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1. Introduction.

Thorp and Walden (1973) proved, assuming a fixed player strategy, that “the ‘spread’
in the distribution of player expectations for partially depleted card packs increases with
the depletion of the card pack,” and they termed this result the fundamental theorem of
card counting. Their proof relies on the theory of convex contractions of measures and
some combinatorial analysis. Our aim here is to provide a simpler proof, one that depends
only on exchangeability and Jensen’s inequality. This simplification not only makes the
theorem easier to understand, it allows us to investigate the case of a variable player
strategy. It also leads to a central limit theorem in the fixed-strategy case, which in turn
permits an analysis of the card-counting potential of the casino game of trente et quarante,
without the need for Monte Carlo simulation.

We consider a deck of N distinct cards, which for convenience will be assumed to be
labeled 1, 2, . . . , N . We also label the positions of the cards in the deck as follows. With
the cards face down, the top card is in position 1, the second card is in position 2, and so
on. Thus, the first card dealt is the card in position 1. Let SN be the symmetric group
of permutations of (1, 2, . . . , N), and let Π be a uniformly distributed SN -valued random
variable (i.e., all N ! possible values are equally likely). We think of Π(i) = j as meaning
that the card in position i is moved to position j by the permutation Π. If the cards are in
natural order (1, 2, . . . , N) initially, their order after Π is applied is (Π−1(1), . . . ,Π−1(N)).
We define Xj := Π−1(j) for j = 1, . . . , N , so that Xj is the label of the card in position j,
and X1, . . . , XN is an exchangeable sequence.

It will be convenient to let Fn := σ(X1, . . . , Xn) for n = 1, . . . , N , and to let F0 be
the trivial σ-field.
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An instructive example, mentioned by Thorp and Walden and studied by Griffin (1999,
Chapter 4) in connection with card counting systems, is provided by the following simple
game.

Example 1. Assume that N is even and that the player is allowed to bet, at even
money, that the next card dealt is odd. If the first n cards have been seen (0 ≤ n ≤ N −1)
and the player bets on the next card, his profit per unit bet is

Yn := 2 · 1{Xn+1 is odd} − 1, (1.1)

where 1A denotes the indicator of the event A, so his conditional expected profit per unit
bet is

Zn := E[Yn | Fn] =
2

N − n

(
N

2
−

n∑
i=1

1{Xi is odd}

)
− 1, (1.2)

being twice the proportion of odd cards in the unseen deck less 1. (Here and elsewhere,
empty sums are 0.) Observe that we can rewrite this as

Zn =
1

N − n

n∑
i=1

(1− 2 · 1{Xi is odd}) =
1

N − n

n∑
i=1

(−1)Xi . (1.3)

The latter formula has practical implications. Suppose the player assigns to each odd
card seen the point value −1 and to each even card seen the point value 1. The running
count is the sum of these point values over all cards seen and is adjusted each time a new
card is seen. The true count is the running count divided by the number of unseen cards.
Equation (1.3) says that the true count provides the player with his exact expected profit
per unit bet on the next card. This information can be used to select a suitable bet size.

Note that E[Zn] = 0 for 0 ≤ n ≤ N − 1. More importantly, using the fact that

Cov(1{Xi is odd}, 1{Xj is odd}) =
1
2N( 1

2N − 1)
N(N − 1)

− 1
4

= − 1
4(N − 1)

(1.4)

if i 6= j, we calculate from (1.2) that

Var(Zn) =
4

(N − n)2
Var

( n∑
i=1

1{Xi is odd}

)
=

4
(N − n)2

(
n

4
− n(n− 1)

4(N − 1)

)
=

n

(N − n)(N − 1)
, (1.5)

which increases from 0 to 1 as n increases from 0 to N − 1. The conclusions that E[Zn] is
constant in n while Var(Zn) is increasing in n are typical of games with a fixed strategy,
as we will see in Section 2.
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To indicate how a central limit theorem might be useful in this context, suppose
we want to find the probability that the player has an advantage greater than β. Using
(1.5) and a normal approximation with a continuity correction (based on the central limit
theorem for samples from a finite population), we find that, if n is even, then

∑n
i=1(−1)Xi

is also even, so

P{Zn > β} ≈ 1− Φ
(

2
N − n

{⌊
N − n

2
β

⌋
+

1
2

}√
(N − n)(N − 1)

n

)
, (1.6)

where Φ is the standard-normal distribution function and bxc denotes the integer part of
x. For example, assuming that one fourth of the cards in a 312-card deck have been seen
(i.e., N = 312, n = N/4), the probability that the player has an advantage greater than
1.25 percent (i.e., β = 0.0125) is approximately 1 − Φ(0.391603) = 0.347676. Here the
exact probability can be calculated directly from the hypergeometric distribution, and it
is 0.347522.

In Section 3 we establish a central limit theorem in the more general setting of Section
2, with an eye toward trente et quarante, a game in which N = 312.

Example 2. To illustrate the effect of a variable strategy, we continue to assume
that N is even, but let us now suppose that the player is allowed to make either of two
even-money bets, one that the next card dealt is odd, and the other that the next card
dealt is even. An obvious optimal strategy is to bet on odd if the number of odd cards
seen is less than or equal to the number of even cards seen (or equivalently, if the true
count defined in Example 1 is nonnegative), and to bet on even otherwise. If the first n
cards have been seen (0 ≤ n ≤ N − 1) and the player employs this strategy to bet on the
next card, his conditional expected profit per unit bet is

Zn :=
2

N − n

{
N

2
−min

( n∑
i=1

1{Xi is odd}, n−
n∑

i=1

1{Xi is odd}

)}
− 1 (1.7)

instead of (1.2), this being twice the proportion of odd cards or of even cards in the unseen
deck, whichever is greater, less 1. As before, we can rewrite this in the form

Zn =
1

N − n

∣∣∣∣ n∑
i=1

(−1)Xi

∣∣∣∣. (1.8)

The interpretation is as in Example 1: The player bets on odd if the true count is nonneg-
ative and on even otherwise. In either case the absolute value of the true count provides
the player with his exact expected profit per unit bet on the next card.

It follows from (1.7) that

E[Zn] =
2

N − n

(
N

2
−

n∑
k=0

min(k, n− k)

(
N/2

k

)(
N/2
n−k

)(
N
n

) )
− 1. (1.9)
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Although it is not clear how to write this in closed form, it is clear that E[Zn] is no longer
constant in n. One way to see this is to note that Z0 = 0, Z1 = 1/(N − 1), and ZN−1 = 1.
These, and only these, three cases have Var(Zn) = 0. This also shows that Var(Zn),
which could also be expressed in a way similar to (1.9), is no longer increasing (or even
nondecreasing) in n. Thus, the conclusions that hold for a fixed strategy may fail for a
variable strategy. Nevertheless, it is possible to obtain a weaker form of the fundamental
theorem in this setting, and we do this in Section 4.

It should be mentioned that Jostein Lillestol (see Székely (2003)) found the surpris-
ingly simple formula

E[Z0 + Z1 + · · ·+ ZN−1] =
N/2∑
n=1

(
N/2

n

)(
N/2

n

)(
N
2n

) . (1.10)

The analogue of (1.6) is

P{Zn > β} ≈ 2
[
1− Φ

(
2

N − n

{⌊
N − n

2
β

⌋
+

1
2

}√
(N − n)(N − 1)

n

)]
(1.11)

for n even. In the special case N = 312, n = N/4, and β = 0.0125, this becomes
2(1− Φ(0.391603)) = 0.695352. The exact probability is 0.695044.

Example 3. Example 2 is rather special in that it permits betting on opposite sides
of the same proposition. Here we provide a generalization that is perhaps more typical. Fix
a positive integer K, assume that N is divisible by 2K, and define A := {1, 3, . . . , 2K − 1}
(the odd positive integers less than 2K). Let B be a subset of {0, 1, 2, . . . , 2K − 1} of
cardinality |B| = K and with B 6= A, and define L := |A ∩B|, so that 0 ≤ L ≤ K − 1.

Let us now suppose that the player is allowed to make either of two even-money bets,
one that the next card dealt is odd (or, equivalently, is congruent mod 2K to an element of
A) and the other that the next card dealt is congruent mod 2K to an element of B. If the
first n cards have been seen (0 ≤ n ≤ N − 1) and the player employs an obvious optimal
strategy to bet on the next card (bet on odd unless the other bet is more favorable), his
conditional expected profit per unit bet is Zn := max(ZA

n , ZB
n ), where

ZA
n :=

1
N − n

n∑
i=1

(1− 2 · 1{Xi(mod 2K)∈A}) (1.12)

and

ZB
n :=

1
N − n

n∑
i=1

(1− 2 · 1{Xi(mod 2K)∈B}). (1.13)

A straightforward calculation, which we omit, shows that

ρ := Corr(ZA
n , ZB

n ) = 2
L

K
− 1. (1.14)
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Example 2 is the special case K = 1 and L = 0, in which case ZB
n = −ZA

n and
Zn = |ZA

n |. If L 6= 0, the situation is more complicated. Here the card counter must keep
two counts (or what is called a two-parameter count) to track his conditional expected profit
per unit bet. A bivariate central limit theorem is available (via the Cramér–Wold device),
and one can approximate P{Zn > β} using the facts that for (V1, V2) ∼ N(µ1, µ2, σ

2
1 , σ2

2 , ρ),

P{max(V1, V2) > v} = 1− P{V1 ≤ v, V2 ≤ v}, (1.15)

and the joint distribution function of (V1, V2) is available in Mathematica.
For example, suppose K = 2 and L = 1. Then ρ = 0 so V1 and V2 in (1.15) are

independent. Therefore the analogue of (1.6) and (1.11) is

P{Zn > β} ≈ 1− Φ
(

2
N − n

{⌊
N − n

2
β

⌋
+

1
2

}√
(N − n)(N − 1)

n

)2

(1.16)

for n even. In the special case N = 312, n = N/4, and β = 0.0125, this becomes
1−Φ(0.391603)2 = 0.574473. The exact probability, from the multivariate hypergeometric
distribution, is 0.574307.

2. The case of a fixed strategy.

Consider a game that requires up to m cards to complete a round. (The deck is
reshuffled if fewer than m cards remain.) Let us assume also that the player employs a
fixed strategy, one that does not depend on the cards already seen. We let X1, . . . , XN

and F0, . . . ,FN be as in Section 1. If the first n cards have been seen (0 ≤ n ≤ N −m)
and the player bets on the next round, his profit per unit bet has the form

Yn := f(Xn+1, . . . , Xn+m) (2.1)

for a suitable nonrandom function f , thereby generalizing (1.1), so his conditional expected
profit per unit bet is

Zn := E[Yn | Fn] = E[f(Xn+1, . . . , Xn+m) | Fn]. (2.2)

Our version of the fundamental theorem of card counting can be stated as follows.

Theorem 1. Under the above assumptions, {Zn,Fn, n = 0, . . . , N − m} is a mar-
tingale. In particular,

E[Z0] = · · · = E[ZN−m] (2.3)

and
0 = Var(Z0) ≤ · · · ≤ Var(ZN−m). (2.4)

Let I be an interval such that P{Z0 ∈ I, . . . , ZN−m ∈ I} = 1. If ϕ : I 7→ R is convex, then
{ϕ(Zn),Fn, n = 0, . . . , N −m} is a submartingale. In particular,

E[ϕ(Z0)] ≤ · · · ≤ E[ϕ(ZN−m)]. (2.5)
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Finally, for each inequality in (2.4), the inequality is strict unless both sides are 0. If ϕ is
strictly convex, then for each inequality in (2.5), the inequality is strict unless both sides
of the corresponding inequality in (2.4) are 0.

Remark. This does not imply the fundamental theorem of Thorp and Walden (1973),
because their theorem was formulated in terms of convex contractions of measures. How-
ever, it does imply the informal statement of their theorem quoted in the opening sentence
of this paper. Thorp and Walden emphasized the case of (2.5) in which ϕ(u) := |u− u0|α,
where u0 is arbitrary and α ≥ 1. They did not explicitly mention (2.3), (2.4), or the mar-
tingale property, but (2.3) and (2.4) are implicit in their work. Specifically, they pointed
out that convex contractions are mean-preserving, although there is a seemingly contradic-
tory statement in their paper, namely that “average player expectation is non-decreasing
(even increasing under suitable hypotheses) with increasing depletion.” A similar state-
ment appears in Griffin (1976), but it refers not to E[Zn] but to E[Zn 1{Zn>0}], and it is
likely that this is what Thorp and Walden had in mind.

It should be noted that the martingale {Zn,Fn} differs from the usual stochastic
model of a fair game. For example, the player who bets Bn+1 := 1{Zn>0} at trial n + 1
can enjoy a considerable advantage over the house.

Proof. First, the martingale property is a consequence of

Zn = E[YN−m | Fn], n = 0, 1, . . . , N −m, (2.6)

which holds by virtue of the exchangeability of X1, . . . , XN . From this follow (2.3), the
submartingale property of {ϕ(Zn),Fn}, and (2.5). Taking ϕ(u) := u2 in (2.5) and using
(2.3) implies (2.4).

Now let us assume that ϕ is strictly convex. Fix n ∈ {0, . . . , N −m− 1} and suppose
that E[ϕ(Zn)] = E[ϕ(Zn+1)]. Then

E[ϕ(E[Zn+1 | Fn])] = E[E[ϕ(Zn+1) | Fn]], (2.7)

so by the condition for equality in Jensen’s inequality, the conditional distribution of Zn+1

given Fn is degenerate. By the definition of conditional expectation, there exists a nonran-
dom function hn+1 such that Zn+1 = hn+1(X1, . . . , Xn+1). Further, hn+1 is a symmetric
function of its variables. Since the conditional distribution of hn+1(X1, . . . , Xn+1) given Fn

is degenerate, the symmetry of hn+1 implies that Zn+1 is constant and hence its variance
is 0. The stated conclusions follow.

3. A central limit theorem.

Continuing with the assumptions of Section 2, we can rewrite (2.2) as

Zn = E[f(Xn+1, . . . , Xn+m) | Fn]

=
1

(N − n)m

∑
j1,...,jm distinct in {n+1,...,N}

E[f(Xj1 , . . . , Xjm
) | Fn]
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= E

[
1

(N − n)m

∑
j1,...,jm distinct in {n+1,...,N}

f(Xj1 , . . . , Xjm
)

∣∣∣∣ Fn

]
=

1
(N − n)m

∑
j1,...,jm distinct in {n+1,...,N}

f(Xj1 , . . . , Xjm
)

=
(

N − n

m

)−1 ∑
n+1≤j1<···<jm≤N

f∗(Xj1 , . . . , Xjm), (3.1)

where (N − n)m = (N − n) · · · (N − n−m + 1) and f∗ is the symmetrized version of f :

f∗(i1, . . . , im) :=
1
m!

∑
π∈Sm

f(π(i1), . . . , π(im)). (3.2)

The second equality in (3.1) uses exchangeability, while the fourth uses the fact that the
unordered set of random variables {Xn+1, . . . , XN} (the unseen deck) is Fn-measurable,
and therefore any symmetric function of Xn+1, . . . , XN is Fn-measurable.

Thus, Zn is a U -statistic with symmetric kernel f∗ of degree m, based on a sample of
size N − n (namely, Xn+1, . . . , XN ) taken without replacement from the finite population
{1, 2, . . . , N}. A central limit theorem in this setting was first proved by Nandi and Sen
(1963); we follow Lee (1990). An invariance principle is also known, but is not needed here.
In the remainder of this section, X1, . . . , XN and Z0, . . . , ZN−m all depend on N , but we
do not make this explicit in the notation. We assume that the nonrandom functions f and
f∗ do not depend on N .

Let us define

f∗1 (i) := E[f∗(X1, . . . , Xm) | X1 = i], i = 1, . . . , N, (3.3)

and
σ2

1,N := Var(f∗1 (X1)). (3.4)

Theorem 2. Assume that

lim
N→∞

N−1/2 max
1≤i≤N

|f∗1 (i)− E[f∗(X1, . . . , Xm)]| = 0 (3.5)

and
lim

N→∞
σ2

1,N = σ2 > 0. (3.6)

Then, as N →∞ and n →∞ with n/N → α ∈ (0, 1),

N1/2(Zn − E[Z0]) ⇒ N(0,m2σ2α/(1− α)), (3.7)

where ⇒ denotes convergence in distribution.

Remark. In card-counting applications, f (and therefore f∗) is bounded, and so (3.5)
is automatic. Notice that the variance of the limit in (3.7) is increasing in α, as Theorem
1 suggests it ought to be.
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Proof. By assumption, (N − n)/N → 1 − α, so Theorem 1 of Section 3.7.4 of Lee
(1990) tells us that (N−n)1/2(Zn−E[Z0]) ⇒ N(0,m2σ2α), and this is equivalent to (3.7).

It is known (Lee 1990, page 64) that

Var(Zn) =
m2n

(N − n)(N − 1)
σ2

1,N + o(N−1), (3.8)

at least if f∗ is bounded and N →∞ and n →∞ with n/N → α ∈ (0, 1). (Note that the
error term is 0 in the case of Example 1.) Although exact formulas for Var(Zn) are available
(Lee, loc. cit.), they may be difficult to evaluate in practice. Moreover, the approximation
suggested by (3.8), which is implicit in (3.7), may introduce significant bias in any normal
approximation based on Theorem 2.

It must be kept in mind that the main purpose of card counting is to identify favorable
situations and vary bet size accordingly. Therefore, a statistic simpler than Zn may suffice
for this purpose. Let us define

e(j) := E[f(X2, . . . , Xm+1) | X1 = j]− E[f(X1, . . . , Xm)], j = 1, . . . , N. (3.9)

These numbers are the so-called effects of removal. They arise from the following hypoth-
esis. Let D be the set of cards {1, 2, . . . , N}, and assume that to each card i ∈ D there is
associated a number c(i) such that, with U denoting the set of unseen cards, the player’s
expected profit EU per unit bet on the next round is given by

EU =
1
|U |

∑
i∈U

c(i). (3.10)

Letting µ := ED be the full-deck expectation, we find that

c(j) =
∑
i∈D

c(i)−
∑

i∈D−{j}

c(i)

= Nµ− (N − 1)ED−{j}

= µ− (N − 1)(ED−{j} − µ)
= µ− (N − 1)e(j), j = 1, . . . , N. (3.11)

Since
∑N

j=1 e(j) = 0, it follows that, when X1, . . . , Xn have been seen, the player’s condi-
tional expected profit per unit bet on the next round is

Z̃n :=
1

N − n

N∑
j=n+1

{µ− (N − 1)e(Xj)} = µ +
1

N − n

n∑
j=1

(N − 1)e(Xj). (3.12)

Notice that this generalizes (1.3), and the interpretation is similar.
However, we emphasize that the derivation of (3.12) is based on hypothesis (3.10),

which is really only an approximation. (Example 1 is unusual in that the approximation
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is exact in that case.) To justify the approximation, Griffin (1999, Appendix to Ch. 3)
showed that the quantities µ− (N −1)e(j) in (3.11) are the least squares estimators of the
parameters c(j) in the linear model

EU =
1
|U |

∑
i∈U

c(i) + εU , U ⊂ D, |U | = N − n, (3.13)

for fixed 1 ≤ n ≤ N −m. As Griffin put it, “But here we appeal to the method of least
squares not to estimate what is assumed to be linear, but to best approximate what is
almost certainly not quite so.”

The next theorem provides an asymptotic justification.

Theorem 3. Under the assumptions of Theorem 2, as N → ∞ and n → ∞ with
n/N → α ∈ (0, 1), N1/2(Zn − E[Z0]) and N1/2(Z̃n − µ) are asymptotically equivalent in
the sense that

N E[(Zn − E[Z0]− (Z̃n − µ))2 ] → 0. (3.14)

In particular,
N1/2(Z̃n − µ) ⇒ N(0,m2σ2α/(1− α)). (3.15)

More precisely, letting σ2
e,N = Var(e(X1)), we have

Z̃n − µ

σe,N

√
n(N − 1)/(N − n)

⇒ N(0, 1). (3.16)

Remark. The principal result is (3.14). Equation (3.16) could be obtained directly
from the central limit theorem for samples from a finite population. The reason for saying
“more precisely” is that the left side of (3.16) has variance 1, not just asymptotic variance
1, and therefore a normal approximation based on (3.16) is likely to be more accurate than
one based on (3.15).

Proof. Lee’s (1990, Section 3.7.4) proof of the central limit theorem for U -statistics
based on samples from a finite population includes the result that, in our notation,

(N − n) E

[(
Zn − E[Z0]−

m

N − n

N∑
j=n+1

{f∗1 (Xj)− E[f∗1 (Xj)]}
)2]

→ 0. (3.17)

Lee also showed (page 151) that, again in our notation,

e(Xj) = − m

N −m
{f∗1 (Xj)− E[f∗1 (Xj)]}. (3.18)

Noting that
∑N

j=1 e(Xj) = 0, we can rewrite (3.17) as

N E

[(
Zn − E[Z0]−

N −m

N − 1
1

N − n

n∑
j=1

(N − 1)e(Xj)
)2]

→ 0, (3.19)
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which is equivalent to

N E

[(
Zn − E[Z0]−

N −m

N − 1
(Z̃n − µ)

)2 ]
→ 0. (3.20)

This implies (3.14), which together with Theorem 2 gives (3.15).
Finally, we note that

Var
( n∑

j=1

e(Xj)
)

=
N − n

N − 1
nσ2

e,N . (3.21)

From this and (3.15) we get (3.16). Incidentally, the asymptotic equivalence of (3.15) and
(3.16) follows from (3.18):

σ2
e,N =

(
m

N −m

)2

σ2
1,N . (3.22)

4. The case of a variable strategy.

Here we assume that the player has a number of strategies available and therefore a
number of choices of f in (2.1). With m as in Section 2, let us denote by S the set of such
functions f . We assume that S is finite. If the first n cards have been seen (0 ≤ n ≤ N−m)
and the player bets on the next round, we assume that he chooses the optimal f ∈ S. It
will depend on X1, . . . , Xn, so we denote it by fX1,...,Xn

. Here optimality means that

E[fX1,...,Xn
(Xn+1, . . . , Xn+m) | Fn]

≥ E[gX1,...,Xn
(Xn+1, . . . , Xn+m) | Fn] (4.1)

for every possible choice gX1,...,Xn ∈ S. The player’s profit per unit bet is

Yn := fX1,...,Xn
(Xn+1, . . . , Xn+m), (4.2)

so his conditional expected profit per unit bet is

Zn := E[Yn | Fn] = E[fX1,...,Xn
(Xn+1, . . . , Xn+m) | Fn]. (4.3)

Theorem 4. Under the above assumptions, {Zn,Fn, n = 0, . . . , N − m} is a sub-
martingale. In particular,

E[Z0] ≤ · · · ≤ E[ZN−m]. (4.4)

More generally, let I be an interval such that P{Z0 ∈ I, . . . , ZN−m ∈ I} = 1. If ϕ : I 7→ R
is convex and nondecreasing, then {ϕ(Zn),Fn, n = 0, . . . , N −m} is a submartingale. In
particular,

E[ϕ(Z0)] ≤ · · · ≤ E[ϕ(ZN−m)]. (4.5)
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Finally, if ϕ is strictly convex and increasing, then, for n = 0, . . . N −m− 1, E[ϕ(Zn)] =
E[ϕ(Zn+1)] if and only if Zn and Zn+1 are constant and equal.

Remark. For example, (4.5) holds with ϕ(u) := {(u−u0)+}α, where u0 is arbitrary and
α ≥ 1. In particular, E[Z2

n] is increasing in n in Example 2. (Take I = [0, 1], u0 = 0, and
α = 2.) However, (4.5) may fail with ϕ(u) := |u−u0|α. (For example, take u0 = 1/(N−1)
and α = 2 in Example 2.) Recall from Example 2 that (2.3) and (2.4) may fail here as
well.

Proof. The submartingale property of {Zn,Fn} follows by noting that, for n =
0, . . . , N −m− 1,

E[Zn+1 | Fn] = E[E[fX1,...,Xn+1(Xn+2, . . . , Xn+m+1) | Fn+1] | Fn]
≥ E[E[fX1,...,Xn(Xn+2, . . . , Xn+m+1) | Fn+1] | Fn]
= E[fX1,...,Xn(Xn+2, . . . , Xn+m+1) | Fn]
= E[fX1,...,Xn(Xn+1, . . . , Xn+m) | Fn]
= Zn, (4.6)

where the inequality uses (4.1) and the fact that fX1,...,Xn
is of the form gX1,...,Xn+1 , and

the next-to-last equality uses the exchangeability of X1, . . . , XN . From this follow (4.4),
the submartingale property of {ϕ(Zn),Fn}, and (4.5).

Now let us assume that ϕ is strictly convex and increasing. Fix n ∈ {0, . . . , N−m−1}
and suppose that E[ϕ(Zn)] = E[ϕ(Zn+1)]. Then

E[ϕ(Zn)] = E[ϕ(E[Zn+1 | Fn])] = E[E[ϕ(Zn+1) | Fn]]. (4.7)

The argument in the proof of Theorem 1 applies to the second equality in (4.7), resulting in
Var(Zn+1) = 0. Moreover, the first equality in (4.7), together with the increasing property
of ϕ and Zn ≤ E[Zn+1 | Fn], tells us that Var(Zn) = 0. The stated conclusion follows.

5. Application to trente et quarante.

Trente et quarante (also known as rouge et noir) is a casino game played with six
standard 52-card decks mixed together, resulting in a 312-card deck. Suits do not matter
but colors do. Aces have value one, picture cards have value 10, and every other card has
value equal to its nominal value. Two rows of cards are dealt. In the first row, called
Black, cards are dealt until the total value is 31 or greater. In the second row, called Red,
the process is repeated. Thus, each row has associated with it a total between 31 and 40
inclusive.

Four even-money bets are available, called red, black, color, and inverse. A bet on red
(resp., black) wins if the Red (resp., Black) total is less than the Black (resp., Red) total
and loses if it is greater. A push occurs if the two totals are equal and greater than 31; in
this case no money changes hands. If the Red and Black totals are both equal to 31, half
the amount of the bet is lost.

A bet on color (resp., inverse) wins if the color of the first card dealt to Black and the
color of the winning row are the same (resp., different) and loses if the colors are different
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(resp., the same). A push occurs if the Red and Black totals are equal and greater than
31. If the Red and Black totals are both equal to 31, half the amount of the bet is lost.

Associated with each of the four even-money bets is an insurance bet for 1 percent
of the original bet. It pays off the loss in the case of a tie at 31 though the bet itself is
retained by the casino (just as an insurance company retains the premium when it pays
off a claim). The insurance bet is lost if the original bet is won or lost. It is pushed if the
original bet is pushed. A drawback to taking insurance is that it restricts one’s bets to
100 times the smallest unit of currency accepted, and integer multiples thereof.

Of historical interest is the problem of finding the probabilities of the ten possible
totals, 31 to 40. This was first done by D. M. Florence in a 1739 monograph titled
Calcul de jeu appellé par les françois le trente-et-quarante . . . , assuming a nonstandard
deck composition, namely a 40-card deck obtained from the standard 52-card deck by
removing the eights, nines, and tens. Todhunter (1865, Art 358) described Florence’s effort
contemptuously: “The problem is solved by examining all the cases which can occur, and
counting up the number of ways. The operation is most laborious, and the work is perhaps
the most conspicuous example of misdirected industry which the literature of Games of
Chance can furnish.” We have not been able to locate a copy of Florence’s work and so
cannot comment on its accuracy.

Huyn (1788, pp. 28–29) proposed a solution, assuming sampling with replacement
from a standard deck, but it is inaccurate. Noting that for a total of 40 the last card must
have value 10 (4 denominations); for a total of 39 the last card must have value 9 or 10
(5 denominations); . . . for a total of 31 the last card must have value 1, 2, . . . , or 10 (13
denominations), Huyn concluded that the probability of a total of i is

P (i) =
44− i

85
, 31 ≤ i ≤ 40, (5.1)

since 4+5+ · · ·+13 = 85. The argument was sufficiently plausible that several subsequent
authors (Grégoire (1853, pp. 37–38), Gall (1883, p. 96), Silberer (c. 1910, pp. 72–73),
Scrutator (1924, pp. 84–85), and Scarne (1974, p. 518)) adopted it as their own. For good
measure, Scarne (1974, p. xx), the self-proclaimed “world’s foremost gambling authority,”
added that he was the first to evaluate these probabilities.

Poisson (1825) not only pointed out the error in Huyn’s work, but he found two correct
expressions for the probabilities in question, assuming sampling without replacement from
the 312-card deck. For example, he showed that

P (31) = coefficient of t31 in (5.2)

313
∫ 1

0

(1− y + yt)24 · · · (1− y + yt9)24(1− y + yt10)96 dy.

But because of his lack of a computer, he was able to evaluate the probabilities only in an
asymptotic case corresponding to sampling with replacement.*

Independently, De Morgan (1838, Appendix 1) evaluated the ten probabilities assum-
ing sampling with replacement. Bertrand (1888, pp. 35–38) and Boll (1936, Ch. 14) treated

* An English translation of Poisson’s paper is available from the authors.

12



the same case in their analyses. De Morgan’s argument was simpler than Poisson’s: He
noted for example that P (31) can be found from the recursion

P (n) =
1
13

(P (n− 1) + · · ·+ P (n− 9)) +
4
13

P (n− 10), (5.3)

where n = 1, 2, . . . , 31, P (n) := 0 if n < 0, and P (0) := 1. Bertrand’s argument was
identical. Of course, this approach does not work when sampling without replacement.

Thorp and Walden (1973) addressed the problem under the correct assumptions (sam-
pling without replacement from the 312-card deck) but only approximated the probabilities
in question by limiting consideration to at most eight cards. Here we evaluate the exact
probabilities, rounded to nine decimal places, possibly for the first time. Almost certainly,
this calculation could not have been done prior to the computer era.

Let us define a trente-et-quarante sequence to be a finite sequence a1, . . . , aK of positive
integers, none of which exceeds 10, and at most 24 of which are equal to 1, such that

a1 + · · ·+ aK−1 ≤ 30 and a1 + · · ·+ aK ≥ 31. (5.4)

Clearly, if a1, . . . , aK is such a sequence, then its length K satisfies 4 ≤ K ≤ 28. The
number of trente-et-quarante sequences can be evaluated by noting that, given any such
sequence, each permutation of the terms that fixes the last term results in another trente-
et-quarante sequence. So we let p10(k) be the set of partitions of the positive integer k with
no part greater than 10. Such a partition can be described as (k1, . . . , k10), with ki ≥ 0
being the multiplicity of part i. In particular,

∑10
i=1 iki = k. It follows that the number of

trente-et-quarante sequences is

30∑
k=21

∑
(k1,...,k10)∈p10(k): k1≤24

(
k1 + · · ·+ k10

k1, . . . , k10

)
· (10− (31− k) + 1− δk,30 δk1,24), (5.5)

where δi,j is the Kronecker delta. This is readily computable, because the double sum
contains only 18,096 terms. We find that there are 9,569,387,893 trente-et-quarante se-
quences.

Similar reasoning gives the probabilities of the ten trente-et-quarante totals, assuming
a full initial deck of 312 cards. Let the initial counts of the ten card values be n1 = · · · =
n9 = 24 and n10 = 96, with N := n1 + · · ·+ n10 = 312. Then, for i = 31, . . . , 40, the total
i occurs with probability

P (i) :=
30∑

k=i−10

∑
(k1,...,k10)∈p10(k)

(
k1 + · · ·+ k10

k1, . . . , k10

)

· (n1)k1 · · · (n10)k10(ni−k − ki−k)
(N)k1+···+k10+1

. (5.6)

The condition k1 ≤ 24 can be omitted here, because (n1)k1 = 0 if k1 > n1 = 24. These
numbers too are easy to compute (the double sum for P (31) has 18,115 terms, of which 19
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are 0), and we summarize the results in Table 1. Note that the approximate probabilities of
Thorp and Walden (1973), based on an analysis of trente-et-quarante sequences of length
eight or less, are accurate to within about 0.000065.

Table 1 here

The distribution of the length of a trente-et-quarante sequence may also be of some
interest. Boll (1936, page 200) listed the probabilities of sequence lengths up to 13, as-
suming sampling with replacement. Thorp and Walden (1973) evaluated the probabilities
of sequence lengths up to eight, assuming sampling without replacement. They noted the
surprisingly large discrepancies between Boll’s figures and theirs (e.g, Boll gave 0.17453
for the probability that a sequence has length four, versus their 0.260817), and concluded:
“Numbers based on the infinite deck approximation may be in considerable error.” Ac-
tually, Boll’s figures are simply wrong. The source of his error can be inferred from Boll
(1945, Figs. 2 and 3). In Table 2 we list the probabilities of sequence lengths up to 10 in
both cases (without and with replacement), showing that the infinite-deck approximation
is reasonably good, as might be expected.

Table 2 here

The game of trente et quarante involves an ordered pair of trente-et-quarante se-
quences a1, . . . , aK and b1, . . . , bL, with at most 24 of the K + L terms equal to 1 and
at most 24 of them equal to 2. Clearly, if a1, . . . , aK and b1, . . . , bL is such a pair, then
8 ≤ K + L ≤ 44. We assumed in Sections 2–4 that a round is not begun unless there are
enough cards to complete it, but here we add the phrase “with high probability.” Regard-
ing K and L as random variables, we have calculated that P{K +L > 20} < 0.000000606,
so we can safely take m = 20 in Sections 2–4.

Let us now find the joint distribution of the Black total and the Red total. Because
sampling is without replacement, we cannot assume independence, though doing so gives
a reasonable first approximation. Arguing as in (5.6), for i, j = 31, . . . , 40, the totals i for
Black and j for Red occur with probability

P (i, j) :=
30∑

k=i−10

30∑
l=j−10

∑
(k1,...,k10)∈p10(k)

∑
(l1,...,l10)∈p10(l)

·
(

k1 + · · ·+ k10

k1, . . . , k10

)(
l1 + · · ·+ l10

l1, . . . , l10

)
(n1)k1+l1 · · · (n10)k10+l10

(N)k1+···+k10+l1+···+l10

· (ni−k − ki−k − li−k)(nj−l − kj−l − lj−l − δi−k,j−l)
(N − k1 − · · · − k10 − l1 − · · · − l10)2

. (5.7)

It is clear from (5.7) (or from a simple exchangeability argument) that the joint distribution
is symmetric; of course, both marginals are given by (5.6). The evaluation of (5.7) requires
a fair amount of computing power, inasmuch as the quadruple sum for P (31, 31) contains
(18,115)2 = 328,153,225 terms. Nevertheless, our program for the joint distribution runs
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in less than 30 minutes on a 1.8 Ghz Mac G5. We record the most important conclusions
from this computation in Table 3.

Table 3 here

We can now address the card-counting potential of trente et quarante, using Theorem
3. Let D be the set of 312 cards (the full deck), and let U be an arbitrary subset of D.
Let PU denote conditional probability given that U is the unseen deck, with all possible
permutations of the cards of U equally likely. Let Y1 denote the next card to be dealt.
Let R (resp., B, C, I) be the event that red (resp., black, color, inverse) wins, let T
be the event that Red and Black tie at 32 or more, and let T31 be the event that Red
and Black tie at 31. Thorp and Walden (1973) made the important observations that
PU (R) = PU (B), regardless of U , whereas it is not necessarily true that PU (C) = PU (I);
nevertheless, the latter equality is true if each card value has an equal number of red and
black representatives in U . (It is possible that Gall (1883) was aware of this as well, based
on his pages 233–234.) More generally, conditioning on Y1 we find that

PU (C)− PU (I) =
10∑

i=1

(PU{Y1 = red i} − PU{Y1 = black i})

· [PU (R | {Y1 = i})− PU (B | {Y1 = i})]. (5.8)

Here we are using the fact that since PU (R | {Y1 = red i}) = PU (R | {Y1 = black i}), both
probabilities are equal to PU (R | {Y1 = i}); of course, the same is true with B in place of
R. In particular, for the color bet the effects of red removals are

PD−{red j}(C)− PD−{red j}(I)− 1
2
PD−{red j}(T31)

−
(

PD(C)− PD(I)− 1
2
PD(T31)

)
= − 1

311
[PD−{j}(R | {Y1 = j})− PD−{j}(B | {Y1 = j})]

− 1
2
(PD−{j}(T31)− PD(T31)), (5.9)

while the effects of black removals are

PD−{black j}(C)− PD−{black j}(I)− 1
2
PD−{black j}(T31)

−
(

PD(C)− PD(I)− 1
2
PD(T31)

)
=

1
311

[PD−{j}(R | {Y1 = j})− PD−{j}(B | {Y1 = j})]

− 1
2
(PD−{j}(T31)− PD(T31)). (5.10)

15



Here we are using

PD−{red j}(A | {Y1 = j}) = PD−{j}(A | {Y1 = j}) for A = B,R

PD−{red j}(T31) = PD−{j}(T31); (5.11)

similar results hold with black j in place of red j.
For the inverse bet, the results are analogous, but with C and I interchanged, so the

sign of the term with coefficient 1/311 is changed in (5.9) and (5.10). Even simpler, the
effects of red and black removals are interchanged.

For the color bet with insurance, the term − 1
2 (PD−{j}(T31) − PD(T31)) in (5.9) and

(5.10) is replaced by (0.01)(PD−{j}(T )−PD(T )). The same is true of the inverse bet with
insurance. (Here “per unit bet” in the definition of Zn means “per unit bet on color or
inverse only.”)

Evaluation of these quantities requires an easy modification of the program used for
Table 3. Results are summarized in Table 4.

Table 4 here

Of course, in practice, the quantities Ei := (N − 1)e(i) of (3.12) (or of Table 4) are
replaced by integers Fi that are highly correlated with the given numbers. Writing (3.12)
as

Z̃n = µ +
1

N − n

n∑
j=1

EXj , (5.12)

we can approximate Z̃n by

ZF
n := µ + γF

(
1

N − n

n∑
j=1

FXj

)
, (5.13)

where the regression coefficient γF is given by

γF =
N∑

i=1

EiFi

/ N∑
i=1

F 2
i , (5.14)

As in Example 1, the quantity within parentheses in (5.13) is called the true count. It
must be adjusted by the constants γF and µ to estimate the player’s advantage. A level-k
counting system uses integers whose absolute value is at most k. Table 5 gives what we
believe to be the best level-1 counting system in two cases: (a) the player bets on color
(or inverse), never with insurance, and (b) the player bets on color (or inverse), always
with insurance. (For simplicity, we do not consider the case in which the player sometimes
takes insurance and other times does not.) In both cases considered, the correlation with
the effects of removal is greater than 0.97.

Table 5 here
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The conclusions are perhaps unexpected. The player who always takes insurance may
use a one-parameter counting system to track his advantage at both the color bet and the
inverse bet. The situation is analogous to that of Example 2. On the other hand, the player
who never takes insurance must use a two-parameter counting system (one parameter for
the red cards, the other for the black cards) to track his advantage at both the color bet
and the inverse bet. The situation is analogous to that of Example 3, especially (1.16).

May (2004) was apparently first to discover our with-insurance system: “The best
one-level system for counting these two bets [color and inverse] counts red A–6 and black
9–K as +1, with black A–6 and red 9–K as −1. When the count is above 23, the color bet
is favorable. When it is below −23, inverse is favorable.” No further details were provided.

We next use a normal approximation to approximate the probability that the player’s
approximate advantage exceeds a certain level as a function of the number of unseen
cards. This is complicated by the fact that the player has two bets to choose from, color
and inverse.

Observe that (3.16) can be restated as

1
(N − n)σE

n∑
j=1

EXj

√
(N − n)(N − 1)

n
⇒ N(0, 1), (5.15)

where σ2
E = Var(EX1). Similar reasoning gives

1
(N − n)σF

n∑
j=1

FXj

√
(N − n)(N − 1)

n
⇒ N(0, 1), (5.16)

where σ2
F = Var(FX1). Since FX1 is integer valued, we can improve any normal approxi-

mation with a continuity correction.
We begin with the case in which the player bets on color or inverse, and always takes

insurance. Let ZC
n and ZI

n be the analogues of ZF
n for the color and inverse bets, and

similarly let Ci and Ii correspond to Fi, and γC and γI to γF , σC and σI to σF . Then
Ii = −Ci, γC = γI > 0, and σ2

C = σ2
I , so

P{max(ZC
n , ZI

n) > β}

= P

{
max

(
µ +

γC

N − n

n∑
j=1

CXj
, µ +

γC

N − n

n∑
j=1

IXj

)
> β

}

= P

{∣∣∣∣ n∑
j=1

CXj

∣∣∣∣ >

⌊
(N − n)

β − µ

γC

⌋
+

1
2

}

≈ 2
[
1− Φ

(
1

(N − n)σC

{⌊
(N − n)

β − µ

γC

⌋
+

1
2

}√
(N − n)(N − 1)

n

)]
. (5.17)

Here N = 312, µ = −0.01(1 − q) = −0.009123 (from Table 3), γC = 0.024767, and
σ2

C = 11/13. With 20 cards left (n = 292), the estimated probability that the player has
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the advantage (β = 0 in (5.17)) is 0.060. We hasten to add that this number is based on
three approximations, namely (3.10), (5.13), and (5.17).

We turn to the case in which the player bets on color or inverse, and never takes
insurance. Using the same notation as before (ZC

n , ZI
n, Ci, Ii, γC , γI , σC , σI), we have

γC = γI > 0, σ2
C = σ2

I , and Corr(CX1 , IX1) = 0, so

P{max(ZC
n , ZI

n) > β}

= P

{
max

(
µ +

γC

N − n

n∑
j=1

CXj
, µ +

γC

N − n

n∑
j=1

IXj

)
> β

}

= 1− P

{ n∑
j=1

CXj
≤

⌊
(N − n)

β − µ

γC

⌋
+

1
2
,

n∑
j=1

IXj
≤

⌊
(N − n)

β − µ

γC

⌋
+

1
2

}

≈ 1− Φ
(

1
(N − n)σC

{⌊
(N − n)

β − µ

γC

⌋
+

1
2

}√
(N − n)(N − 1)

n

)2

. (5.18)

Here N = 312, µ = −0.010946 (from Table 3), γC = 0.040810, and σ2
C = 5/13. With 20

cards left, the estimated probability that the player has the advantage is 0.040.
The results are consistent with the findings of Thorp and Walden (1973): No card-

counting system at trente et quarante can yield a “practically important player advantage.”
Nevertheless, the preceding discussion provides a more complete understanding of

trente et quarante. When the directors of the Monte Carlo Casino were advised by General
Pierre Polovtsoff (1937, p. 189), President of the International Sporting Club, that an
Italian gang was exploiting a weakness in the game, they responded, “Impossible! Trente-
et-quarante has been played here for eighty years, and it is inconceivable that anyone can
have discovered anything about it that we do not already know.”
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Poisson, Siméon-Denis (1825) Mémoire sur l’avantage du banquier au jeu de trente et
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Table 1

The probabilities of the ten trente-et-quarante totals. Assumes cards are dealt from the
full 312-card deck.

total probability probability
(without replacement) (with replacement)

31 .148 057 777 .148 060 863
32 .137 826 224 .137 905 177
33 .127 576 652 .127 512 672
34 .116 865 052 .116 891 073
35 .106 151 668 .106 049 464
36 .094 992 448 .094 998 365
37 .083 858 996 .083 749 795
38 .072 302 455 .072 317 327
39 .060 800 856 .060 716 146
40 .051 567 873 .051 799 118

Table 2

The (incomplete) distribution of the length of a trente-et-quarante sequence. Assumes
cards are dealt from the full 312-card deck.

length probability probability
(without replacement) (with replacement)

4 .260 817 415 .262 105 669
5 .367 049 883 .365 194 065
6 .239 624 080 .238 220 738
7 .096 878 765 .097 334 300
8 .028 043 573 .028 883 109
9 .006 268 155 .006 731 994

10 .001 127 778 .001 288 923
≥ 11 .000 190 349 .000 241 203
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Table 3

Some probabilities in trente et quarante, and the house advantage. Assumes sampling
without replacement from the full 312-card deck.

event probability

Red total < Black total p := .445 200 543
Red total > Black total p := .445 200 543
Red total = Black total ≥ 32 q := .087 707 543
Red total = Black total = 31 r := .021 891 370

red, black, color, or inverse house advantage

without insurance, pushes included 1
2r = .010 945 685

without insurance, pushes excluded 1
2r/(1− q) = .011 998 000

with insurance, pushes included 0.01(1− q)/1.01 = .009 032 599
with insurance, pushes excluded 0.01/1.01 = .009 900 990

Table 4

Effects of removal, multiplied by 311, for the color bet in trente et quarante. For the
inverse bet, effects for red cards and black cards are interchanged.

without insurance with insurance

card value red card black card red card black card

1 .051 988 .006 896 .022 942 −.022 151
2 .044 022 −.006 993 .025 593 −.025 422
3 .040 616 −.011 962 .026 236 −.026 342
4 .035 853 −.015 102 .025 329 −.025 626
5 .028 053 −.016 000 .021 816 −.022 237
6 .016 415 −.012 616 .014 292 −.014 739
7 .003 811 −.008 802 .006 105 −.006 508
8 −.010 233 −.002 965 −.003 766 .003 503
9 −.027 035 .004 986 −.016 032 .015 988

10 −.045 133 .014 899 −.029 889 .030 143
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Table 5

The best level-1 card-counting systems for the color bet in trente et quarante. For the
inverse bet, point values for red cards and black cards are interchanged.

without insurance with insurance

card value red card black card red card black card

1 1 0 1 −1
2 1 0 1 −1
3 1 0 1 −1
4 1 0 1 −1
5 1 0 1 −1
6 0 0 1 −1
7 0 0 0 0
8 0 0 0 0
9 −1 0 −1 1

10 −1 0 −1 1

correlation
with Table 4 .971 931 .974 264
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