ(t)|.
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Reversing the roles of s and t gives the other inequality

|R(t)−R(s)| ≤ |γ(t)− γ(s)|

for |t− s| ≤ δ (and then actually for all t, s ∈ [0, 1]).
Lemma: Let γ be a path from a to b and (ft,Ωt) be an analytic continu-

ation along γ. There is ε > 0 so that if η is another path from a to b with
supt |η(t) − γ(t)| ≤ ε and (gt,∆t) is a continuation on η with [g0]a = [f0]a
then [g1]b = [f1]b.

Proof. Let R(t) be the radius of convergence for ft about γ(t) let ε <
1
2 minR(t) and (gt,∆t) and η as in the lemma. Without loss we can as-
sume that Ωt = DR(t)(γ(t)) and ∆t are disks as well.

Since |η(t) − γ(t)| < ε < R(t)/2 then σ(t) ∈ Ωt ∩∆t for all t > 0 and so
it makes sense to compare ft and gt on Ωt ∩∆t (nontrivial intersection).

Define

T = {t ∈ [0, 1] : ft = gt in Ωt ∩∆t}.
and we want to show 1 ∈ T . We know 0 ∈ T by assumption of the Lemma.
So we show T is open and closed and this gives the result.

Open: Fix t and let δ > 0 sufficiently small so that

|γ(t)− γ(s)| < ε, [fs]γ(s) = [ft]γ(s)

and

|η(t)− η(s)| < ε, [gs]η(s) = [gt]η(s), and η(s) ∈ ∆t

for |t− s| < δ. Then we show Ωt ∩Ωs ∩∆s ∩∆t 6= ∅ for |t− s| < δ, actually
η(s) is in the intersection.

|η(s)− γ(s)| < ε < R(s)

so η(s) ∈ Ωs

|η(s)− γ(t)| ≤ |η(s)− γ(s)|+ |γ(s)− γ(t)| < 2ε < R(t)

so η(s) ∈ Ωt.
Thus

η(s) ∈ Ωt ∩ Ωs ∩∆s ∩∆t = U

and since t ∈ T we know ft ≡ gt in Ωt∩∆t which is a superset of U . On the
other hand fs ≡ ft on Ωs ∩Ωt and gs ≡ gt on ∆s ∩∆t. All supersets of U so

gs ≡ gt ≡ ft ≡ fs on U.

By unique continuation gs ≡ fs in all of Ωs ∩∆s. Thus (t − δ, t + δ) ⊂ T .
Closed proof is quite similar.

Proof of monodromy theorem: Since γ0 and γ1 are FEP homotopic
in Ω there is Γ(t, u) : [0, 1]× [0, 1]→ Ω homotopy between them (list prop-
erties). Fix u ∈ [0, 1] then Γ(t, u) is a path from a to b in Ω so there is an
analytic continuation

(ht,u,∆t,u) for t ∈ [0, 1].
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Then [f1]b = [h1,0]b and [g1]b = [h1,1]b so it suffices to show

[h1,u]b = [h1,0]b for all u ∈ [0, 1]

Call

U = {u ∈ [0, 1] : [h1,u]b = [h1,0]b}
we show U is open and closed in [0, 1].

Claim: For each u ∈ [0, 1] there is δ > 0 s.t. if |v − u| < δ then [h1,v]b =
[h1,u]b.

Apply previous lemma to find ε > 0 so that if η is any path from a to
b with |Γ(t, u) − η(t)| < ε for all t ∈ [0, 1] and if (kt,Λt) is an analytic
continuation on η then

[h1,u]b = [k1]b.

Sicne Γ is uniformly continuous there is δ > 0 so that

sup
t
|Γ(t, u)− Γ(t, v)| < ε

for |u− v| < ε.
The claim implies both U open and U closed.

�

Corollary: If (f,∆) admits unrestricted continuation on simply connected
Ω then there is a (unique) holomorphic F : Ω→ C with f(z) = F (z) on ∆.

Proof: Fix z0 ∈ ∆, given z ∈ Ω there is a path from z0 to z call γ
such a path. Define F (z, γ) to be the analytic continuation of f along γ.
F (z, γ) = F (z, η) for any other path η from z0 to z because γ and η are
homotopic. Then just define F (z) = F (z, γ) for any particular choice γ from
z0 to z. Then let’s show F is holomorphic is a neighborhood of z, take γ and
the analytic continuation along γ from the definition of F (z). Sufficiently
close point |w − z| concatenate γ with the line segment from z to w and
F (w) is the continuation along that curve, but we can also make explicit
continuation by concatenating with (f1,∆1) on the last small segment.

5. Elliptic functions

In this section we consider doubly periodic (meromorphic) functions on
C. That is there is a pair ω1 and ω2 nonzero complex numbers so that

f(z + ωj) = f(z) for j = 1, 2.

If ω2/ω1 ∈ R (i.e. linearly dependent periods in R2) then the case is not
interesting, either f is periodic with a real period (when ω2/ω1 is rational)
or constant (when ω2/ω1 is irrational).

Let τ = ω2/ω1, we can assume that Im(τ) > 0. We can rescale to

F (z) = f(ω1z)

which has periods 1 and τ if and only if f has periods ω1 and ω2. We can
thus normalize and assume f has periods 1 and τ with Im(τ) > 0.
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Now f is periodic with respect to

f(z + n+mτ) = f(z)

for n,m ∈ Z so the lattice

Λ = {n+mτ : (n,m) ∈ Z2}
is called the periodicity lattice of f generated by the periods (1, τ).

The fundamental parallelogram of the lattice is

P0 = {z ∈ C : z = a+ bτ : (a, b) ∈ [0, 1)2}
(draw picture). The lattice translations of P0 tile C.

Saw that zw̃ congruent modulo Λ if

z = w + n+ τm for some n,m ∈ Z.
i.e. z−w ∈ Λ. Of course zw̃ implies f(z) = f(w). Thus f is determined by
its values on P0.

One can also choose any translation period parallelogram P0 +h for h ∈ C
and f is also determined by its values on Ph (every point in C is congruent
to a unique point in P0 + h).

Lemma: An entire doubly period function is constant.
f is bounded on P0 since its closure is compact, and so f is bounded on

C implying, by Liouville, that f is constant.
Thus our interest centers on meromorphic functions. A non-constant

doubly periodic meromorphic function is called an elliptic function.
Elliptic functions can only have finitely many zeros and poles in P0

Theorem: The total number of poles of an elliptic function in P0 is always
≥ 2.

Proof: Suppose first f has no poles on ∂P0, then residue theorem implies∫
∂P0

f(z) dz = 2πi
∑

Res(f, zi)

where zi are the poles. The claim is that the integral is zero meaning there
must be at least two poles in P0 with multiplicity (a simple pole cannot have
zero residue).

∫
∂P0

f(z) dz =

∫ 1

0
f(z) dz +

∫ 1+τ

1
f(z) dz +

∫ τ

1+τ
f(z) dz +

∫ 0

τ
f(z) dz

integrals on opposite sides cancel e.g.∫ 1

0
f(z) dz +

∫ τ

1+τ
f(z) dz =

∫ 1

0
f(z)dz +

∫ 0

1
f(s+ τ)ds

=

∫ 1

0
f(z)dz +

∫ 0

1
f(s)ds = 0.

If f has a pole on ∂P0 choose h > 0 small so that P0 +h has no poles on it’s
boundary (possible b/c there are only finitely many poles in any compact
region).
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The total number of poles counted with multiplicity is called the order
of the elliptic function.

Theorem: An elliptic function of order m has m zeros in P0.
proof: Assume no zeros or poles on ∂P0 (again achievable by a shift to

P0 + h if necessary). Then argument principle∫
∂P0

f ′(z)

f(z)
dz = 2πi(Nz −Np).

As before the boundary integral is zero by the periodicity, line integrals on
opposite faces cancel.

The same argument shows that the equation f(z) = c has the same num-
ber of solutions in P0 as the order for any c ∈ C.

5.1. Existence. Are there any elliptic functions?
Start with a single period idea

F (z) =
∑
n

1

z + n

this is not absolutely summable, which can be fixed by (DO BELOW IDEA
INSTEAD) summing symmetrically

F (z) =
∑
|n|≤N

1

z + n
=

1

z
+

∞∑
1

[
1

z + n
+

1

z − n

]
the last sum is absolutely convergent since the terms are 2z

z2−n2 which is
absolutely summable for all z. Thus F is meromorphic with poles at the
integers, it turns out it is F (z) = π cot(πz).

(Can also add and subtract 1
n for each n resulting in an absolutely con-

vergent series).
Try a similar idea on a lattice Λ ⊂ C∑

ω∈Λ

1

(z + ω)2

again this is just barely not absolutely summable. If it were summable it
would be Λ-periodic.

Call Λ∗ = Λ \ {0} and consider

1

z2
+
∑
ω∈Λ∗

[
1

(z + ω)2
− 1

ω2

]
the terms are

1

(z + ω)2
− 1

ω2
=
−z2 − 2zω

(z + ω)2ω2
= O(

1

ω3
) as |ω| → ∞.

Lemma: For r > 2 ∑
n,m∈Z2

1

(|n|+ |m|)r
< +∞
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and ∑
Λ∗

1

|n+ τm|r
< +∞.

Proof: Double sum for the first one, doing integral comparison.
For the second want to show

|n|+ |m| ≤ C(τ)|n+ τm|

for an appropriate C(τ) > 1.
With τ = s+ it and t > 0

|n+mτ | =
√

(n+ms)2 + (mt)2 ∼ |n+ms|+ |mt| ∼ |n+ms|+ |m|

Show this with the matrix norm of the inverse of (n,m) 7→ (n+ sm, tm).
Final claim is that

P(z) =
1

z2
+
∑
ω∈Λ∗

[
1

(z + ω)2
− 1

ω2

]
is a meromorphic function on C with periods ω ∈ Λ and double poles at
each lattice point.

The issue of poles: split sum into |ω| ≤ 2R and |ω| > 2R. The outer sum
converges to zero uniformly, the inner sum has the correct double poles at
all lattice points. The order of poles is preserved in the limit by argument
principle.

The issue of Λ-periodicity: The derivative can be computed by term by
term differentiation

P ′(z) = −2
∑
ω∈Λ

1

(z + ω)3

this sum is dominated by an absolutely convergent sum whenever z 6∈ Λ,
the series is obviously Λ-periodic now. This means

P(z + 1) = P(z) + a and P(z + τ) = P(z) + b

for some a, b ∈ C and all z ∈ C. However P is also an even function (simply
plug in the definition and note −Λ = Λ) so

P(−1/2) = P(1/2) and P(τ/2) = P(−τ/2)

so

P(1/2) = P(−1/2) + a = P(1/2) + a

so a = 0 and similarly b = 0.
Thus P as defined above is a doubly periodic meromorphic function with

double poles at each lattice point of Λ. This is our first example of an elliptic
function. Note that P ′(z) is also an elliptic function, it has order 3 since its
poles in P0 are exactly the pole of order 3 at the origin.

Next note that P ′(z) is odd so a similar argument to above shows that

P ′(1/2) = P ′(τ/2) = P ′(1 + τ

2
) = 0.
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Because P ′ is an elliptic function of order 3 these are exactly the zeros of P ′
in the fundamental parallelogram.

Define

P(1/2) = e1, P(τ/2) = e2, and P(
1 + τ

2
) = e3

then P(z) = e1 has a double root at 1/2 and since P is order 2 these are all
the zeros of P(z)− e1. Similar argument for e2 and e3. In particular these
three values must be distinct otherwise P(z)−ej would have more than two
roots in P0 which is not allowed.

This leads to the following differential equation for P
Lemma:

P ′2 = 4(P − e1)(P − e2)(P − e3).

Proof: The function F (z) = (P − e1)(P − e2)(P − e3) has double roots
exactly at 1/2, τ/2 and (1 + τ)/2, those are also exactly the roots of (P ′)2.
F has poles of order 6 at lattice points and so does (P ′)2. Thus the ratio
F/(P ′)2 is has removable singularities at those locations and is holomorphic
otherwise, so by Liouville it is constant. To find the value of the constant
we compute the highest order term in the Laurent expansions at 0

P(z) =
1

z2
+ · · · and P ′(z) = − 2

z3
+ · · ·

so

F (z) =
1

z6
+ · · ·

near the origin which leads to the constant 4 above.
It turns out that P generates all the elliptic functions with period lattice

Λ in a simple way
Theorem: Every elliptic function with period lattice Λ is a rational func-

tion of P and P ′.
First we show this for even elliptic functions F .
If F has a pole or zero at the origin it must be of even order. Thus

FPm has no zero or pole at the lattice points for an appropriate choice of
m integer, so WLOG we can just assume F has no poles or zeros on Λ.

Now we construct a doubly periodic function based on P with the same
zeros and poles as F .

Note that P(z)−P(a) has exactly a double zero at a if a is a half-period,
otherwise there are two distinct zeros at a and −a.

Similarly for F if a is a zero then so is −a, and −a is congruent to a
only when a is a half-period in which case the zero must be of even order
(CHECK). Thus if aj ,−aj are the zeros of F counted with multiplicity then

m∏
j=1

[P(z)− P(aj)]
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has the exact same roots as F . A similar argument with the poles b1,−b1, . . . , bm,−bm
shows that

G(z) =

∏m
j=1[P(z)− P(aj)]∏m
j=1[P(z)− P(bj)]

has the same zeros and poles as F . Thus F/G is entire and hence constant.
Next for a general F elliptic we can write

F =
F (z) + F (−z)

2
+
F (z)− F (−z)

2
= Feven(z) + Fodd(z)

which is an even-odd decomposition. Then

Fodd(z)/P ′(z)

is an even elliptic function so the previous argument applies.

5.2. The modular function. Recall the differential equation

P ′2 = 4(P − e1)(P − e2)(P − e3).

with

P(1/2) = e1, P(τ/2) = e2, and P(
1 + τ

2
) = e3.

Now we regard these as functions of τ and we define the modular fuction

λ(τ) =
e3 − e2

e1 − e2

The analyticity of ej in H is clear from the sum formula

ej(τ) = Pτ (zj) =
1

z2
j

+
∑

(n,m)6=(0,0)

[
1

(zj + n+mτ)2
− 1

n+mτ

]
the series converges uniformly in compact subsets of H by previous argu-
ments.

Since the factors ej are all distinct the function λ is analytic in H and
does not take the values 0, 1,∞.

Consider the period transformation

ω′1 = aω1 + bω2

ω′2 = cω1 + dω2

with unimodular matrix M (i.e. integer entries and determinant ±1). The
unimodular matrices form a group GL2(Z). By invertibility of the trans-
formation the lattices Λ and Λ′ are the same. Thus the P functions are
invariant. It is possible though that the values e1, e2, e3 are permuted (look
at the differential equation).

In order for ω′j/2 ∼ ωj/2 (modulo lattice) for j = 1, 2 we should have
a, d = 1 mod 2 and b, c = 0 mod 2. This leads to invariance

λ

(
aτ + b

cτ + d

)
= λ(τ) when M =

[
1 0
0 1

]
mod 2.
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The unimodular matrices satisfying this property form a subgroup call the
congruence subgroup modulo 2. Recall that this is also a subgroup of the
FLTs which preserve the upper half-space.

Functional equations

λ(τ + 1) =
λ(τ)

λ(τ)− 1
, and λ(−1

τ
) = 1− λ(τ).

The modular function λ behaves nicely as a conformal mapping. Call
Ω = {0 < Re(z) < 1} ∩H∩D1/2(1/2)c and Ω′ the reflection of Ω across the

imaginary axis, and Ω̃ the interior of the union of the closures of Ω and Ω′

Theorem 1. λ maps Ω conformally to H, and maps Ω′ conformally to the
lower half plane, and maps Ω̃ conformally to C \ {0, 1}.

Theorem 2. Every point τ ∈ H is equivalent to exactly one point of Ω̃
under the congruence subgroup modulo 2.

Thus λ is a locally conformal covering of C \ {0, 1}.

6. Picard theorems

Theorem 3. (Little Picard) If f is entire and misses two points the f is
constant.

Proof sketch: First if f misses a and b distinct we can transform to

f(z)− a
b− a

which misses 0 and 1.
Now WLOG suppose f misses 0 and 1. Lift f to an entire mapping

f̂ : C → H via the locally conformal covering map λ : H → C \ {0, 1} i.e.

there is a holomorphic map f̂ : C→ H with

λ(f̂(z)) = f(z).

This requires the monodromy theorem and is related to homework 5 prob-
lems, we will revisit it later. Then Liouville and the conformal mapping
H→ D shows f̂ is constant which also implies that f is constant.

Theorem 4. (Big Picard) If f has an essential singularity at 0 then in
every punctured neighborhood of 0 f takes all values in C infinitely often
with at most one exception.

The idea is similar to little Picard, now we “zoom in” on the essential
singularity to create a contradiction. We need a refined compactness result
which is a natural extension of Montel’s theorem (on normal families) to the
setting suggested by Picard’s theorem.

Recall definition of normal family for holomorphic mappings, recall Mon-
tel’s theorem: family F is uniformly bounded on compact subsets of Ω then
F is a normal family.
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Say that fn →∞ uniformly on compact subsets of Ω if 1/fn converges to
0 uniformly on compact subsets of Ω.

We say that a family F of holomorphic functions on Ω is normal in the
extended sense if for any sequence fn ∈ F there is a either a subsequence
converging uniformly on compact subsets of Ω or a subsequence converging
uniformly to ∞ on compact subsets of Ω.

Lemma 1. If a family F of holomorphic functions on a domain U takes
values in H then F is normal in the extended sense.

Proof. Take ϕ = z−i
z+i conformal map from H to D. Call

G = {ϕ ◦ f : f ∈ F}.
This family is uniformly bounded so it is normal. If ϕ ◦ fn converges uni-
formly on compact subsets of D to some g holomorphic on D then g(D) ⊂ D.
If g is non-constant then g is an open mapping so g(D) is open and so
g(D) ⊂ D. Then in that case

fn = ϕ−1 ◦ ϕ ◦ gn
converges locally uniformly on H to ϕ−1 ◦ g. If g ≡ ζ is constant and ζ ∈ D
the same argument applies. If ζ ∈ ∂D \ {1} then ϕ−1 is continuous up to ζ
so again same result as before. Finally if ζ = {1} then

|ϕ−1(w)| → ∞ as w → ζ = 1

i.e. ϕ−1(w)−1 → 0 as w → 1 so we get the case

fn = ϕ−1 ◦ ϕ ◦ gn →∞
uniformly on compact subsets of H. �

Lemma 2. Let F be a family of holomorphic functions on a domain Ω. F
is normal if and only if for each z ∈ Ω there is U open containing z so that
F|U = {f |U : f ∈ F} is normal.

Proof. Let Kn ⊂ Kn+1 ⊂ · · · an exhaustion of Ω by compact sets. Each
z has a neighborhood Uz on which F|Uz is normal. Then (Uz)z∈Kj covers

Kj take a finite subcover (Uzj,n)Jnj=1 of Kj . Given a sequence fn ∈ F by a
subsequence diagonalization argument we can find a subsequence converging
locally uniformly on compact subsets of ∪j,nUj = Ω. �

Theorem 5 (Montel). Suppose F is a family of holomorphic functions on a
domain Ω so that f(Ω) ⊂ C \ {a, b} for two distinct a, b, then F is a normal
family (in the extended sense).

We can show that normality is a local property so it will suffice to prove
the theorem for Ω = D.

Proof. By a FLT we can assume that {a, b} = {0, 1}. We can always take
a subsequence so that fn(0) converges (possibly to ∞). Let us first remove
the cases when fn(0) → 0 or fn(0) → 1. In the second case fn are all
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nonvanishing so they each have a holomorphic square root hn(z)2 = fn(z)
choose the branch so that hn(0)→ −1. Then hn are holomorphic and miss
{0, 1} and hn(0) 6→ −1 6∈ {0, 1}. Then if hn are normal fn are as well since
fn = h2

n. A similar argument works if fn(0)→ 0 (take hn(z)2 = 1− fn(z)).

Since D is simply connected we can lift each fn to f̂n : D → H via the λ
covering map λ(f̂n) = fn. We can also make a normalization that

f̂n(0) ∈ Ω̃

the fundamental domain of the congruence subgroup modulo 2 equivalence
relation.

The family f̂n is normal in the extended sense by the previous Lemma.
So up to a subsequence f̂n converges uniformly on compact subsets of D to
some f̂ or to ∞. In the second case

fn = λ(f̂n)→∞ on compact subsets of D
so we are done.

In the first case, where f̂n → f̂ on compact subsets of D, note that the
range of f̂ is contained in the closed half-plane H. If f̂ is non-constant then
it is an open mapping so the range of f̂ is open so f̂(H) ⊂ H. In this case

fn = λ(ϕ(f̂n))

converges uniformly on compact sets.
Otherwise f̂ ∈ ∂H is constant ζ ∈ ∂H, in particular f̂n(0) → ζ. How-

ever f̂n(0) is in the fundamental domain Ω̃ so the only possibilities are
ζ ∈ {−1, 0, 1}. So either fn(0) → 0 or fn(0) → 1. But we have already
normalized that neither of these cases occur so we are done.

�

Theorem 6. (Big Picard) If f has an essential singularity at 0 then in
every punctured neighborhood of 0 f takes all values in C infinitely often
with at most one exception.

Proof. Suppose that two values are only taken finitely often by f in some
punctured disk Dr(0) \ {0}, without loss by a linear transformation these
values can be taken to be {0, 1}. By dilation we can assume that f is
holomorphic in D \ {0} and {0, 1} are missed by f in D \ {0}.

Consider the family

F = {f(rz)|0 < r < 1}
of holomorphic functions on the punctured disk D\{0}. By Montel’s theorem
this is an extended normal family. If

lim
|z|→0

|f(z)| =∞

then f has a pole and 0 is not an essential singularity. Thus there is a
sequence of points zn → 0 so that |zn| is decreasing and |f(zn)| is a bounded
sequence. Call rn = |zn|. Then, up to taking a subsequence, fn(z) = f(rnz)
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converges locally uniformly on C \ {0} to some g holomorphic on C \ {0}.
Since g is holomorphic sup|z|=1 g < +∞ so

M = sup
n

sup
|z|=rn

|f(z)| < +∞

since sup|z|=rn |f(z)| → sup|z|=1 |g(z)|. However now we can apply the max-

imum modulus principle in Drn \Drn+1 to find

sup
Dr1\{0}

|f(z)| ≤M

which implies that 0 is a removable singularity for f and this is a contradic-
tion.

�

7. Review

FINAL EXAM: Monday, May 2, 1-3pm

• Holomorphic functions
• Cauchy-Riemann equations
• Goursat Theorem
• Principals
• Cauchy’s Theorem (homotopic curves)
• Cauchy’s integral formula
• Power series expansion / holomorphic functions are analytic
• Liouville’s theorem
• Runge’s Theorem
• isolated singularities
• Laurent series
• residue theorem
• applications to compute definite integrals
• Rouche’s Theorem
• Maximum modulus principle, holomorphic functions are open map-

pings
• Conformal mappings
• Schwartz lemma
• Fractional linear transformations
• disk / upper half plane automorphisms
• Normal families, Montel’s theorem
• Riemann mapping theorem
• Infinite products
• Weierstrass factorization theorem
• Hadamard factorization theorem
• Analytic continuation
• monodromy
• Elliptic functions
• Montel-Caratheodory theorem
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• Picard’s theorem.
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